Примеры динамических систем в теории случайных. Динамические системы и их свойства

На многообразиях и их подмножествах. Тесно связан с теорией дифференциальных уравнений , поскольку обыкновенное дифференциальное уравнение задает однопараметрическую группу диффеоморфизмов своего фазового пространства .

Эту область изучения часто называют просто «Динамические системы», «Теория систем», или длиннее как «Теория математических динамических систем».

Шаблон:Системы


Wikimedia Foundation . 2010 .

  • Теория групп Ли
  • Теория дифференциальных уравнений

Смотреть что такое "Теория динамических систем" в других словарях:

    МЕТРИЧЕСКАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - то же, что эргодическая теория … Математическая энциклопедия

    ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть {Tt} динамич. система (обычно измеримый поток или каскад)с фазовым пространством Wи инвариантной мерой Пусть … Математическая энциклопедия

    Кафедра нелинейных динамических систем и процессов управления ВМК МГУ - Кафедра Нелинейных Динамических Систем и Процессов Управления факультета Вычислительной математики и кибернетики МГУ им М. В. Ломоносова (НДСиПУ ВМК МГУ). Заведующий кафедрой (с 1989 года) – лауреат Ленинской, Государственных (СССР и РФ),… … Википедия

    Теория катастроф (математика) - Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    Теория бифуркаций - динамических систем это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров). Содержание 1 Обзор 2 Бифуркация равновесий … Википедия

    Теория линейных стационарных систем - раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела.… … Википедия

    Теория случайных матриц - Теория случайных матриц раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… … Википедия

    Теория узлов - Теория узлов изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу. В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вообще вложения многообразий. Содержание 1… … Википедия

    Теория Колмогорова - Теория Колмогорова Арнольда Мозера, или теория КАМ названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти… … Википедия

    Теория катастроф (значения) - Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

Книги

  • Синхронизация динамических систем , . В настоящей книге делается попытка систематического изложения фактов и результатов, относящихся к быстро развивающейся области науки и техники- синхронизации динамических систем. Книга… Купить за 735 руб
  • Теория динамических систем , Г. А. Степаньянц. Настоящая книга посвящена изложению основ общей теории динамических систем, созданной трудами ряда выдающихся отечественных и зарубежных математиков. Знакомствос этой теорией позволяет…

Понятия системы, основные характеристики системы.

Система – это совокупность элементов, находящихся во взаимодействии и связаны определенной структурой.

Базовый блок любой системы – составляющие ее элементы, каждый элемент характеризуется набором состояний, в которой он может находиться.

Схема функционирования элемента системы:

Для многих систем характерен принцип обратной связи – выходной сигнал может использоваться для коррекции управления.

S(t) – состояние элемента в момент t.

U(t) – управление элементом в момент t.

a(t) – внешняя среда элемента в момент t.

E(t) – случайные воздействия элемента в момент t.

Y(t) – выходной сигнал элемента в момент t.

В общем случае описание функционирования элемента системы производится при помощи системы дифференциальных или разностных уравнений следующего вида:

Y(t) =f(S(t), S(t-1), …,U(t),U(t-1),…,a(t),a(t-1),…,E(t),E(t-1),…)

(Y(t) = g (S(t), a(t), E(t)) (1)

Примеры структуры системы:

    линейная (последовательная):

    иерархическая (древовидная):

    радиальная (звездообразная):

    сотовая или матричная:

    многосвязная – с произвольной структурой.

При анализе динамических систем рассмотрим решение следующих задач:

    Задача наблюдения – состоит в определении состояния системы в момент времени S(t) по данным выходных величин (о их поведении) в будущем.

Найти S(t) , зная,
для системы с дискретным временем.

для систем с непрерывным временем.

    Задача идентификации – в определении текущего состояния S(t) по данным о поведении выходных величин в прошлом.

3. Задачи прогнозирования – определение будущих состояний по данным ткущих и

прошлых значений.

Найти S (t+1), S (t+2),… зная

    Задача поиска управления – найти управляющую последовательность U(t), U(t+1),…, U(S), S > t, которая приводит систему из состояния S(t) = X в состояние S(S) = Y.

