Постоянная хаббла и эволюция стационарной вселенной. Подробнее о длине и расстоянии

Год 1929 ознаменовался замечательным событием. Человечество распрощалось со статической Вселенной, состоящей из застывших в пространстве галактик и "переселилось" в мир подвижный, расширяющийся. Произошло это благодаря открытию американского астронома Эдвина Хаббла. Зная, что галактики удаляются, он нашел интересную закономерность в их движении. Но, начнем по порядку.

Впервые лучевую скорость галактики измерил в 1912 году американский астроном Весто Слайфер. Он определил скорость одной из ближайших к нам звездных систем - Туманности Андромеды. К 1925 году Слайфер измерил лучевые скорости уже у 45 галактик. Большинство из них удалялось от нас, о чем свидетельствовало смещение линий в спектре в красную область (красное смещение). Для того же, чтобы узнать, существует ли какой-либо закон в "разбегании" галактик и какой он, необходимо было знать не только скорости удаления галактик, но также и расстояния до них. Правильно определить расстояние оказалось значительно сложнее.

В 20-е годы Эдвин Хаббл работал на крупнейшем телескопе того времени - 2.5-м рефлекторе обсерватории Маунт-Вилсон (США). С помощью такого инструмента уже можно наблюдать и изучать отдельные яркие звезды в соседних галактиках. Хабблу удалось обнаружить в нескольких ближайших галактиках переменные звезды особого типа - цефеиды. Эти звезды используются в астрономии в качестве "стандартных свечей": их светимость зависит от периода переменности блеска звезды. Сравнив светимость звезды с наблюдаемой звездной величиной, можно достаточно точно найти расстояние до цефеиды, а значит и до галактики, в которой она находится.

Определив с помощью цефеид расстояния до самых близких галактик, Хаббл сделал следующий шаг в строительстве "лестницы" внегалактических расстояний, установив светимость самых ярких звезд в галактиках. Ярчайшие звезды, в отличие от цефеид, можно разглядеть не только в самых близких звездных системах.

Построив таким образом "лестницу" расстояний, он нашел, что скорость "разбегания" галактик прямо пропорциональна расстоянию до них, то есть v=Hr . Коэффициент пропорциональности Н в этой формуле мы называем постоянной Хаббла. Закон расширения, задаваемый этой формулой, называют однородным расширением. Он справедлив не только для наблюдателей, находящихся на Земле. Переместившись в любую точку пространства, наблюдатель обнаружит тот же закон "разбегания" галактик. Теоретически однородное расширение Вселенной еще в 1924 году предсказал советский математик Александр Фридман, однако без наблюдательных данных его точка зрения некоторое время считалась ошибочной.

В более поздних работах Хаббл использовал уже не только отдельные объекты внутри галактик, но также и общую светимость звездных систем в целом. Это позволило использовать еще более далекие галактики и уточнить зависимость Расстояние - Скорость удаления. В ранних работах Хаббл получил Н=500 км/(с·Мпк). Позже было выявлено несколько ошибок при определении расстояний до ближайших галактик: использовались цефеиды разных классов, различающиеся по светимости, также некоторые ярчайшие звезды в удаленных галактиках оказались на самом деле звездными скоплениями. Все это привело к пересмотру шкалы расстояний и постоянной Хаббла. Ее современное значение, для которого принято обозначение Но, получено несколькими десятками независимых методов и лежит в интервале между 50 и 100 км/(с·Мпк).

Зная постоянную Хаббла, можно ответить на вопрос, сколько времени прошло от начала расширения Вселенной, то есть, иначе говоря, мы можем узнать возраст Вселенной. Этот возраст примерно равен 1/Н 0 , что составляет 10-20 миллиардов лет. Связь постоянной с возрастом нашего мира позволяет наложить ограничения на хаббловскую константу. Возраст Вселенной не может быть меньше возраста объектов, из которых она состоит. Самые старые шаровые скопления насчитывают 15-17 миллиардов лет. Анализ радиоактивных изотопов космического вещества показывает, что возраст нашего мира не менее 12-14 миллиардов лет. Это хорошо согласуется со значением Но=50-75 км/(с·Мпк). Хуже согласие с большой Н 0 - в районе 100 км/(с·Мпк), тем не менее, некоторыми методами получается высокое значение, порядка 100, константы Хаббла.

Отчего же наблюдается такой большой разброс в оценках одной из основных космологических констант? Внешне рассчитать значение Но просто. Необходимо лишь знать расстояние до галактик (или скоплений галактик) и по смещению спектральных линий определить их скорость удаления. Но проблемы возникают и с определением расстояний, и со скоростями галактик.

Наиболее надежно расстояние определяется до галактик, в которых найдены цефеиды типа RR Лиры, а также еще некоторые типы объектов, светимость которых достаточно хорошо известна по наблюдениям в нашей Галактике. Все они найдены лишь в близких звездных системах - в пределах 45 Мпк. Исключение составляют три галактики: M100 и NGC 4571 из скопления в Деве (15-20 Мпк) и М96 во Льве (12 Мпк), где недавно с помощью Космического телескопа им. Хаббла удалось разглядеть цефеиды.

Менее надежно удается определить расстояние, используя самые яркие галактические объекты, средняя светимость которых известив из наблюдений. К ним относятся самые яркие звезды, новые, сверхновые, шаровые скопления и некоторые другие объекты. Для тех галактик, в которых невозможно разглядеть отдельные объекты, индикатором расстояния могут стать характеристики самих галактик, например, можно использовать среднюю светимость галактик определенного морфологического типа. Широко используются методы определения расстояния, основанные на эмпирических соотношениях между различными наблюдательными параметрами.

Так, например, известно, что для спиральных галактик ширина спектральной линии нейтрального водорода пропорциональна их светимости. "Настроив" эту зависимость по ближайшим галактикам с хорошо известными расстояниями, можно определять расстояния до значительно удаленных галактик и скоплений галактик. Расстояния до самых близких галактик определяются с точностью 10%. С увеличением расстояния неопределенность растет. Таким образом, основываясь на более точных, но ограниченных методах, переходят к бот лее "дальнобойным".

Расстояния до самых дальних уголков Вселенной, откуда еще приходит свет, находят по красному смещению в спектре объектов через закон Хаббла. В этом случае расстояние зависит от значения Но, которое, в свою очередь, известно неточно.

Определить скорость удаления галактики значительно легче, но и здесь наблюдателей поджидают подводные камни. На фоне однородного расширения Вселенной, галактики и скопления взаимодействуют, притягиваются друг к другу. В результате появляются отклонения от однородного расширения, как говорят еще, от "хаббловского потока". Например, наша Галактика и ближайшая к нам "спираль" Туманность Андромеды не разлетаются друг от друга, а обращаются по эллиптическим орбитам. В свою очередь эти галактики "падают" со скоростью около 300 км/с на ближайшее к нам скопление галактик в созвездии Девы. Скорости такого порядка заметно изменяют картину однородного расширения и вносят большую ошибку в постоянную Хаббла при ее определении по близким галактикам (в пределах нескольких десятков Мпк). Чтобы избавиться от, как говорят астрономы, нехаббловской составляющей лучевой скорости, приходится моделировать распределение масс в масштабе ближайших скоплений галактик и рассчитывать движение объектов, вызванное их взаимным притяжением.

Для далеких объектов скорость удаления столь велика, что можно пренебречь отклонениями от хаббловского потока. Однако, как уже было сказано, расстояние в этом случае определяется менее уверенно.

Впервые определенное Хабблом значение Н 0 в 5-10 раз отличалось от современного. В более поздних работах оно было пересмотрено. Интересно проследить зависимость значения постоянной Хаббла от времени ее измерения по мере развития наших знаний о Вселенной. Постоянная Хаббла экспоненциально убывает на начальном этгрте, и начинает "колебаться", когда уже сформировалось более-менее общепринятое значение.

