Самый мощный магнит в мире. Самый мощный магнит в мире: особенности, свойства и характеристики

Ещё в Древнем Китае обратили внимание на свойство некоторых металлов притягивать. Это физическое явление получило название магнетизм, а материалы, обладающие этой способностью, назвали магнитами. Сейчас это свойство активно используется в радиолектронике и промышленности, а особо мощные магниты используют, в том числе и для поднятия и транспортировки больших объёмов металла. Применяются свойства этих материалов и в быту – многим известны магнитные открытки и буквы для обучения детей. Какие магниты бывают, где их используют, что такое неодимовый, об этом расскажет этот текст.

Виды магнитов

В современном мире их классифицируют по трём основным категориям по типу создаваемого ими магнитного поля:

  • постоянные, состоящие из природного материала, обладающего этими физическими свойствами, например, неодимовые;
  • временные, обладающие этими свойствами во время нахождения в поле действия магнитного поля;
  • электромагниты – это витки провода на сердечнике, создающие электромагнитное поле при прохождении энергии по проводнику.

В свою очередь, наиболее распространённые постоянные магниты подразделяются на пять основных классов, по своему химическому составу:

  • ферромагниты на основе железа и его сплавов с барием и стронцием;
  • неодимовые магниты, имеющие в своём составе редкоземельный металл неодим, в сплаве с железом и бором (Nd-Fe-B, NdFeB, NIB);
  • самариево-кобальтовые сплавы, имеющие сравнимые с неодимовым магнитные характеристики, но в тоже время более широкий температурный диапазон применения (SmCo);
  • сплав Альнико, он же ЮНДК, этот сплав отличается высокой коррозионной устойчивостью и высоким температурным пределом;
  • магнитопласты, представляющие собой смесь магнитного сплава со связующим, это позволяет создать изделия различных форм и размеров.

Сплавы магнитных металлов хрупкие и достаточно дешёвые изделия, обладающие средними качествами. Обычно это сплав оксида железа с ферритами стронция и бария. Температурный диапазон стабильной работы магнита не выше 250-270°C. Технические характеристики:

  • коэрцитивная сила – около 200 кА/м;
  • остаточная индукция – до 0,4 Тесла;
  • средний срок службы – 20-30 лет.

Что такое неодимовые магниты

Это наиболее мощные из постоянных, но в тоже время достаточно хрупкие и нестойкие к коррозии, в основе этих сплавов лежит редкоземельный минерал – неодим. Это самый сильный магнит из постоянных.

Характеристики:

  • коэрцитивная сила – около 1000 кА/м;
  • остаточная индукция – до 1,1 Тесла;
  • средний срок службы – до 50 лет.

Их применение ограничивает только низкий предел температурного диапазона, для наиболее термостойких марок неодимового магнита это 140°C, в то время как менее стойкие разрушаются при температуре свыше 80 градусов.

Самариевокобальтовые сплавы

Обладающие высокими техническими характеристиками, но в тоже время очень дорогие сплавы.

Характеристики:

  • коэрцитивная сила – около 700 кА/м;
  • остаточная индукция – до 0,8-1,0 Тесла;
  • средний срок службы – 15-20 лет.

Они используются для сложных условий работы: высокие температуры, агрессивные среды и большая нагрузка. Из-за сравнительно высокой стоимости их применение несколько ограничено.

Альнико

Порошковый сплав из кобальта (37-40%) с добавлением алюминия и никеля также обладает хорошими эксплуатационными характеристиками, кроме того способностью сохранять свои магнитные свойства при температурах до 550°C. Их технические характеристики ниже, чем у ферромагнитных сплавов и составляют:

  • коэрцитивная сила – около 50 кА/м;
  • остаточная индукция – до 0,7 Тесла;
  • средний срок службы – 10-20 лет.

Но, несмотря на это, именно этот сплав наиболее интересен для применения в научной сфере. Кроме того, добавление в сплав титана и ниобия способствует повышению коэрцетивной силы сплава до 145-150 кА/м.