    Задача синтеза максимального управления – состоит в определенной оптимальной последовательности управляющих воздействий U*(t) решающий задачу 4 и максимальную целевую функцию или функциональную:

F(S(t)), t = 0,1,2,…

Типы систем:

    По наличию случайных факторов:

Детерминированные

Стохастические – влиянием случайных факторов нельзя принебреч.

2. По учету фактора времени:

Системы с непрерывным временем

Системы с дискретным временем

3. По влиянию прошлых периодов:

Марковские системы – для решения 1 и 2 задач нужна информация только за непосредственно предшествующий или последующий период. Для Марковской систем уравнение (1) принимает вид: G(S(t), S(t-1), U(t), U(t-1), a(t), a(t-1), E(t), E(t-1)) = 0

Немарковские.

Некоторые общие свойства систем:

    причинность – возможность предсказывать последствия некоторых последствий в будущем. Част. случай: предопределенность системы означает, что в сущности такие состояния, для которых вся будущая эволюция системы может быть вычислена на базе прошлых наблюдений.

    управляемость – состоит в том, что подходящим выбором входного воздействия U можно добиться любого входного сигнала Y.

    устойчивость – система является устойчивой, если при достаточно малых изменениях условий ее функционирования поведение системы существенно не изменится.

    инерционность – возникновение запаздываний в системе при реакции (запаздывания) на изменение управления и (или) внешней среды.

    адаптивность – способность системы изменять поведения и (или) свою структуру в ответ на изменение внешней среды.

Детерминированные динамические системы с дискретным временем.

Многие приложения в экономике требуют моделирования систем во времени.

Состояние системы в момент времени t описывается мерным вектором X(t).

X(t) = ….. , X (t) R n (R – множество всех вещественных чисел)

t

Эволюция системы со временем описывается функцией

G (X 0 , t, ) , где

X 0 – начальное состояние системы;

t – время;

- вектор параметров.

Функция g(*) называют также переходной функцией

Функция g(*) – это правило, описывающее текущее состояние как функцию от времени, начальных условий и параметров.

Например: X t = X 0 (1+) t = g (X 0 , t, )

Функция g(*) как правило не известна. Обычно она задана неявно как решение системы разностных уравнений.

Разностное уравнение или система уравнений – это уравнения в следующей форме: F (t, X t , X t +1 , …, X t + m , ) = 0 (1), где

X t – состояние системы в момент времени t.

Решение уравнения (1) – это последовательность векторов

X t = X 0 , X 1 ,…,

Обычно предполагается, что уравнение (1) можно решить аналитически относительно X t + m и переписать в форме так называемых уравнений – состояний:

X t+m = f (t, X t , X t+1 , …,X t+m-1 , )(2)

Например:

X t +2 = X t + X t +1 /2 + t

Любую систему представляют в форме (2) всегда можно?

Разностное уравнение (2) называется линейным, если F(*) является линейной фуекцией переменных состояний (не обязательно линейно относительно )

В уравнениях (1) и (2) величина m называется порядком системы не является серьезным ограничением, так как системы более высокого порядка путем введения дополнительных переменных и уравнений.

Пример: X t = f (X t -1 , Y t -1) – система 2-го порядка

Введем Y t = X t -1

X t = f(X t -1 , Y t -1)

Таким образом, мы будем рассматривать только системы 1-го порядка следующего вида:

X t -1 = f(t, X t , ) (3)

Уравнение (3) называется автономным, если t не входит в него отдельным аргументом.

Пример:

Рассмотрим динамику основных фондов на предприятии

K t – стоимость основных фондов предприятия в период t.

- норма амортизации, то есть % основных фондов, которые изъяли на предприятии за год.

I t = инвестиции в основные фонды.

K t +1 = (1 - )K t + I t – уравнение 1-го порядка, линейное, если I t = I, тогда

K t +1 = (1 - )K t + I – уравнение автономное

Если I t = I(t) – неавтономное (зависит от t)

Решение уравнения (3) – это последовательность векторов состояния {X t }, удовлетворяющих уравнению (3) для всех возможных состояний. Эта последовательность называется траекторией системы. Уравнение (3) показывает, как состояние системы изменяется от периода к периоду, а траектория системы дает ее эволюцию как функцию начальных условий и состояния внешней среды .