Если посмотреть работы по определению постоянной Хаббла за последние 10-15 лет, то можно убедиться, что значение Но примерно равномерно покрывает интервал от 50 до 100 км/(с·Мпк). Время от времени тому или иному значению отдается предпочтение (своеобразное проявление моды в науке), но не надолго. Нет согласия и среди "мэтров" внегалактической астрономии, посвятивших всю жизнь проблемам определения расстояний во Вселенной и постоянной Хаббла. Так, научная группа, возглавляемая Жераром де Вокулером (США), "исповедует" так называемую "короткую" шкалу внегалактических расстояний. В работах Вокулера и его сотрудников Но принимает значение 80-100 км/(с·Мпк). Чем большее значение принимает хаббловская константа, тем короче расстояния во Вселенной и меньше ее возраст. Швейцарский астроном Г. Тамманн и его группа, напротив, поддерживают "длинную" шкалу расстояний, получая значение H 0 =50-70 км/(с·Мпк), а в нескольких последних работах прошедшего года Но у них "упала" до 45 км/(с·Мпк). При этом обе группы делают разные начальные шаги по "лестнице" внегалактических расстояний, отдавая предпочтение разным индикаторам расстояний.

На данный момент нельзя сказать с уверенностью, чья научная группа более права. Множество новых методов, развитых в последнее время, например, с использованием свойств гравитационных линз, также приводят к противоречащим друг другу значениям Н 0 . С помощью Космического телескопа им. Хаббла удалось открыть несколько цефеид в далеких галактиках: М100 и NGC 4571 в Деве и М96 во Льве, и тем самым определить расстояние до них с хорошей точностью, однако значения локального поля скоростей, получаемые в разных работах, приводят к достаточно неопределенной оценке Н 0 =60-80 км/(с·Мпк). Имеются также основания считать, что Н 0 , найденная по близким галактикам, отличается от Н 0 для больших масштабов (либо из-за того же не-хаббловского поля скоростей, либо это фундаментальное свойство Вселенной). Скорее всего, окончательное, убедительное значение постоянной Хаббла можно будет получить лишь в будущем с помощью спутника, который простейшим методом триангуляции точно измерит расстояния до далеких внегалактических объектов.

Если подтвердится "длинная" шкала (Н=50-70 км/(с·Мпк)), то появится хорошее согласие между значением постоянной Хаббла и возрастом звезд и галактик. С другой стороны, если подтверждение получит "короткая" шкала (Н=80-100 км/(с·Мпк)), то это будет еще более интересное событие. Появится явное противоречие, так как возраст Вселенной в этом случае окажется меньше возраста объектов, ее составляющих. Это даст толчок потоку новых идей и открытий в области эволюции Вселенной.

В настоящее время вопрос не решен окончательно и приходится идти на компромисс. До окончательного выяснения дела многие ученые останавливаются на "золотой середине", полагая значение Н 0 =75 км/(с·Мпк).

Ю.Н.Ефремов

Самое грандиозное явление, известное человеку - это расширение нашей Вселенной, доказанное в 1929 г. Расстояния между скоплениями галактик непрерывно возрастают, и это важнейший факт для понимания устройства Мироздания. Определения скорости расширения - постоянной Хаббла, и ее зависимости от времени остаются важнейшим предметом наземных и орбитальных наблюдений.

1. Слабые туманности

Первые признаки расширения Вселенной были обнаружены около 80 лет назад, когда большинство астрономов полагало, что наша Галактика и есть вся Вселенная. Слабые туманные пятнышки, десятки тысяч которых были обнаружены с началом развития астрофотографии, считались далекими газовыми туманностями на окраине всеобъемлющей звездной системы Млечного пути.

Вестон Слайфер на Флагстаффской обсерватории в Аризоне долгие годы был единственным человеком в мире, получавшим спектры этих "слабых туманностей". Самим ярким их представителем была хорошо известная туманность Андромеды. В 1914 г. Слайфер опубликовал первое определение лучевой скорости этой туманности по спектрограмме, полученной им на 24-дюймовом рефракторе.

Оказалось, что М31 приближается к нам со скоростью около 300 км/с. К 1925 г. в коллекции Слайфера были спектры 41 объекта. Странной особенностью обладали эти спектры - скорости у всех из них были очень велики и отрицательная скорость M31 оказалась редким исключением; в среднем скорость туманностей составляла +375 км/с, а наибольшая скорость была +1125 км/с. Почти все они удалялись от нас, и скорости их превышали скорость любых других объектов, известных астрономам. (Напомним, что отрицательные скорости направлены к нам, положительные - от нас.)

Обсерваторию в Флагстаффе Персиваль Ловелл построил специально для наблюдений каналов Марса. Некоторые из нас пришли в астрономию, увлеченные его книгой, в которой рассказывалось о волне потемнения, о расщеплении каналов, переполняемых водой марсианской весны... Однако на этой обсерватории были открыты не менее фантастические, но совершенно реальные вещи. Работа Слайфера означала первый шаг на пути к открытию расширения Вселенной.

Споры о природе "слабых туманностей" велись с конца XVIII века. Вильям Гершель высказал предположение, что они могут быть далекими звездными системами, аналогичными системе Млечного пути. В 1785 г. он был уверен в том, что разрешить туманности на звезды нельзя только из-за слишком большой их удаленности. Однако в 1795 г., наблюдая планетарную туманность NGC 1514, он отчетливо увидел в центре ее одиночную звезду, окруженную туманным веществом. Существование подлинных туманностей, таким образом, не подлежало сомнению, и не было необходимости думать, что все туманные пятна - далекие звездные системы. И в 1820 г. Гершель говорил, что за пределом нашей собственной системы все покрыто мраком неизвестности.

В XIX веке в неразрешимых на звезды туманностях предпочитали видеть планетные системы в процессе образования - в духе гипотезы Лапласа; NGC 1514 казалась примером далеко зашедшей эволюции - из первичной туманности сконденсировалась уже центральная звезда.

К середине века к 2500 туманностям, открытым его отцом, Джон Гершель прибавил еще 5000, и изучение их распределения по небу дало главный аргумент против предположения, что они являются далекими звездными системами ("островными вселенными"), подобными нашей системе Млечного Пути. Была обнаружена "зона избегания" - почти полное отсутствие этих слабых пятнышек света близ плоскости Млечного Пути. Это было понято как явное указание на их связь с системой Млечного пути. Поглощение света, наиболее сильное в плоскости Галактики, было еще неизвестно.

В 1865 г., Хеггинс впервые пронаблюдал спектр туманностей. Эмиссионные линии туманности Ориона явно говорили о ее газовом составе, но спектр туманности Андромеды (M31) был непрерывный, как и у звезд. Казалось бы, спор решен, но Хеггинс заключил, что такой вид спектра M31 говорит лишь о высокой плотности и непрозрачности составляющего ее газа.

В 1890 г. Агния Клерк в книге о развитии астрономии в XIX веке писала: "Вопрос о том, являются ли туманности внешними галактиками, вряд ли заслуживает теперь обсуждения. Прогресс исследований ответил на него. Можно с уверенностью сказать, что ни один компетентный мыслитель перед лицом существующих фактов не будет утверждать, что хотя бы одна туманность может быть звездной системой, сравнимой по размерам с Млечным Путем".

Хотелось бы знать, какие из нынешних столь же категоричных утверждений окажутся со временем столь же неверными... Заметим, что за сто лет до Клерк было высказано диаметрально противоположное суждение. "Повидимому, звезды... собраны в разнообразные группы, некоторые из коих содержат миллиарды звезд... Наше Солнце и ярчайшие звезды, возможно, входят в одну из таких групп, которая, очевидно, и опоясывает небо, образуя Млечный Путь". Эта осторожная, но совершенно правильная формулировка принадлежит великому Лапласу.

В начале XX века фотографии, полученные Килером с 36-дюймовым рефлектором, показали, что слабых туманностей не менее 120 000. Звездный спектр отражательных (в основном пылевых) туманностей вокруг звезд Плеяд, казалось, подтверждал мысль о невозможности решить вопрос спектральными исследованиями. Это позволило В. Слайферу предположить, что и спектр туманности Андромеды объясняется отражением света центральной звезды (за которую он принял ядро галактики...)

Для решения вопроса о природе "слабых туманностей" было необходимо знать их расстояние. Дискуссия по этому поводу продолжалась до 1925 г.; она заслуживает отдельного рассказа и здесь мы только вкратце опишем, как было установлено расстояние ключевого объекта - "туманности" Андромеды.

2. Открытие Вселенной

Уже к 1910 г. Джорд Ричи на 60" телескопе обсерватории Маунт Вилсон получил великолепные снимки, на которых было видно, что спиральные ветви больших туманностей усыпаны звездобразными объектами, но изображения многих из них были нерезкие, туманные. Это могли быть и компактные туманности, и звездные скопления, и несколько слившихся изображений звезд.