Магнитопласты

Используются в основном в быту для изготовления магнитных открыток, календарей и прочих мелочей, характеристики магнитного поля незначительно падают из-за меньшей концентрации магнитного состава.

Это основные типы постоянных магнитов. Электромагнит по принципу действия и применению несколько отличается от таких сплавов.

Интересно. Неодимовые магниты используются практически повсеместно, в том числе и в дизайне для создания парящих конструкций, и в культуре для этих же целей.

Электромагнит и демагнитизатор

Если электромагнит создаёт поле при прохождении через витки обмотки электроэнергии, то демагнитизатор, наоборот, снимает остаточное магнитное поле. Применять этот эффект можно в разных целях. Например, что можно сделать демагнитизатором? Ранее демагнитизатор использовался для размагничивания воспроизводящих головок магнитофонов, кинескопов телевизоров и выполнения иных функций подобного рода. Сегодня его зачастую применяют в несколько незаконных целях, для размагничивания счётчиков после применения на них магнитов. Кроме того это устройство можно и нужно применять для снятия остаточного магнитного поля с инструментов.

Состоит демагнитизатор обычно из обычной катушки, иначе говоря, по устройству этот прибор полностью повторяет собой электромагнит. На катушку подаётся переменное напряжение, после чего устройство, с которого мы снимаем остаточное поле, убирается из зоны действия демагнитизатора, после чего он отключается

Важно! Использование магнита для «подкрутки» счётчика незаконно и влечёт за собой штраф. Неправильное использование демагнитизатора может привести к полному размагничиванию прибора и его выходу из строя.

Самостоятельное изготовление магнита

Для этого достаточно найти металлический брусок из стали или другого ферросплава, можно использовать составной сердечник трансформатора, после чего сделать обмотку. Намотать на сердечник несколько витков медной обмоточной проволоки. Для безопасности стоит включить в схему плавкий предохранитель. Как сделать мощный магнит? Для этого нужно увеличивать силу тока в обмотке, чем она выше, тем больше магнитная сила устройства.

При включении устройства в сеть и подаче электроэнергии на обмотку, устройство будет притягивать металл, то есть фактически это самый настоящий электромагнит, пусть и несколько упрощённой конструкции.

Именно наши соотечественники установили рекорд Гиннеса в конце 50-х годов ХХ века, который до сих пор не побили ни в одной из стран. Магнит был создан в Московской области (г. Дубна), в Объединенном институте ядерных исследований.

Для чего же советским физикам понадобился такой гигант? Этот магнит стал «сердцем» огромнейшей установки, которая стала известной во всем мире как синхрофазотрон. Он предназначался для исследования микромира. Его «отец» - знаменитый физик Владимир Векслер.

Владимир Векслер

Синхрофазотрон – особый вид ускорителя заряженных частиц. Последние разгоняются в установке до сверхвысоких скоростей и, как следствие, до больших энергий. По тому, как они взаимодействуют с другими атомными частицами, ученые-физики составляют представление о свойствах и строении материи. Одним из самых важных параметров синхрофазотронной установки является интенсивность ускоренного пучка частиц.

Синхрофазотрон

Почему же магнит имеет столь внушительные размеры? Дело в том, что пучок частиц в синхрофазотроне – слабофокусированный. Он находится в вакуумной камере, размеры которой составляют два метра на сорок сантиметров. Поэтому, чтобы удерживать частицы внутри кольца, необходимо необычайно сильное и мощное магнитное поле. Его и обеспечил гигантский дубненский магнит.

Идею советских ученых подхватили во всем мире. После запуска первого синхрофазотрона аналогичные проекты появились в США и Швейцарии. Ускорители, построенные за последние годы, – существенно модернизированы, но все так же основаны на принципах Векслера.