Если известно начальное состояние X 0 , легко получить последовательность решений путем итеративного применения отношения (3), получим переходную функцию следующим образом:

X t +1 = f (t, X t , )

X 1 = f (0, X 0 , ) = g (0, X 0 , )

X 2 = f (1, X, ) = f (1; f (0, X 0 , );) = g (1, X 0 , )

X t+1 = f (t, X t , ) = f (t, g, (t – 1, X 0 , ),) = g (t, X 0 , )

Если f (*) однозначная, всюду определенна функция, то существует уникальное решение уравнения (3) для любого X 0 .

Если функция имеет вид f (t, X t , ) = / X t – не всюду опрделенная.

Если f (*) непрерывная дифференциальная функция, то решение также будет гладким относительно и X 0

Полученное решение зависит от начального состояния X 0 .

Задача с граничным условием состоит из уравнения (3) и граничного условия, задаваемого в формуле:

X s = X s (4)

Если в уравнении (4) – S = 0 , то оно называется начальным состоянием.

Уравнение (3) имеет много решений, а уравнение (3) + (4) – система – единственное решение, поэтому различают общее и частное решение разностного уравнению (3):

X t g = X(t, c, ) = {X t (X t +1 = f (t, X t , ))} , где параметр е индексирует частное решение.

X t – размер вклада в момент t

Z - % я ставка

X t +1 = X t (1+ z) ; X 0 = …

X 1 = X 0 (1 + z)

X 2 = X 1 (1 + z) = X 0 (1 + z) 2 = g (X 0 , t, z) , где t = 2

Если можно найти общее решение системы (3) . у нас будет полная информация о поведении системы со временем, будет легко определить, как система реагирует на изменение параметров.

К сожалению, общее решение существует только для определенных классов l – го порядка (в частности для линейных систем)

Автономные системы

Поведение автономных систем задается разностным уравнением

X t +1 = f (X t , ) (1)

Автономные системы моделируют ситуации, где структура системы остается неизменной со временем. Это дает возможность использовать для анализа графический метод.

X t =1 = f (t, X t , )

X t = X t +1 – X t = f (t, X t , ) - X t = d (t, X t , ) (2)

Функция d (*) показывает на сколько изменится состояние системы от периода к периоду. В каждой точке X t можно сопоставить вектор X t в соответствующем уравнении (2) Функция d (*) в этом контексте называется векторным полем

X 0 /t = 0

Для автономных систем
и

В автономных системах все системы, попавшие когда-либо в т. Х 0 в последствии следуют одной и той же траекторией. В неавтономных системах поведение зависит также и от того, когда система попала в т. Х 0.

При начальном условии Х 0 для автономных систем применим уравнение (1):

дважды последовательно примененная.

В выше приведенной системе f t означает результат t-кратного итеративного применения функции f () к своему аргументу. Функция f t показывает, куда перейдет система за t периодов из начального состояния.

X t – куда перейдет система из т. Х 0 за t периодов времени.

Функция f t иногда называется потоком системы.

Устойчивые состояния. Периодические равновесия. Стабильность .

С течением времени система переходит к устойчивому состоянию. Поэтому нас будет интересовать асимптотическое поведение системы при t → ∞.

Рассмотрим систему

Следовательно, если
существует, то
.

Точка Х, удовлетворяющая уравнению
называется неподвижной точкой отображения
.

Точка называется в контексте динамических систем устойчивым состоянием или стационарным состоянием.

Неподвижные точки широко используются для изучения долговременного поведения динамических систем.

если
, то 1 в противном случае 0

Теория устойчивости Ляпунова

Точка называется стабильной по Ляпунову, если для любого числа
существует такое число,
, что из условия
для всех
.

–длина вектора на плоскости.

–равновесное состояние.

–норма вектора Х.

Точка будет стабильной по Ляпунову в том случае, когда система один раз попав в окрестность точкии в дальнейшем останется в окрестности.

Точка называется асимптотически устойчивой по Ляпунову если:


Для асимптотически устойчивых систем с течением времени система подходит все ближе и ближе к своему равновесному состоянию.

Система ведет себя так:

–поток системы

–куда перейдет система через к шагов

Периодическим решением динамической системы
называется решение в форме
, где р – период системы или период траектории.