Доказать, что в больших "туманностях" мы видим одиночные звезды, смог Эдвин Хаббл (1889 - 1953), молодой астроном той же обсерватории, в 1924 году. С помощью 100" телескопа он нашел в туманности Андромеды 36 цефеид. Амплитуды изменения блеска этих переменных звезд - сверхгигантов полностью соответствовали известным у цефеид нашей Галактики и это доказывало, что мы имеем дело с одиночными звездами. И главное, зависимость период - светимость, установленная по цефеидам Магеллановых Облаков и Галактики, позволяла определить светимость найденных Хабблом звезд, и сравнение ее с блеском давало расстояние. Оно уводило туманность Андромеды далеко за пределы нашей звездной системы. Слабые туманности оказались далекими галактиками.

Увидеть можно только то, что считаешь возможным увидеть... Когда в начале 20-х гг. Хьюмасон показал Шепли несколько переменных звезд - вероятных цефеид, отмеченных им на пластинке с изображением туманности Андромеды, Шепли стер его отметки - в этой газовой туманности не могло быть звезд!

3. Начало космологии

Итак, Вселенная населена галактиками, а не изолированными звездами. Только теперь появились возможности проверки выводов зарождавшейся космологии - науки о строении и эволюции Вселенной в целом. В 1924 г. К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью В. де Ситтера, согласно которой скорость удаления отдаленных объектов должна возрастать с их расстоянием. Модель де Ситтера соответствовала пустой Вселенной, но в 1923 г. немецкий математик Г.Вейль отметил, что если в нее поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге Эддингтона, опубликованной в том же году.

Де Ситтер, опубликовавший свою работу "Об эйнштейновской теории гравитации и ее астрономических следствиях" в 1917 гг., сразу же после появления общей теории относительности, знал только три лучевые скорости; у M31 она была отрицательна, а у двух слабых галактик - положительная и большая.

Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил в 1925 г., что "не существует зависимости лучевых скоростей от расстояния от Солнца". Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надежными критериями их расстояния.

О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Ж.Леметра, опубликованной в 1925 г. Следующая его статья, опубликованная в 1927 г., называлась "Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей". Коэфициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Хабблом в 1929 г. В 1931 г. по инициативе Эддингтона статья Леметра была перепечатана в "Monthly Notices" и стала с тех пор широко цитироваться; работы А.А.Фридмана были опубликованы еще в 1922-1924 гг., но стали широко известны среди астрономов много позднее. Во всяком случае, Леметр был первым, кто четко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии - это не звезды, а гигантские звездные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.

Американский теоретик Х.Робертсон в 1928 г., используя данные Хаббла 1926 года, также нашел, что скорости разбегания галактик пропорциональны их расстоянию. Повидимому, эту работу Хаббл знал. С 1928 г. по его заданию М.Хьюмасон (1891-1972) упорно старался измерить красное смещение у возможно более далеких галактик. Вскоре за 45 часов экспозиции у галактики NGC 7619 в скоплении Персея была измерена скорость удаления в 3779 км/c. (Надо ли говорить, что последние две цифры излишни). Сам же Хаббл разработал критерии определения расстояний для далеких галактик, цефеиды в которых оставались недоступны 100" телескопу. Они были основаны на предположении об одинаковости блеска самых ярких отдельных звезд внутри разных галактик. К 1929 г. у него были уверенные расстояния двух десятков галактик, в том числе в скоплении Девы, скорости которых доходили примерно до 1100 км/с.

4. Закон Хаббла

И вот 17 января 1929 г. в Труды Национальной академии наук США поступила статья Хьюмасона о лучевой скорости NGC 7619 и статья Хаббла, называвшаяся "Связь между расстоянием и лучевой скоростью внегалактических туманностей". Сопоставление этих расстояний с лучевыми скоростями показало четкую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.

Хаббл понимал значение своего открытия. Сообщая о нем, он писал, что "зависимость скорость - расстояние может представлять эффект де Ситтера и, следовательно, она может дать количественные данные для определения общей кривизны пространства". Многочисленные попытки объяснить зависимость Хаббла не расширением Вселенной, а чем-либо иным, которые можно встретить и теперь, неизменно терпят неудачу. Так, не проходит старое предположение о том, что за долгое время пути фотоны "стареют", теряют энергию и соответствующая длина волны увеличивается - при этом размывались бы и изображения далеких объектов, а величина красного смещения зависела бы и от длины волны, чего не наблюдается. Прямые свидетельства правильности вывода о том, что более далекие объекты имеют большее красное смещение получены недавно при изучении кривых блеска и спектров далеких Сверхновых звезд.

Подчеркнем, что решающее значение имели методы определения расстояний галактик, разработанные Хабблом, для чего понадобились прямые фотографии на 100-дюймовом рефлекторе.

В тридцатых годах Хаббл и его сотрудники занимали более половины наблюдательного времени крупнейшего - и практически единственного тогда пригодного для таких работ - телескопа. И эта концентрация усилий привела к величайшим достижениям наблюдательной астрономии XX века!

К 1935 г. у Хьюмасона были спектрограммы 150 галактик до расстояний, в 35 раз превышающих расстояние скопления галактик в Деве, а к 1940 г. наибольшие обнаруженные им скорости удаления галактик составляли уже 40000 км/с. И до самых больших расстояний сохранялась прямая пропорциональная зависимость между красным смещением линий в спектре,

и расстоянием, которая в общем виде записывается так:

где c - скорость света, z - расстояние и v - лучевая скорость. Коэффициент пропорциональности H был назван позднее постоянной Хаббла.

Этот новый закон природы получил объяснение в основанных на общей теории относительности моделях Вселенной еще до того, как он был незыблемо установлен. Приоритет должен быть отдан А.А.Фридману; модели, полученные ранее Эйнштейном и де Ситтером, оказались предельными случаями моделей Фридмана. Широко известными долгое время оставались лишь результаты Леметра (не знакомого тогда с работами Фридмана), который после опубликования работы Хаббла напомнил Эддингтону о своей работе 1927 года - в этой работе Леметр пришел к выводу о расширении модели

Вселенной с конечной средней плотностью вещества в ней. Однако уже в 1931 г. Эйнштейн, говоря о расширяющейся Вселенной, отметил, что первым на этот путь вступил Фридман.

Однако сам Хаббл вскоре потерял уверенность в том, что красное смещение означает именно расширение Вселенной, - вероятно, под влиянием неумолимого вывода из этого предположения. Как писал тогда Г.Рессел, "признать теорию де Ситтера без оговорок преждевременно. Философски неприемлемо, чтобы все галактики прежде были вместе. На вопрос "почему" ответа мы не находим". Именно из такого рода соображений Эйнштейн ввел в свои уравнения 1916 г. космологическую постоянную, долженствующую стабилизировать Вселенную. Этой глубочайшей проблеме посвящена статья А.Д.Чернина "Физический вакуум и космическая антигравитация" на сайте www.сайт и здесь мы только отметим, что ускоренное расширение Вселенной, обнаруженное в 1998 г. по Сверхновым типа Ia, объясняется отрицательным давлением космического вакуума, существование которого и отражается добавочным космологическом членом уравнений Эйнштейна.

Летом 1929 г. Хаббл обрушился на де Ситтера, посмевшего опубликовать детальную работу, посвященную сравнению теоретических и наблюдательных выводов о расширении Вселенной. Он писал де Ситтеру, что зависимость скорость - расстояние является "маунт-вилсоновским достижением", и что "первое обсуждение новых данных естественно принадлежит тем, кто действительно выполнял работу". Однако в 1931 г., после появления гипотезы Цвикки о возможности старения фотонов, Хаббл написал де Ситтеру, что "интерпретацию следут оставить Вам и еще очень немногим, кто компетентен авторитетно обсуждать предмет"... До конца своей жизни (1953 г.) Хаббл повидимому так и не решил для себя, говорит ли красное смещение о расширении Вселенной, или оно обязано "некоему новому принципу природы". Так или иначе, его имя навсегда осталось в списке величайших ученых всех времен.

Красное смещение, пропорциональное расстоянию, означает не разбегание галактик именно от нас, а увеличение всех расстояний между всеми объектами Вселенной (точнее, между объектами, не связанным тяготением - т.е. скоплениями галактик) со скоростью, пропорциональной величине расстояния, подобно тому, как увеличиваются расстояния между всеми точками, расположенными на поверхности раздувающегося шара. Наблюдатель в любой галактике видит, что все другие галактики разбегаются от него. Скорости расширения Вселенной остается одной из самых важных задач астрономии.