Какова же судьба магнита-гиганта? Он частично демонтирован вместе с ускорителем. Перевезти его из Объединенного института просто невозможно. За более чем полвека под весом магнита здание деформировалось. Поэтому если начать разбирать конструкцию для дальнейшей транспортировки, институт просто-напросто рухнет. Планируется оставить магнит на месте и превратить его в музейный экспонат. Как вариант рассматривается и совместное с французскими учеными строительство нового ускорителя на основе старого. Внутрь магнита-гиганта поместят несколько современных магнитов, а «старейшина» послужит для них биологическим щитом.



В настоящее время на ускорителе ведутся исследовательские работы по:

Поиску новых методов производства энергии;

Открытию инновационных возможностей для утилизации атомных отходов;

Достижению стойкости микросхем к воздействию тяжелых ионов.


Как уже и упоминалось, на сегодняшний день побить рекорд советских ученых еще никому не удалось. Но попытки есть. Так, руководство главного ядерного центра Индии сделало заявление о том, что собирается установить мощнейший и крупнейший постоянный магнит на юго-востоке страны, в провинции Тамил Наду. Предположительно, он будет весить более 50 000 тонн. Использовать гигант планируют в нейтринной подземной обсерватории. Ее строительство одобрено властями Индии еще в 2010 году. Именно в ней индийские ученые собираются досконально изучить нейтрино, «добытые» в ходе экспериментов на ускорителе. Особый интерес для разработчиков проекта представляет способность нейтрино переходить из одной формы в другую.


А пока индийская обсерватория существует лишь на бумаге, дубненский магнит прочно занимает заслуженное место в Книге рекордов Гиннеса.


Для создания сверхмощных магнитных полей необходимы сверхнизкие температуры


Центр управления экспериментами с высоты птичьего полета


Центр управления экспериментами в лаборатории NHMFL

Пока открыто всего десять таких звезд. Сила поля у этой звезды составляет 100 млрд Тл (в международной системе единиц магнитное поле измеряется в теслах). Для сравнения — у Земли всего 0,00005 Тл. Вряд ли мы когда-нибудь создадим магнит сопоставимой с магнетаром мощности. Но это не значит, что мы не пытаемся. Причины, по которым ученые упорно пытаются построить все более и более мощные магниты, варьируются от «а что будет, если?..» до реальной необходимости улучшить медицинское проекционное оборудование.

Рекорд пока принадлежит специалистам из Национальной лаборатории высоких магнитных полей (NHMFL), расположенной в городе Таллахасси (Флорида). В декабре 1999 года они запустили гибридный магнит. Он весит 34 т, высота его — почти 7 м, и он может создать магнитное поле в 45 Тл, что примерно в миллион раз больше, чем у Земли. Этого уже достаточно, чтобы свойства обычных электронных и магнитных материалов сильно изменились.

Этот магнит, разработанный NHMFL, представляет собой очень важную веху в строительстве МКС, считает руководитель лаборатории Джек Кроу.

Это вам не подкова

Если вы представили себе гигантскую подкову, вас ждет разочарование. Флоридский магнит (см. фото сверху) фактически представляет собой два, работающие в системе. Внешний слой — это сверхохлажденный, сверхпроводящий магнит. Он самый большой из когда-либо созданных такого рода. Его все время охлаждают до температуры, близкой к абсолютному нулю. Используется для этого система со сверхтекучим гелием — единственная в США, специально созданная для охлаждения данного магнита. А в центре хитрой штуковины заключен массивный электромагнит, то есть очень большой резистивный магнит.

Несмотря на гигантские размеры системы, построенной в NHMFL, площадка для экспериментов чрезвычайно мала. Обычно эксперименты проводят над объектами размером не больше кончика карандаша. При этом образец заключают в бутылочку, вроде термоса, чтобы сохранить низкую температуру.