Таким образом, периодическое решение является неподвижной точкой отображения
.

Неподвижная точка

Проверим, есть ли неподвижная точка
:

любая точка является неподвижной.

Скалярные линейные системы

Скалярные линейные системы имеют форму:
(1)

–уравнение, подданное в момент t.

Если в уравнении (1)
, то
, то оно называется однородным.

Однородные линейные системы

Для скалярных систем удобно анализировать поведение системы при помощи фазовой диаграммы. Фазовая диаграмма – это график зависимости

Случай 1. 0

Является аналитически стабильной

–линейная, если а=1, под 45 0 – угол наклона.

Для 0

Случай 2. -1

Затухающие колебания

Случай 3. а>1

Случай 4. а<-1

Случай 5. а = 1

Случай 6. а = 0

Случай 7. а = -1 x t+1 = -x t

Если
, то

, то

Общее решение однородных линейных систем имеет вид:

При
,
,

Неоднородные линейные системы первого порядка

(1)

–управление

При анализе неоднородных систем важную роль играет принцип «суперпозиции».

Он заключается в том, что общее решение уравнения (1) может быть записано в форме уравнения:

(2)

где – общее решение однородного уравнения (1):
и называется комплементарной функцией.

–любое частное решение неоднородного уравнения (1).

Автономное уравнение (1)

1.

2.

Доказательство:

Если – решение уравнения (1), то
.

Если – другое решение уравнения (1), то

Рассмотрим функцию
и проверим, является лирешением уравнения (1).

2. [Необходимость] Мы показали, что если мы начнем с какого-либо решения и добавим к нему
, то мы получим решение уравнения (1). Возникает вопрос, получим ли мы подобным образом все решения уравнения (1). Докажем, что это действительно так:

Пусть у нас есть два решения (1), и:

Обозначим

- однородное,
z t =ca t

-=ca t
=+ca t

Автономные линейные системы

Х t +1 =ax t +U (3)

=+ (2)

= ca t

= a + U
=

=+ ca t

Если


Если


В случае, когда
с течением времени система достигает состояния и соответствующим подбором уравнения U мы сможем достигнуть любого состояния. Система (3) называется в таком случае управляемой.

Если
, то с течением времени система примет неограниченные значения вне зависимости от уравнения и, следовательно, будет неуправляемой.

Общее решение (3) имеет вид:

(4)

Рассмотрим граничное условие x s =x s:

(5)

Неавтономные линейные системы

X t +1 =ax t +U t

X t+1 =ax t +U t =a(ax t-1 +U t-1)+U t =a 2 x t-1 +a U t-1 + U t = a 2 (ax t-2 +U t-2)+ aU t-1 + U t = a 3 x t-2 +a U t-2 + aU t-1 + U t)=

Если
, то

Если
, то

Предположим, последовательность U t является ограниченной, т.е. U t ≤для любогоt.

Тогда - пограничное значение.

ЭКОНОМИЧЕСКИЕ ПРИЛОЖЕНИЯ ТЕОРИИ ЛИНЕЙНЫХ СИСТЕМ

    Паутинообразная модель рыночного равновесия.

Основные предположения модели:

    линейный характер кривой спроса

    линейный характер кривой предложения

    равенство кривой спроса и предложения

где d 0 , d 1 >0

Предложение:

, где S 1 >0, S 0 ≤0 (так как при цене 0 никто ничего не выпускает).

Равновесие:

d 0 -d 1 P t =S 0 +S 1 P t-1

d 1 P t =d 0 -S 0 –S 1 P t-1 │:d 1

P t =
(*)

Для того чтобы цены с течением времени сходились к равновесной цене, необходимо, чтобы отношение илиS 1 d 1
в системе будут расходящиеся колебания.

на графике кривая

предложения круче, чем кривая спроса.

d 1 p * =d 0 -S 0 -S 1 p *

Для более рационального поведения производители в своих решениях должны учитывать не6 только текущую, но и будущую конъюнктуру рынка. Таким образом, для нормального функционирования рынка важна способность экономических агентов формировать ожидание будущего (делать прогнозы).

    Динамика цен на финансовых рынках.