Расскажем прежде всего, как ее решал сам Хаббл в 1935 г.

У него были данные о красном смещении 29 близких галактик, находящихся, однако, за пределами Местной группы: слишком близкие галактики использовать заведомо нельзя, так как для них скорости удаления от нас, обусловленные расширением Вселенной, слишком малы и сравнимы со случайными их скоростями в пространстве.

В этих 29 галактиках Хаббл определил звездные величины самых ярких звезд. Поскольку светимости их во всех галактиках, как нашел Хаббл, примерно одинаковы, их звездные величины должны быть функцией расстояния, и действительно, они показывают зависимость от скорости удаления v .

Эта зависимость по данным Хаббла представляется формулой . С другой стороны, , , и , где M - абсолютная величина. Из этих трех формул и вытекает выражение, с помощью которого определяется постоянная Хаббла: . В общем виде из закона Хаббла и формулы следует , т.е. .

Абсолютная величина ярчайших звезд, найденная Хабблом, была равной -6,35 m , и величина H (Хаббл обозначал ее) получилась 535 (км/с)/Мпс.

Поскольку светимость ярчайших звезд была определена сравнением их с цефеидами, пересмотр нуль-пункта зависимости период - светимость (В.Бааде, 1952) означал необходимость и пересмотра величины постоянной Хаббла. Хьюмасон, Мейолл и Сендидж в 1955 г., использовав новые данные о красном смещении и учтя поправку Бааде к нуль-пункту зависимости период - светимость, получили H =180 (км/с)/Мпс.

В 1958 г. Аллан Сендидж, продолжая дело своего учителя Хаббла, опубликовал результаты новой ревизии постоянной H . Опираясь главным образом на Новые звезды, Сендидж пришел к выводу, что модули расстояний Магеллановых Облаков, M31, M33 и NGC 6822 надо увеличить в среднем на 2,3 m сравнительно со значениями, принятыми Хабблом. На столько же, следовательно, надо сделать ярче абсолютные величины ярчайших звезд; они были уточнены еще и путем привлечения новых данных о ярчайших звездах галактик Местной группы. Но, помимо этих уточнений, Сендидж обнаружил у своего учителя еще и серьезную ошибку - объекты, которые Хаббл принимал за ярчайшие звезды в лежащих за пределами Местной группы галактиках, являются в действительности компактными эмиссионными туманностями, областями HII.

Хаббл, который в двадцатых годах мог работать только с пластинками, чувствительными к синим лучам, не имел возможности отличить изображения компактных областей HII от звезд, особенно в далеких галактиках. Даже в M31, несмотря на тщательные поиски, он не нашел ни одной эмиссионной туманности, хотя сейчас их там известно 981. Вероятно, поэтому возможность такой путаницы не приходила Хабблу в голову. Лишь Бааде, фотографировавший M31 в разных лучах и, в частности, применявший пластинки, чувствительные к красным лучам, и светофильтры, вырезающие красную водородную линию Hα, смог отыскать их. Сендидж, снимая галактику NGC 4321 = М100 в скоплении Девы в разных лучах, обнаружил, что ярчайшие области HII ярче самых ярких звезд на 1,8 m - вот на сколько Хаббл преуменьшал модуль расстояния, определяя его по "ярчайшим звездам". Суммарная ошибка в принятых Хабблом модулях расстояния составляет, следовательно, около 4,0 m ! В итоге, по оценке Сендиджа, постоянная Хаббла должна быть заключена в пределах 50-100 (км/с)/Мпк. Причину оставшейся неопределенности он приписал в основном дисперсии абсолютных величин ярчайших звезд. Результаты Сендиджа означали, что расстояния далеких галактик Хаббл преуменьшал в 6-7 раз!

В 1968 г., Сендидж определил постоянную Хаббла другим способом. Еще Хаббл установил, что ярчайшие члены скоплений галактик - гигантские эллиптические галактики - имеют почти одинаковую абсолютную величину. Можно и для них построить зависимость между видимыми величинами и красным смещением (ниже приведена эта диаграмма для 65 ярчайших галактик в скоплениях, построенная Сендиджем, Кристианом и Вестфалем в 1976 г.) и если определить светимость хотя бы одной из них, из этой зависимости можно определить постоянную Хаббла, аналогично тому, как это делал сам Хаббл с ярчайшими звездами. Особенно важно при этом, что мы можем уйти теперь неизмеримо дальше - ярчайшие галактики скоплений ярче ярчайших звезд на 11 m -12 m ! Светимость наиболее яркой галактики в скоплениях можно определить, зная расстояние хотя бы одного скопления. Ближайшим богатым скоплением является скопление в Деве, и Сендидж использовал для определения его расстояния шаровые скопления в эллиптической галактике M87.

Предполагая далее, вместе с Сендиджем, что светимость ярчайших звездных скоплений в богатых ими галактиках одинакова, зная интегральную абсолютную величину ярчайшего скопления нашей Галактики (-9,7 m B, ω Кентавра) и M31 (-9,8 m B, В282), а также блеск ярчайшего скопления M87 (21,3 m В), получаем модуль расстояния M87 и всего скопления галактик: m-M =21,3 m +9,8 m = 31,1 m . Отсюда следует, что ярчайшая галактика скопления Девы (эллиптическая галактика NGC 4472, в которой также очень много шаровых скоплений) - и, следовательно, ярчайшие галактики во всех скоплениях вообще - имеют абсолютную величину -21,7 m .

Зная абсолютную величину галактик и зависимость их видимых величин от красного смешения, легко найти постоянную Хаббла. Таким способом Сендидж получил в 1968 г. значение H =75 (км/с)/Мпс, долгое время считавшееся наиболее вероятным.

Однако в серии статей, опубликованных в 1974-1975 гг., А. Сендидж и швейцарский астроном Г. Тамман получили для постоянной Хаббла значение 55 (км/с)/Мпк. Определив с помощью цефеид расстояния галактик Местной группы и группы M81, они получили зависимость между линейными размерами областей HII и светимостью содержащей их галактики. С помощью этой зависимости они по угловым диаметрам областей HII нашли расстояния многих неправильных и спиральных галактик поля и определили светимость гигантских спиральных галактик ScI, которые можно выделить по внешнему виду. Для 50 слабых галактик ScI Сендидж и Тамман определили лучевые скорости (все они оказались превышающими 4000 км/с). Зная видимые и абсолютные величины, нетрудно получить постоянную Хаббла.

Сендидж и Тамман настаивали на том, что постоянная Хаббла с ошибкой примерно в 10% составляет 50 (км/с)/кпс, тогда как Ж. де Вокулер с той же ошибкой получал значение H =95. Магическое число 10% неразрывно связано с определениями этой постоянной; напомним, что Хаббл определил ее равной 535 (км/с)/кпс - и ошибку оценил именно в 10% ... Надо сказать, что у большинства астрономов получалось значение H между 75 и 100, и Сендидж и Тамман были почти единственными сторонниками длинной шкалы расстояний. Отголоски этого спора слышны и до сих пор, хотя возможный диапазон значений постоянной Хаббла сузился.

Это произошло в основном благодаря специальной программе наблюдений цефеид на Космическом телескопе имени Хаббла. Они были найдены и исследованы в двух десятках галактик, в основном в скоплении Девы, и по расстояниям этих галактик были прокалиброваны методы (Талли-Фишера, Сверхновые Ia и др.), позволяющие определять расстояния еще более далеких галактик, для которых можно пренебречь их случайными движениями. Одна группа исследователей, которую возглавляла знаток цефеид В.Фридман, получила в 2001 г. значение H =72+/-7, а группа А.Сендиджа получила в 2000 г. величину H =59+/-6. Ошибка опять-таки оценена обеими группами точно в 10%!

6. Расширение Вселенной

Задача определения постоянной Хаббла была столь острой, поскольку от ее значения зависят и масштабы Вселенной, и ее средняя плотность, и возраст. Экстраполируя разбегание галактик назад, мы приходим к выводу, что когда-то они все были собраны в одной точке. Если расширение Вселенной происходило с одной и той же скоростью, то величина, обратная постоянной Хаббла (), позволяет сказать, что этот момент t =0 имел место 13-19 (H =50) или 7-10 (H =100) миллиардов лет назад. Этот "экспансионный возраст Вселенной" при меньшем значении постоянной Хаббла, которое неизменно получается у Сендиджа, уверенно больше возраста старейших звезд, чего нельзя сказать про значение H =100. Впрочем, ныне проблема потеряла свою остроту, поскольку теперь не подлежит сомнению, что расширение Вселенной протекало с неодинаковой скоростью. "Постоянная" Хаббла постоянна лишь по пространству, но не во времени.