Когда материалы подвергаются воздействию сверхвысоких магнитных полей, с ними начинают твориться очень странные вещи. Например, электроны «танцуют» на своих орбитах. А когда напряженность магнитного поля превышает 35 Тл, свойства материалов становятся неопределенными. Например, полупроводники могут менять свойства туда-сюда: в один момент проводить ток, в другой — нет.

Кроу говорит, что мощность флоридского магнита в течение пяти лет будет постепенно увеличена до 47, затем 48 и в конечном счете до 50 Тл, а результаты исследований уже превзошли самые смелые его ожидания: «Мы получили все, на что надеялись, и гораздо больше. Наши коллеги теперь одолевают нас просьбами предоставить им возможность тоже экспериментировать».

Применение в медицине

В то время как NHMFL концентрирует свои усилия на «чистых» исследованиях, большая часть разработок в сфере мощных магнитов продиктована необходимостью развития медицинской техники. Институт мозга при Университете штата Флорида утверждает, что ему принадлежит самый большой магнит из всех используемых в томографии. Этот 24-тонный «бегемот» может обнаружить в мозгу и позвоночнике длинный список болезней и изъянов. Его мощность 11,7 Тл, что в 234 тысячи раз больше, чем у Земли.

Чем сильнее магнитное поле, тем точнее и детальнее результаты, которые можно получить при использовании технологий вроде ядерного магнитного резонанса (ЯМР). Один из текущих проектов призван показать влияние паралича и лекарств, применяемых для его излечения, на клетки мозга. Исследование функционального ЯМР (фЯМР) покажет, сколько лекарства в точности потребили какие клетки.

Технологии ЯМР и фЯМР работают так. Сначала при помощи мощного магнитного поля ядра клеток выстраиваются в ряд, как иглы компаса. Затем менее мощный магнит поворачивает ядра. При этом вырабатывается измеримый сигнал, который фиксируется и при помощи компьютеров преобразуется в трехмерное изображение. Чем мощнее магниты, тем больше ядер среагируют на сигнал. В отличие от рентгеновских лучей, которые показывают кости и твердые ткани, ЯМР концентрируется на тканях мягких.

Все расширяющееся использование магнитов в медицине вызывает естественный вопрос — а полезно ли это? В последние годы было много споров на тему влияния близлежащих линий электропередач на людей и животных. Но изза того, что сила магнитного поля падает очень быстро, человек, живущий в какихнибудь 15 м от линии электропередач, получает всего два миллигаусса (мГс). Последние исследования говорят в пользу версии, что это не оказывает никакого влияния на человека.

С другой стороны, не обнаружено и абсолютно никакого положительного влияния от «нательных» магнитов, которые часто продают как универсальное средство от всех болезней — в том числе, артрита. Но миллионы людей по всему земному шару это не останавливает.

Самый мощный магнит на Земле был создан в Лосс-Аламосской национальной лаборатории, США. Он может генерировать магнитное поле в 100.75 Тл (Тесла), что в 2 миллиона раз мощнее магнитного поля Земли, которое составляет 0.00005 Тл. Но это значение — ничто по сравнению с могущественной силой природы, которая создала в глубинах космоса самый мощный магнит, когда-либо обнаруженный человеком.

Этот магнит — одна из разновидностей нейтронной звезды, которая называется магнетаром. Нейтронная звезда рождается, когда массивная звезда, накопив под конец своей жизни слои из различных химических элементов взрывается вспышкой сверхновой. Остающееся после взрыва ядро под действием сил гравитации сжимается настолько сильно, что электроны буквально «входят» в атомные ядра, превращая протоны в нейтроны. В результате, почти вся новородившаяся звезда состоит из нейтронного ядра, а сверху его окружает очень тонкая оболочка из электронов.

Диаметр нейтронной звезды составляет около 20 км — ничто по космическим масштабам. Сколлапсировавшая же звезда могла обладать радиусом несколько миллионов километров, поэтому получившееся в результате вещество обладает невообразимой плотностью — в миллионы раз плотнее воды: одна капля такого вещества весит десятки миллионов тонн. Столь резкий переход от большого размера к малому увеличивает частоту вращения нейтронной звезды и её магнитное поле до умопомрачительных значений.