S – предложение недвижимости

D – спрос на недвижимость

P t – стоимость акций в момент t.

d t – дисиденті в момент t.

r –процентная ставка по депозитным счетам.

- ожидаемая стоимость акций в момент t+1.

Арбитражем называется ситуация, позволяющая получить инвестору немедленную прибыль без риска за счет покупки актива по низкой цене и его немедленной перепродажи по более высокой цене.

Считается что рынок является эффективным, если на нем отсутствуют возможности для арбитража.

Воспользуемся принципом отсутствия арбитража, чтобы получить балансовое соотношение для стоимости акций.


(1)

На примере Харьковской недвижимости:

P t =30 тыс.дол.

D t =2 тыс.дол. в год – плата за сдачу жилья

-ожидаемая цена на квартиру в следующем периоде.

=33-2=31 тыс. дол.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ОЖИДАНИЙ

1. Модель адаптивных ожиданий

=
, где 0≤≤1

0
=

1
=

- метод экспоненциального сглаживания (2)

(1)

(2)

Предположим, что d t =d=const для любого t

0

Общее решение:
, где Р 0 – первоначальная стоимость акций.

a<1,
a t P 0
0

фундаментальная стоимость акций.

a t P 0 – спекулятивная составляющая

2. Модель рациональных ожиданий

Недостаток – низкая скорость обучения участников рынка. Это открывает возможность для интертепорального арбитража, т.е. спекуляции на прогнозируемых изменениях курса акций в последующих периодах.

Чтобы устранить это логическое противоречие, в 1970-х была предложена модель рациональных ожиданий (Р. Лукас).

Суть модели – в среднем рынок не может систематически ошибаться в оценке курса активов. Применительно к нашей модели это означает следующее: инвесторы не должны систематически ошибаться в оценке стоимости акций.

- несмещенность оценки, т.е.
- является несмещенной оценкойP t +1 ; или
=P t +1 +E t

E t – ошибка оценивания

Рассмотрим экстремальный вариант модели рациональных ожиданий (модель с полным предвидением), в которой ошибка оценивания равна 0.

С модели с полным предвидением предположим, что E t =0, т.е.
=P t +1

Рассмотрим динамику цен на акции в модели с полным предвидением.

Условие арбитража:

(1+r) P t =dt

(1+r) P t =dtP t+1

=P t+1

P t+1 =(1+r) Pt-d (3)

P t является нестабильной, P t →, поскольку (1+r) >, если только не начинаем движение с неподвижной точки:

Если P t = , тоP t + k =

d=0, P t +1 =(1+r) Pt

В модели полного предвидения ожидания инвесторов играют роль самовыражающегося пророчества, цены на активы могут неограниченно расти, т.к. инвесторы считают, что они будут расти. Таким образом, в такой модели спекулятивная компонента стоимости акций доминирует над ее фундаментальным значением.

Динамические и статистические теории

Одна из главных задач любой научной теории заключается в том, чтобы по заданному состоянию системы предсказать ее будущее или восстановить прошлое состояние. Однако, поскольку состояние системы можно описывать по-раз­но­му (пп. 3.4.1, 3.4.2, 3.5.3), различается и характер предсказаний. В этом отношении все теории можно разделить на два класса: динамические и статистические . В динамической теории состояние системы определяется значениями характеризующих ее физических величин. Соответственно, динамическая теория позволяет предсказывать значения физических величин, характеризующих систему.

Исторически первая научная теория - классическая механика - теория динамическая. Она стала образцом, по которому кроились другие разделы классического естествознания: термодинамика, электродинамика, теория относительности, теория химического строения, систематика живых существ… Сформировалось убеждение, что динамические теории несут наиболее фундаментальное знание.

Теория, в которой состояние системы определяется заданием вероятностей тех или иных значений физических величин, относится к статистическим теориям.

Статистическая теория позволяет предсказывать лишь вероятности тех или иных значений физических величин, характеризующих систему.

Первые статистические теории стали возникать в XIX веке: молекулярно-ки­не­ти­чес­кая теория и, более широко, статистическая механика в физике, дарвиновская теория эволюции (основанная на представлениях о неопределенной, то есть, случайной изменчивости), менделевская генетика. Большинство же ныне действующих статистических теорий появились уже в XX веке. Со статистическими теориями в естествознание вошло фундаментальное понятие флуктуации .