Недавние (2003 г.) спутниковые измерения анизотропии реликтового излучения дают для постоянной Хаббла значение 71 (+4\-3) км\с\Мпк, а для возраста Вселенной величину 13.7+\-0.2 миллиарда лет (D.Spergel et al., astro-ph/0302209). Пессимисты все же полагают, что лучше говорить о значениях 45-90 для постоянной Хаббла и возрасте Вселенной в 14+\-1 миллиард лет. Наилучшие наземные данные (основанные на результатах больших обзоров красного смещения галактик, их пекулярных скоростей и сверхновых Ia - C.Odman et al., astro-ph/0405118) дают для постоянной Хаббла значение 57 (+15\-14) км\с\Мпк.

Исследования сверхновых типа Ia в далеких галактиках, первые результаты которых появились в 1998 г., стали началом новой революции в космологии, о которой рассказывается в упомянутой выше статье А.Д.Чернина. Скажем здесь лишь несколько слов.

Использование SNIa в качестве "стандартной свечи" для определения очень больших расстояний стало возможным благодаря работам Ю.П.Псковского, выполненным в ГАИШе еще в 1970-х годах. Считается, что одинаковость их светимости в максимуме объясняется тем, что явление сверхновой Ia происходит в тесной системе, включающей белый карлик, на который происходит аккреция вещества от второго компонента.

Когда масса белого карлика достигает предельного для него значения в 1.4 массы Солнца, происходит взрыв, превращающий его остаток в нейтронную звезду.

Положение сверхновых Ia типа на диаграмме Хаббла указывает на то, что в современную эпоху расширение Вселенной происходит ускоренно. Наиболее естественным образом это объясняется тем, что отрицательное давление космического вакуума подгоняет разлет скоплений галактик. Антитяготение вакуума означает, что расширение Вселенной будет происходить вечно.

Если верны эти выводы теории, в более раннюю эпоху расширение Вселенной, напротив, должно было бы идти замедленно, поскольку оно тормозилось гравитацией темного вещества. Его плотность стала меньше плотности вакуума, согласно теории, 6-8 миллиардов лет назад, и действительно, немногочисленные самые далекие сверхновые Ia указывают на замедленное расширение. На днях этот вывод был подтвержден совершенно независимыми данными спутника "Чандра" о горячем газе, наблюдающемся в рентгеновском диапазоне в скоплениях галактик. Отношение массы этого газа к массе темного вещества должно быть одинаково во всех скоплениях и отсюда можно получить расстояния скоплений галактик. Они показали, что замедленное расширение Вселенной сменилось ускоренным 6 миллиардов лет назад.

Доминирование антигравитации вакуума, по мнению А.Д.Чернина и его коллег, объясняет также и парадокс, отмеченный А.Сендиджем еще в 1972 г. - расширение Вселенной было открыто Хабблом по галактикам, находящимся казалось бы слишком близко, неоднородность их распределения в пространстве и связанные с этим гравитационные движения должны были бы замыть общее расширение. Недавние данные, полученные И.Д.Караченцевым и его сотрудниками на 6-м телескопе САО РАН, подтверждают, что изотропное расширение Вселенной начинается очень близко от нас, сразу же за пределами Местной группы галактик.

Итак, астрономические данные впервые позволили определить плотность энергии вакуума; они чреваты новой революцией в физике, ибо значение этой плотности необъяснимо современной теорией.

7. К краю Вселенной

Расскажем в заключение о результатах поисков объектов с максимально большим красным смещением. Для этого требовались крупнейшие телескопы и многочасовые экспозиции. Долгие годы и энтузиастов и больших телескопов было меньше, чем пальцев на одной руке. С вводом в действие 200-дюймового телескопа (на рисунке - Хаббл в кабине главного фокуса этого телескопа, снимок конца 40-х годов) Хьюмасон смог в 1949 г. измерить z =0,20 у галактики из скопления в Гидре с V =17,3 m . Линии ночного неба долго не позволяли получить красное смещение для более слабых и далеких галактик, используя линии поглощения в их спектре. По единственной эмиссионной линии Р. Минковский в 1960 г. нашел z =0,46 для радиогалактики 3C295 (V =19,9 m), долго остававшееся рекордным для галактик. В 1971 г. это значение подтвердил Дж. Оук по линиям поглощения, получив запись спектра 3C295 с помощью 32-канального спектрометра и определив его сдвиг относительно стандартного спектра с нулевым красным смещением. На эту работу ушло 8 часов времени 200-дюймового телескопа. В 1929 г. Хьюмасону понадобилось 40 часов на 100-дюймовом телескопе для определения красного смещения галактики, на восемь звездных величин более яркой.

В 1975 г. X. Спинрад с помощью 3-метрового рефлектора нашел z =0,637 у радиогалактики 3C123 -- с V =21,7 m . Несколько линий в спектре 3C123 Спинрад смог измерить с помощью электронно-оптического сканирующего спектрометра, накопив фотоны за 7 часов наблюдений в течение 4 ночей.

Это гигантская эллиптическая галактика, вчетверо более мощная в радиодиапазоне, чем Кентавр А. Затем Сендидж и его сотрудники нашли z =0,53 у радиогалактики 3C330. Наконец, в 1981 г. Спинрад, получая спектры радиогалактик, нашел z =1,050 для 3C13 и z =1,175 для 3C427; экспозиции снова доходили до 40 часов, но наблюдались объекты, в десятки тысяч раз более слабые, чем в 1929 г.

Измерения предельно больших красных смещений оставались уделом одиночек, пока мысль о том, что, изучая Вселенную на предельно больших масштабах, мы постигаем физику, управляющую и микромиром, не овладела массами...

Астрономия стала превращаться, на полвека позднее физики, в Большую науку, в которой многочисленные коллективы работают на гигантских установках. Огромную роль сыграло и развитие электроники, приведшее к созданию эффективных светоприемников.

Для Англо-Австралийского 4-м телескопа было разработано устройство, которое с помощью световодов позволяет одновременно получать спектры в области размером в четыре квадратных градуса. Из 250 000 красных смещений галактик, которые запланировано получить, к весне 2001 г. было измерено уже 150 000. В это сотрудничестве участвуют 20 - 30 человек. Более масштабны задачи Слоановского численного обзора неба, для которого на средства миллионера Слоана был построен широкоугольный 3,5-м телескоп. Задачей обзора является измерить, исходя из многоцветной фотометрии, красные смещения примерно миллиона галактик на четверти площади небосвода. Здесь задействовано уже 150 астрономов из 11 институтов.

Среди первых уловов Слоановского обзора было обнаружение в 2001 г. квазара с красным смещением z =6,28. Однако уже в следующем году этот рекорд был перекрыт и чемпионом оказался не квазар, а галактика. Как мы знаем, квазары являются галактиками с необычно ярким ядром, и их легче обнаружить на больших расстояниях. Зафиксировать красное смещение столь далекой обычной галактики удалось, потому что световой поток от нее был усилен в 4,5 раза благодаря эффекту гравитационного линзирования. Эта галактика, обозначаемая HCM 6A, находится в одной минуте дуги от центра массивного скопления галактик Abell 370, которое, находясь гораздо ближе к нам, и послужило гравитационной линзой. Благодаря действию этого естественного телескопа и удалось с помощью 10-м телескопа Keck-II на Мауна Кеа зафиксировать спектр галактики в инфракрасном диапазоне. На длине волны 9190 ангстрем была найдена эмиссионная линия, которая почти наверняка является линией Лайман-альфа, сдвинутой красным смещением z =6,56 из ультрафиолетовой области спектра.

Это отождествление было подтверждено наблюдениями на соседнем японском 8-м телескопе Subaru, которые показали, что в более далеких инфракрасных полосах поток в тысячи раз слабее, чем в этой эмисионной линии, что согласуется с ее отождествлением как линии Лайман-альфа.