Нейтронные звезды, обладающие особо сильным магнитным полем и называют магнетарами.

Это интересно: магнитное поле магнетаров настолько мощное, что способно вытянуть все железо из человеческой крови с расстояния в несколько тысяч километров.

Данный тип сколлапсировавших звезд был теоретически открытии в 1992 году, но доказать существование магнетаров на практике удалось лишь в 1998 году, когда один из магнетаров проявил себя мощной вспышкой рентгеновского излучения в созвездии Орла. С развитием техники удалось подтвердить существование в нашей галактике десятков магнетаров, но один из них — SGR 1806-20 – обладает необычайно мощным магнитным полем, составляющим 10 11 Тл (десять в одиннадцатой степени), что в квадриллионы раз сильнее магнитного поля Земли. Дополнительные изучения показали, что магнетар находится на удалении в 50 000 световых лет от Земли, его диаметр вряд ли превышает 20 км, один оборот вокруг своей оси он совершает за 7,5 секунд, а скорость его вращения составляет 30 000 км/ч!

28 декабря 2004 года SGR 1806-20 влияние двадцатикилометрового магнетара, удаленного 50 000 световых лет от Солнечной системы, сполна почувствовала наша Земля – её окрестностей достигло гамма-излучение от взрыва на поверхности магнетара. Подсчитано, что меньше чем за полсекунды SGR 1806-20 выделил количество энергии, эквивалентное количеству энергии, выделяемого Солнцем за 100 000 лет. Если бы человек мог видеть в гамма-диапазоне, то взрыв на поверхности SGR 1806-20 в ночном небе был бы ярче полной луны. Находись магнетар находился в пять раз ближе к Земле — наш озоновый слой был бы уничтожен. Но это не означает, что подобного не может произойти в любую секунду – ведь ближайший от Земли магнетар находится на расстоянии 13 000 световых лет.

Для создания магнитных устройств ученые в свое время использовали разные материалы, включая даже такие экзотические как платина. Однако мощность неодимового магнита оставляла желать лучшего вплоть до 1982 года, когда были открыты и применены потрясающие свойства неодима. С тех пор прошло всего несколько десятилетий, но уже сейчас можно сказать, что этот редкоземельный элемент буквально взорвал технологические процессы разных отраслей промышленности. Прорыв удалось осуществить, благодаря сразу нескольким достоинствам сплава.

Характеристики магнитных изделий

Во-первых, сегодня мы с полной уверенностью можем сказать, что из всего семейства подобных устройств самые мощные - неодимовые магниты. Во-вторых, фантастическая сила сцепления - далеко не единственное достоинство такого рода изделий. Чего только стоит их знаменитая устойчивость к размагничиванию. В то время, как ферритовые аналоги за 20-30 лет практически полностью утрачивают свои характеристики, неодим становится слабее только на пару процентов. А значит, срок его эксплуатации практически неограничен. Все, кому повезло купить мощные неодимовые магниты, смогли убедиться в их внушительных характеристиках.

Помимо прочего, на силу сцепления магнитной продукции серьезно влияют её массогабаритные параметры. Другими словами, чем массивней изделие, тем большая сила потребуется, чтобы оторвать его от железной поверхности. Даже диск 50х30, который весит меньше полкилограмма, не каждый сможет отсоединить от стальной плиты, ведь для этого потребуется усилие сравнимое с подъемом 116 кг. Поэтому все, кто решил купить большой неодимовый магнит, должны помнить о мерах предосторожности в обращении с ним. Старайтесь хранить предметы из неодима подальше от массивных железных вещей, не давайте их детям, не подвергайте грубому механическому воздействию - материал достаточно хрупкий.

Магниты от пары грамм до нескольких килограмм и сцеплением в несколько центнеров Вы сможете найти в каталоге на сайте .



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...