Флуктуация - это случайное отклонение характеристик системы
от наиболее вероятного или среднего значения.

Причины флуктуаций могут быть различными. Например, голубой цвет неба, в конечном счете, обусловлен тем, что количество молекул воздуха в заданном объеме не постоянно: оно все время колеблется вокруг среднего значения. Причина - беспорядочное тепловое движение молекул: в какой-то момент больше молекул покинет данный объем, чем влетит в него извне, а в следующий момент - наоборот. Нулевые колебания полей в физическом вакууме (п. 3.3.4) - это тоже флуктуации, но уже квантового происхождения. В биологии флуктуации скрываются за терминами «не­о­пре­де­лен­ная изменчивость», «му­та­ции»; здесь их основная причина - влияние множества неучитываемых факторов. Понятие флуктуации фактически ис­поль­зу­ет­ся и в социальных науках, когда говорится о субъ­ек­тив­ных факторах общественных процессов, роли личности в истории и т.д.

Динамические теории не учитывают (и не допускают возможности) флуктуаций; статистические - допускают, учитывают и даже выводят на передний план.

Страница 42 из 42

Динамические и статистические законы

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления связаны между собой причинно-следственными связями, а беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерми­низму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей – существенных, повторяющихся связей между предметами и явлениями – задача науки, так же, как и формулирование их в виде законов науки, которые являются нашим знанием о природных закономерностях.

Однако, как показывает история науки, никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же самое касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

Физика знает два типа физических законов (теорий) – динамические и статистические законы.

Динамический закон – это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Динамическая теория - физическая теория, представляющая совокупность динамических законов.

Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Она претендовала на описание механического движения, т.е. перемещения в пространстве с течением времени любых тел или частей тел друг относительно друга с какой угодно точностью. О механике Ньютона, как и об электродинамике Максвелла, являющейся еще одной динамической теорией, мы говорили выше. Другими динамическими теориями являются механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).

Долгое время считалось, что никаких других законов, кроме динамических, просто не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики Ньютона. Представление о том, что все объективные закономерности должны выражать однозначную связь физических объектов, оставалось незыблемым.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Формулирование этого требования в жесткой форме обычно связывают с именем Пьера Лапласа. Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному как объективной категории нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким, или лапласовским, детерминизмом.

Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны. Более того, оказалось, что при описании движения отдельных макроскопических тел, которое всегда считалось сферой действия динамических законов, осуществление идеального классического детерминизма практически невозможно.

Кроме того, начальные параметры любых механических систем невозможно фиксировать с абсолютной точностью, поэтому точность предсказания со временем уменьшается. Для каждой механической системы существует некоторое критическое время, начиная с которого невозможно точно предсказать ее поведение.

Несомненно, что лапласовский детерминизм с определенной степенью точности отражает реальное движение тел, и в этом отношении его нельзя считать ложным. Но мы должны признать, что жесткий механический детерминизм очень сильно огрубляет реальные природные процессы. Реальная действительность намного разнообразнее, а жесткий детерминизм отражает лишь отдельные ее стороны. Мы должны постоянно помнить об этом и не допускать абсолютизации классического детерминизма.

В середине XIX в. в физике были сформулированы законы, предсказания которых не являются определенными, а только вероятными. Они получили название статистических законов.

Представление о законах и закономерностях особого типа, в которых связи между величинами, входящими в теорию, неоднозначны, впервые ввел Максвелл в 1859 г. при построении статистической механики – первой фундаментальной теории нового типа. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц (в данном случае – молекулы газа в сосуде), нужно ставить задачу иначе, чем в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр.

При бросании игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном броске кости, нельзя. Мы можем подсчитать лишь вероятность выпадения любого числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, так как показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл подобных событий. В данном случае мы можем получить статистические средние значения. Так, если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 ? 1/6 = 50 раз. При этом совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.