Следующий рекорд был поставлен недавно с помощью одного из 8-м телескопов (VLT) Южной Европейской обсерватории на горе Паранал в Чили. Снова использовался эффект гравитационной линзы - искались слабые галактики, видимые только в инфракрасной области, близ центра богатого компактного скопления галактик Abell 1835. У одного из таких объектов, #1916, в спектре была найдена единственная сильная линия, отождествление которой с Лайман-альфа привело к красному смещению z =10.0. Другие возможные отождествления отвергаются, потому что в этом случае в спектре должны были бы наблюдаться несколько сильных линий (R.Pello et al., astro-ph/0403025

Все публикации на ту же тему >>
  • Перевод

Часть изображения, полученного в рамках наблюдения Hubble eXtreme Deep Field , в комбинированном ультрафиолете, видимом свете и инфракрасном излучении – самого глубокого взгляда во Вселенную из всех, что мы предпринимали. Различные видимые здесь галактики находятся на разных расстояниях и имеют разное красное смещение, что позволяет нам вывести закон Хаббла.

Вселенная огромна, и на миллиарды световых лет во всех направлениях заполнена звёздами и галактиками. С самого Большого взрыва свет путешествует, отправляясь с каждого создавшего его источника, и совсем малая часть этого света доходит до наших глаз. Но свет не просто перемещается через пространство из точки испускания и до того места, где мы находимся сегодня; кроме этого, расширяется сама ткань пространства.

Чем дальше от нас находится галактика, тем больше пространство между нами растягивает – и смещает в красную часть спектра – тот свет, что в итоге прибудет к нашим глазам. Заглядывая на всё более далёкие расстояния, мы видим увеличение красного смещения. Если построить график того, как видимая скорость удаления зависит от расстояния, мы получим красивое, прямолинейное взаимоотношение: закон Хаббла . Но наклон этой линии, постоянная Хаббла, на самом деле совсем не постоянен. И это одно из наиболее сильных заблуждений во всей астрономии.



Зависимость красного смещения от расстояния для удалённых галактик. Не попадающие на линию точки смещены из-за разности пекулярных скоростей , но они лишь немного отклоняются от наблюдаемой общей картины. Изначальные данные, полученные самим Эдвином Хабблом, и впервые использованные для демонстрации расширения Вселенной, умещаются в небольшой красный прямоугольник в левом нижнем углу.

Расширение Вселенной мы понимаем двояко: теоретически и через наблюдения. Наблюдая за Вселенной, мы видим несколько важных фактов, связанных с расширением:

  • Вселенная расширяется с одной скоростью во всех направлениях.
  • Чем дальше находится галактика, тем быстрее она от нас удаляется.
  • Всё это верно только в среднем.
У отдельных галактик наблюдается большой разброс реальных скоростей, существующий благодаря гравитационным взаимодействиям со всем веществом Вселенной.


Двумерный срез ближайших к нам участков Вселенной, плотность которых выше (красное) и ниже (синее/чёрное) среднего значения. Линии и стрелки показывают направления пекулярных скоростей, но вся эта картина включена в ткань расширяющегося пространства.

Но эта проблема не является непреодолимой. Во Вселенной есть не просто несколько галактик, расстояние и красное смещение которых мы можем измерить; мы провели такие измерения буквально для миллионов галактик. Огромное количество галактик мы можем сгруппировать так, чтобы каждая группа находилась на определённом среднем расстоянии от нас, и мы могли бы подсчитать их среднее красное смещение. После такой процедуры мы обнаруживаем прямолинейную зависимость, определяющую закон Хаббла.

Но вот, в чём сюрприз. Если заглянуть на достаточно большие расстояния, становится видно, что скорость расширения уже не подчиняется прямолинейному закону, и начинает закругляться.


Зависимость скорости видимого расширения (ось у) от расстояния (ось х) соответствует тому, что Вселенная в прошлом расширялась быстрее, однако расширяется и сегодня. Это современная (2014 год) версия работы Хаббла, распространяющаяся на расстояния в тысячи раз большие. Заметим, что точки не формируют прямую линию, а значит, скорость расширения со временем меняется.

Используя термин «постоянная Хаббла», мы имеем в виду наклон этой линии. Если это не линия – то есть, если её наклон меняется – это говорит о том, что хаббловская скорость расширения Вселенной не является константой! Мы называем её постоянной Хаббла потому, что Вселенная расширяется с одной и той же скоростью в любой её точке: постоянная Хаббла постоянна в пространстве.

Но скорость расширения, и значение постоянной Хаббла, изменяются со временем. Это не загадка, а то, чего и следовало ожидать. Чтобы это понять, давайте посмотрим на это с другой точки зрения: теоретической.


Итан Сигель на фоне гиперстены Американского астрономического общества в 2017 году, вместе с первым уравнением Фридмана, справа.
#МоёЛюбимоеУравнение
Первое уравнение Фридмана предсказывает скорость расширения Вселенной на основании её содержимого

Первое уравнение Фридмана получается у нас, если начать со Вселенной, равномерно заполненной материей, излучением и всеми остальными формами энергии. Единственные используемые здесь предположения – Вселенная изотропна (одинаковая во всех направлениях), гомогенна (имеет одинаковую плотность повсюду) и подчиняется Общей теории относительности. Приняв это, вы получаете взаимоотношение величины H, скорости Хаббла (слева) и различных форм материи и энергии Вселенной (справа):


Первое уравнение Фридмана, как его обычно записывают сегодня. Левая часть определяет скорость расширения и эволюцию пространства-времени, а правая включает все различные формы материи и энергии, а также пространственную кривизну

Что интересно, с расширением Вселенной плотности материи, излучения и энергии могут меняться. К примеру, с расширением Вселенной увеличивается её объём, но общее количество частиц остаётся неизменным. Это означает, что в расширяющейся Вселенной:

  • плотность материи падает как a -3 ,
  • плотность излучения падает, как a -4 ,
  • плотность тёмной энергии остаётся постоянной, и эволюционирует, как a 0 ,
где a – фактор масштаба (расстояние или радиус) Вселенной. Со временем a растёт, и различные компоненты Вселенной становятся более или менее важными относительно друг друга.


Как материя (вверху), излучение (в середине) и космологическая константа (внизу) развиваются со временем в расширяющейся Вселенной

Вселенная с большей плотностью энергии расширяется быстрее. И наоборот, вселенная с меньшей плотностью энергии расширяется медленнее. С возрастом Вселенная расширяется: при расширении материя и излучение становятся менее плотными; с уменьшением плотности уменьшается и скорость расширения. В любой момент времени скорость расширения определяет значение постоянной Хаббла. В далёком прошлом скорость расширения была гораздо больше, а сегодня – наименьшая.


Различные компоненты и вклады в плотность энергии Вселенной, и периоды их доминирования. Если бы космические струны или стены доменов существовали в каком-то значимом количестве, они вносили бы существенный вклад в расширение Вселенной. Могут даже быть и какие-то другие компоненты Вселенной, которых нам уже больше не видно, или которые ещё только собираются проявить себя! К сегодняшнему моменту тёмная энергия доминирует, материя достаточно важна, а излучением можно пренебречь.

Так почему же очень удалённые галактики подчиняются этому прямолинейному соотношению? Потому, что весь свет, прибывающий к нашим глазам, от света, испущенного соседней галактикой, до света, испущенного галактикой, находящейся в миллиардах световых лет от нас, к моменту подхода к нам достигает возраста в 13,8 млрд лет. Ко времени прихода света всё во Вселенной прожило ту же самую постоянно меняющуюся Вселенную, что и мы. Постоянная Хаббла в прошлом, когда была испущена большая часть света, была выше, но на то, чтобы этот свет прибыл к нашим глазам, ушло миллиарды лет.


Свет может быть испущен с разной длиной волны, но расширение Вселенной растянет его в пути. Свет, испущенный галактикой 13,4 млрд лет назад в ультрафиолете, будет сдвинут в инфракрасный диапазон.

Со временем Вселенная расширялась, а значит, длина волны света увеличивалась. Тёмная энергия стала достаточно важной лишь в последние 6 млрд лет, и мы дошли до момента, когда она довольно быстро становится единственным компонентом Вселенной, влияющим на скорость её расширения. Если бы мы вернулись в то время, когда Вселенная была в два раза моложе, то скорость расширения была бы на 80% больше сегодняшней. А когда Вселенной было 10% от текущего возраста, скорость расширения была в 17 раз больше, чем сегодня.