Статистические законы, в отличие от динамических законов, отражают однозначную связь не физических величин, а статистическое распределение этих величин. Результат, изменение состояния, которое определяется на основе соответствующих уравнений, также выражается не значениями физических величин, а вероятностями этих значений внутри заданных интервалов. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические теории, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма. В отличие от жесткого классического детерминизма, он может быть назван вероятностным (современным) детерминизмом. Эти законы меньше огрубляют действительность, имеют менее сильные гносеологические предпосылки, поэтому они способны учитывать и отражать те случайности, которые происходят в мире.

Сегодня любой известный в природе процесс более точно описывается статистическими законами. Но окончательно это стало ясно после создания квантовой механики – статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем. Тогда была выяснена принципиальная невозможность динамического описания этих процессов.



Оглавление
Система наук о природе и естественно-научная картина мира.
Дидактический план
Предисловие
Тематический обзор
Основные науки о природе
Научный метод познания природы
Элементы научного метода познания
Псевдонаука
Фундаментальные и прикладные науки. Технология
Научные знания на Древнем Востоке
Появление науки в Древней Греции
Античная наука
Математическая программа Пифагора – Платона
Атомистическая программа Левкиппа и Демокрита
Континуальная программа Аристотеля
Развитие науки в эпоху эллинизма
Научные знания в Средние века
Основные черты средневекового мировоззрения и науки
Эпоха Возрождения: революция в мировоззрении и науке
Открытия Коперника и Бруно – фундамент первой научной революции

Динамическая система - множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. [ ] Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.

Состояние динамической системы в любой момент времени описывается множеством вещественных чисел (или векторов), соответствующим определённой точке в пространстве состояний . Эволюция динамической системы определяется детерминированной функцией, то есть через заданный интервал времени система примет конкретное состояние, зависящее от текущего.

Введение

Динамическая система представляет собой такую математическую модель некоего объекта, процесса или явления, в которой пренебрегают «флуктуациями и всеми другими статистическими явлениями».

Динамическая система также может быть представлена как система, обладающая состоянием . При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы - совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояния в другое.

Различают системы с дискретным временем и системы с непрерывным временем.

В системах с дискретным временем, которые традиционно называются каскадами , поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками , состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.

Динамическая система (как с дискретным, так и с непрерывным временем) часто описывается автономной системой дифференциальных уравнений , заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые - его периодическим решениям.

Основное содержание теории динамических систем - это исследование кривых, определяемых дифференциальными уравнениями . Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы ) и отталкивающих (репеллеры ) множеств (многообразий). Важнейшие понятия теории динамических систем - устойчивость состояний равновесия (т.е. способность системы при малых изменениях начальных условий сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (т.е. сохранение свойств при малых изменениях самой математической модели; «грубая система - это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров»).

Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой .

Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.

Методы теории динамических систем востребованы в других разделах естествознания, таких как неравновесная термодинамика , теория динамического хаоса , синергетика .

Определение

Пусть X {\displaystyle X} - произвольное гладкое многообразие .

Динамической системой , заданной на гладком многообразии X {\displaystyle X} , называется отображение g: R × X → X {\displaystyle g\colon R\times X\to X} , записываемое в параметрическом виде g t (x) {\displaystyle g^{t}(x)} , где t ∈ R , x ∈ X {\displaystyle t\in R,x\in X} , которое является дифференцируемым отображением, причём g 0 {\displaystyle g^{0}} - тождественное отображение пространства X {\displaystyle X} . В случае стационарных обратимых систем однопараметрическое семейство { g t: t ∈ R } {\displaystyle \{g^{t}:t\in R\}} образует группу преобразований топологического пространства X {\displaystyle X} , а значит, в частности, для любых t 1 , t 2 ∈ R {\displaystyle t_{1},t_{2}\in R} выполняется тождество g t 1 ∘ g t 2 = g t 1 + t 2 {\displaystyle g^{t_{1}}\circ g^{t_{2}}=g^{t_{1}+t_{2}}} .

Из дифференцируемости отображения g {\displaystyle g} следует, что функция g t (x 0) {\displaystyle g^{t}(x_{0})} является дифференцируемой функцией времени, её график расположен в расширенном фазовом пространстве R × X {\displaystyle R\times X} и называется интегральной траекторией (кривой) динамической системы. Его проекция на пространство X {\displaystyle X} , которое носит название фазового пространства , называется фазовой траекторией (кривой) динамической системы.