Когда Вселенная станет в десять раз старше, чем сегодня, её скорость расширения составит 18% от сегодняшней.


Голубым закрашен диапазон возможных неопределённостей того, как плотность тёмной энергии может отклоняться в прошлом и будущем. Данные указывают на наличие истинной космологической «константы», но другие возможности пока никто не отверг. К сожалению, преобразование материи в излучение не может быть кандидатом на тёмную энергию; в результате его то, что раньше вело себя, как материя, просто ведёт себя, как излучение.

Всё из-за наличия тёмной энергии, ведущей себя, как космологическая константа. В далёком будущем материя и излучение станут относительно неважными по сравнению с тёмной энергией, а значит, плотность энергии Вселенной будет оставаться постоянной. В таких условиях скорость расширения достигнет устойчивой и конечной величины, и таким и останется. В далёком будущем постоянная Хаббла станет постоянной не только в пространстве, но и во времени.

В далёком будущем, измерив скорость и расстояние до всех видимых объектов, мы получим одинаковый наклон этой линии повсюду. Постоянная Хаббла станет истинно постоянной.


Относительная важность различных компонентов энергии Вселенной в различное время в прошлом. Когда тёмная энергия приблизится в будущем к отметке в 100%, плотность энергии Вселенной будет оставаться постоянной на сколь угодно большом промежутке времени.

Если бы астрономы точнее обращались со словами, они назвали бы H параметром Хаббла, а не постоянной Хаббла, поскольку она меняется со временем. Но несколько поколений подряд мы могли измерять относительно небольшие расстояния, и H казалась постоянной, поэтому мы не стали её переименовывать. Нам приходится лишь уточнять, что H это функция времени, и только сегодня – когда мы называем её H 0 - она постоянна. На самом деле параметр Хаббла изменяется со временем, и остаётся постоянным только по всему пространству. Но если бы мы дожили до далёкого будущего, мы увидели бы, что H в какой-то момент перестаёт меняться. Сегодня мы можем тщательно разделять реальные постоянные величины и те, что меняются со временем, но в далёком будущем благодаря тёмной энергии этой разницы уже не будет.

, квазара) со скоростью его удаления. Обычно обозначается буквой H . Имеет размерность, обратную времени (H ≈ 2,2⋅10 −18 с −1), но выражается обычно в км/с на мегапарсек .

Значение

Наиболее надёжная оценка постоянной Хаббла на 2013 год составляет 67,80 ± 0,77 (км/с)/Мпк . В 2016 году эта оценка была уточнена до 66,93 ± 0,62 (км/с)/Мпк . Таким образом, в современную эпоху две галактики, разделённые расстоянием в 1 Мпк , в среднем разлетаются со скоростью около 67 км/с . В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Возраст Вселенной в рамках модели ΛCDM составляет около (4,354 ± 0,012)⋅10 17 с или (13,798 ± 0,037)⋅10 9 лет .

Следует отметить, что измерения разными методами дают несколько различающиеся значения постоянной Хаббла. Указанные выше значения получены с помощью измерения параметров реликтового излучения на космической обсерватории «Планк» . Опубликованные в 2016 году измерения «местного» (в пределах до < 0,15 ) значения постоянной Хаббла путём вычисления расстояний до галактик по светимости наблюдающихся в них цефеид на космическом телескопе Хаббла дают оценку в 73,24 ± 1,74 (км/с)/Мпк , что на 3,4 сигмы (на 7-8 %) больше, чем определено по параметрам реликтового излучения . Причины этого расхождения оценок пока неизвестны.

Производные постоянные

Величина, обратная постоянной Хаббла (ха́ббловское вре́мя t H = 1/H ), имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, равного 66,93 ± 0,62 (км/с)/Мпк (или (2,169 ± 0,020)⋅10 −18 c −1 ), хаббловское время равно (4,61 ± 0,05)⋅10 17 с (или (14,610 ± 0,016)⋅10 9 лет ). Часто используют также ещё одну производную константу, ха́ббловское расстоя́ние , равное произведению хаббловского времени на скорость света : D H = ct H = c /H . Для вышеуказанного значения постоянной Хаббла хаббловское расстояние равно (1,382 ± 0,015)⋅10 26 м или (14,610 ± 0,016)⋅10 9

Если кто-то думает, что слово «разбегаться» имеет сугубо спортивный, в крайнем случае, «антисупружеский» характер, то ошибается. Существуют куда более интересные толкования. К примеру, космологический Закон Хаббла свидетельствует о том, что разбегаются… галактики!

Три вида туманностей

Представьте: в черном, огромном безвоздушном пространстве тихо и медленно удаляются друг от друга: «Прощай! Прощай! Прощай!». Пожалуй, оставим в стороне «лирические отступления» и обратимся к научным сведениям. В 1929 году самый влиятельный астроном XX века американский ученый Эдвин Пауэлл Хаббл (1889-1953) пришел к выводу: происходит неуклонное расширение Вселенной.

Человек, всю свою сознательную жизнь посвятивший разгадке структуры космоса, родился в Маршфилде С младых ногтей интересовался астрономией, хотя в итоге стал дипломированным юристом. После окончания Кембриджского университета Эдвин работал в Чикаго, в Йоркской обсерватории. В Первую мировую войну (1914-1918 гг.) воевал. Фронтовые годы лишь отодвинули открытие во времени. Сегодня весь ученый мир знает, что такое постоянная Хаббла.

На пути к открытию

Возвратившись с фронта, ученый обратил свой взор на высокогорную обсерваторию Маунт-Вилсон (штат Калифорния). Его приняли туда на работу. Влюбленный в астрономию, молодой человек проводил немало времени, глядя в объективы огромных телескопов размером в 60 и 100 дюймов. Для того времени - крупнейшие, почти фантастика! Над приборами изобретатели работали почти десятилетие, добиваясь максимально возможного увеличения и четкости изображения.

Напомним, видимая граница Вселенной именуется Метагалактикой. Она исходит к состоянию на момент Большого Взрыва (космологическая сингулярность). Современные положения гласят, что значения физических постоянных однородны (имеется в виду скорость света, элементарный заряд и др.). Считается, что Метагалактика вмещает 80 миллиардов галактик (удивительная цифра звучит еще так: 10 секстиллионов и 1 септильонов звезд). Форма, масса и размер - для Вселенной это совершенно иные, нежели принятые на Земле, понятия.

Загадочные цефеиды

Чтобы обосновать теорию, объясняющую расширение Вселенной, потребовались продолжительные глубокие исследования, сложные сопоставления и вычисления. В начале двадцатых годов XX века вчерашний солдат наконец смог классифицировать туманности, наблюдаемые отдельно от Млечного пути. Согласно его открытию, они спиральные, эллиптические и неправильные (три вида).

В ближайшей к нам звездной системе, но не самой близкой спиральной туманности Андромеды, Эдвин разглядел цефеиды (класс пульсирующих звезд). Закон Хаббла стал как никогда близок к своему окончательному формированию. Астроном вычислил расстояние до этих маячков и размеры крупнейшей Согласно его выводам, Андромеда содержит примерно один триллион звезд (в 2,5-5 раз больше Млечного пути).

Константа

Некоторые ученые, объясняя природу цефеидов, сравнивают их с надувными резиновыми мячами. Они то увеличиваются, то уменьшаются, то приближаются, то отдаляются. Лучевая скорость при этом колеблется. При сжатии температура «путешественниц» увеличивается (хотя поверхность уменьшается). Пульсирующие звезды представляют собой необычный маятник, который, рано или поздно, остановится.

Как и остальные туманности, Андромеда охарактеризована ученым, как островное вселенское пространство, напоминающее нашу галактику. В 1929 году Эдвин обнаружил: лучевые скорости галактик и их расстояния взаимосвязаны, линейно зависимы. Был определен коэффициент, выражаемый в км/с на мегапарсек так называемая постоянная Хаббла. Расширяется Вселенная - меняется константа. Но в конкретный момент во всех точках системы мироздания она одинакова. В 2016 году - 66,93 ± 0,62 (км/с)/Мпк.

Представления о системе мироздания, продолжающей эволюцию, расширяющейся, тогда получили наблюдательную основу. Процесс активно изучался астрономом до самого начала Второй мировой войны. В 1942 году он возглавил Отдел внешней баллистики на Абердинском испытательном полигоне (США). Разве об этом мечтал сподвижник, пожалуй, самой загадочной науки на свете? Нет, ему хотелось «расшифровывать» законы потаенных уголков далеких галактик! Что касается политических взглядов, то астроном открыто осуждал лидера Третьего рейха Адольфа Гитлера. На исходе своей жизни Хаббл прослыл мощным противником применения оружия массового поражения. Но вернемся к туманностям.

Великий Эдвин

Многие астрономические константы со временем корректируются, появляются новые открытия. Но все они не идут в сравнение с Законом расширения Вселенной. Знаменитого астронома XX века Хаббла (со времен Коперника равных ему не было!) ставят в один ряд с основателем экспериментальной физики Галилео Галилеем и автором новаторского вывода о существовании звездных систем Уильямом Гершелем.

Еще до того, как был открыт закон Хаббла, его автор стал членом Национальной академии наук Соединенных Штатов Америки, позже академий в разных странах, имеет множество наград. Многие, наверное, слышали про то, что свыше десяти лет назад выведен на орбиту и успешно действует космический телескоп «Хаббл». Это имя носит одна из малых планет, вращающихся между орбитами Марса и Юпитера (астероид).

Будет не совсем справедливо утверждать, что астроном только и мечтал об увековечивании своего имени, но есть косвенные свидетельства того, что Эдвин любил привлечь внимание. Сохранились фото, где он весело позирует рядом с кинозвездами. Чуть ниже мы расскажем о его попытках «зафиксировать» достижение на лауреатском уровне, еще и таким образом войти в историю космологии.

Метод Генриетты Ливитт

Знаменитый британский астрофизик в своей книге «Краткая история времени» писал, что «открытие того, что Вселенная расширяется, стало величайшей интеллектуальной революцией XX века». Хаббл был достаточно удачлив, чтобы оказаться в нужном месте в нужное время. Обсерватория Маунт-Вильсон являлась центром наблюдательной работы, лежащей в основе новой астрофизики (позже получившей название космологии). Самый мощный на Земле телескоп Хукера тогда только вступил в строй действующих.

Но постоянная Хаббла вряд ли была открыта лишь на основании везения. Требовались терпение, упорство, умение побеждать научных соперников. Так американский астроном Харлоу Шепли предлагал свою модель Галактики. Его уже знали, как ученого, определившего размеры Млечного Пути. Он широко применял методику определения расстояний по цефеидам, используя методику, составленную в 1908 году Генриеттой Суон Ливитт. Она устанавливала расстояние до объекта, опираясь на стандартные вариации света от ярких звезд (переменные цефеиды).

Не пыль и газ, а другие галактики

Харлоу Шепли считал, что ширина галактики 300 000 световых лет (приблизительно в десять раз выше допустимого значения). Однако Шепли, как и большинство астрономов того времени, был уверен: Млечный Путь - это и есть вся Вселенная. Несмотря на предположение, впервые сделанное Уильямом Гершелем в XVIII веке, он разделял распространенное мнение, что все туманности для относительно близлежащих объектов - всего лишь пятна пыли и газа в небе.

Сколько горьких, холодных ночей провел Хаббл, сидя у мощного телескопа Хукера, прежде чем смог доказать, что Шепли не прав. В октябре 1923 года Эдвин заметил в М31 туманности (созвездие Андромеды) «вспыхнувший» объект и предположил, что он не относится к Млечному Пути. После тщательного изучения фотопластин, на которых была запечатлена та же площадь, ранее исследованная другими астрономами, в том числе, Шепли, Эдвин понял, что это цефеида.

Обнаружен Космос

Хаббл использовал метод Шепли для измерения расстояния до переменной звезды. Оказалось, что оно исчисляется миллионами световых лет от Земли, что находится далеко за пределами Млечного Пути. Сама галактика содержит миллионы звезд. Известная Вселенная резко расширилась в тот же день и - в некотором смысле - был обнаружен сам Космос!

Газета "Нью-Йорк Таймс" писала: "Обнаруженные спиральные туманности являются звездными системами. Доктор Hubbel (так в оригинале) подтверждает мнение, что они похожи на "островные вселенные", похожие на нашу собственную". Открытие имело большое значение для астрономического мира, но величайший момент Хаббла был еще впереди.

Никакой статичности

Как мы говорили, победа к «Копернику №2» пришла в 1929 году, когда он классифицировал все известные туманности и измерил их скорости от спектров излучаемого света. Его поразительная находка, что все галактики отступают от нас со скоростями, увеличивающимися пропорционально их удаленности от Млечного Пути, потрясла мир. Закон Хаббла отменил традиционное представление о статической Вселенной и показал, что сама она полна динамики. Сам Эйнштейн склонял голову перед столь потрясающей наблюдательностью.

Автор теории относительности подкорректировал собственные уравнения, которыми обосновывал расширение Вселенной. Теперь Хаббл показал, что Эйнштейн был прав. Хаббловское время - величина, обратная постоянной Хаббла (t H = 1/H). Это характерное время расширения Вселенной на текущий момент.

Взорвались и разлетелись

Если постоянная в 2016 году равна 66,93 ± 0,62 (км/с)/Мпк, то расширение в настоящее время характеризуется следующими цифрами: (4,61 ± 0,05)·10 17 с или (14,610 ± 0,016)·10 9 лет. И снова немного юмора. Оптимисты говорят: это хорошо, что галактики «разбегаются». Если представить, что они сближаются, рано или поздно наступил бы Большой взрыв. Но именно с него началось зарождение Вселенной.

Галактики «рванули» (начали движение) в разные стороны одновременно. Если бы скорость удаления не была пропорциональной расстоянию - теория взрыва бессмысленна. Еще одна производная константа - хаббловское расстояние - произведение времени на скорость света: D H = ct H = c/H. В текущий момент - (1,382 ± 0,015)·10 26 м или (14,610 ± 0,016)·10 9 световых лет.

И снова о надувном шаре. Есть мнение, что даже астрономы не всегда правильно трактуют расширение Вселенной. Часть знатоков считает, что она раздувается, словно резиновый шар, не ведая никаких физических ограничений. Сами галактики при этом не только удаляются от нас, но и хаотично «суетятся» внутри неподвижных скоплений. Иные уверяют, что дальние галактики «уплывают» осколками Большого взрыва, но делают это степенно.

Мог бы стать Нобелевским лауреатом

Хаббл пытался получить Нобелевскую премию. В конце 1940-х годов даже нанимал рекламного агента (сейчас его назвали бы пиар-менеджер), чтобы тот продвинул дело. Но усилия были напрасными: категории для астрономов не существовало. Эдвин умер в 1953 году, в ходе научных изысканий. В течение нескольких ночей он наблюдал внегалактические объекты.

Его последняя честолюбивая мечта осталась несбывшейся. Но ученый наверняка бы порадовался тому, что в его честь назван космический телескоп. И поколения братьев по разуму продолжают исследовать огромное и чудесное пространство. Оно до сих пор таит немало загадок. Сколько открытий впереди! И производные постоянные Хаббла, наверняка, помогут кому-то из молодых ученых стать «Коперником №3».

Оспаривая Аристотеля

Что будет доказано или опровергнуто, как тогда, когда в пух и прах полетела теория о бесконечности, вечности и неизменности пространства вокруг Земли, которую поддерживал сам Аристотель? Он приписывал Вселенной симметрию и совершенство. Космологический принцип подтвердил: все течет, все изменяется.

Есть мнение, что через миллиарды лет небеса будут пусты и темны. Расширение «унесет» галактики за космический горизонт, откуда свет не сможет дойти до нас. Будет ли актуальна постоянная Хаббла для пустой Вселенной? Что станет с наукой космологией? Она исчезнет? Все это предположения.

Красное смещение

Пока же телескоп «Хаббл» сделал снимок, который свидетельствует: до вселенской пустоты нам пока далеко. В профессиональной среде в ходу мнение, что ценно открытие Эдвина Хаббла, но не его закон. Однако именно он был почти сразу признан в научных кругах того времени. Наблюдения «красного смещения» не просто завоевало право на существование, оно актуально и в XXI веке.

И сегодня, определяя расстояние до галактик, опираются на супероткрытие ученого. Оптимисты утверждают: даже если наша галактика останется единственной, «скучать» нам не придется. Будут существовать миллиарды карликовых звезд и планет. А значит, рядом с нами по-прежнему будут «параллельные миры», которые нужно будет исследовать.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...