Задание стационарной динамической системы эквивалентно разбиению фазового пространства на фазовые траектории. Задание динамической системы в общем случае эквивалентно разбиению расширенного фазового пространства на интегральные траектории.

Способы задания динамических систем

Для задания динамической системы необходимо описать её фазовое пространство X {\displaystyle X} , множество моментов времени T {\displaystyle T} и некоторое правило , описывающее движение точек фазового пространства со временем. Множество моментов времени T {\displaystyle T} может быть как интервалом вещественной прямой (тогда говорят, что время непрерывно ), так и множеством целых или натуральных чисел (дискретное время). Во втором случае «движение» точки фазового пространства больше напоминает мгновенные «скачки» из одной точки в другую: траектория такой системы является не гладкой кривой, а просто множеством точек, и называется обычно орбитой. Тем не менее, несмотря на внешнее различие, между системами с непрерывным и дискретным временем имеется тесная связь: многие свойства являются общими для этих классов систем или легко переносятся с одного на другой.

Фазовые потоки

Пусть фазовое пространство X {\displaystyle X} представляет собой многомерное пространство или область в нем, а время непрерывно. Допустим, что нам известно, с какой скоростью движется каждая точка x {\displaystyle x} фазового пространства. Иными словами, известна вектор-функция скорости v (x) {\displaystyle v(x)} . Тогда траектория точки будет решением автономного дифференциального уравнения d x d t = v (x) {\displaystyle {\frac {dx}{dt}}=v(x)} с начальным условием x (0) = x 0 {\displaystyle x(0)=x_{0}} . Заданная таким образом динамическая система называется фазовым потоком для автономного дифференциального уравнения.

Каскады

Пусть X {\displaystyle X} - произвольное множество, и f: X → X {\displaystyle f\colon X\to X} - некоторое отображение множества X {\displaystyle X} на себя. Рассмотрим итерации этого отображения, то есть результаты его многократного применения к точкам фазового пространства. Они задают динамическую систему с фазовым пространством X {\displaystyle X} и множеством моментов времени T = N {\displaystyle T=\mathbb {N} } . Действительно, будем считать, что произвольная точка x 0 ∈ X {\displaystyle x_{0}\in X} за время 1 {\displaystyle 1} переходит в точку x 1 = f (x 0) ∈ X {\displaystyle x_{1}=f(x_{0})\in X} . Тогда за время 2 {\displaystyle 2} эта точка перейдет в точку x 2 = f (x 1) = f (f (x 0)) {\displaystyle x_{2}=f(x_{1})=f(f(x_{0}))} и т. д.

Если отображение f {\displaystyle f} обратимо, можно определить и обратные итерации : x − 1 = f − 1 (x 0) {\displaystyle x_{-1}=f^{-1}(x_{0})} , x − 2 = f − 1 (f − 1 (x 0)) {\displaystyle x_{-2}=f^{-1}(f^{-1}(x_{0}))} и т. д. Тем самым получаем систему с множеством моментов времени T = Z {\displaystyle T=\mathbb {Z} } .

Примеры

  • Система дифференциальных уравнений
{ d x d t = v d v d t = − k x {\displaystyle {\begin{cases}{\frac {dx}{dt}}=v\\{\frac {dv}{dt}}=-kx\end{cases}}}

задает динамическую систему с непрерывным временем, называемую «гармоническим осциллятором». Её фазовым пространством является плоскость (x , v) {\displaystyle (x,v)} , где v {\displaystyle v} - скорость точки x {\displaystyle x} . Гармонический осциллятор моделирует разнообразные колебательные процессы - например, поведение груза на пружине. Его фазовыми кривыми являются эллипсы с центром в нуле.

Вопросы теории динамических систем

Имея какое-то задание динамической системы, далеко не всегда можно найти и описать её траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:

  1. Есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в начальное состояние в ходе эволюции?
  2. Как устроены инвариантные многообразия системы (частным случаем которых являются замкнутые траектории)?
  3. Как устроен аттрактор системы, то есть множество в фазовом пространстве, к которому стремится «большинство» траекторий?
  4. Как ведут себя траектории, выпущенные из близких точек - остаются ли они близкими или уходят со временем на значительное расстояние?
  5. Ссылки


Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...