Северное сияние.

Введение

Продолжительность солнечного сияния регистрируется прибором гелиографом, который автоматически отмечает промежутки времени, в продолжение которых светило солнце. В настоящее время на сети метеорологических станций Союза ССР основным прибором для записи солнечного сияния является гелиограф обыкновенной или универсальной модели. Прожоги на ленте по гелиографу универсальной модели начинаются при достижении напряжения радиации 0,3 - 0,4 кал/см.

Обычно гелиограф устанавливается на высоте 2 м от поверхности земли на открытом месте, в любое время года освещаемом лучами солнца от восхода до захода.

Характеристика солнечного сияния

Большая протяженность территории с севера на юг (от 62 до 52° с. ш.), наличие почти меридионально направленных Уральских гор обусловливают большое разнообразие в распределении солнечного сияния. В общем продолжительность солнечного сияния по мере продвижения с севера на юг возрастает. Зимой продолжительность солнечного сияния с увеличением широты убывает быстрее, чем летом, как из-за уменьшения длительности дня, так и из-за возрастания облачности с широтой.

Наибольшая за год продолжительность солнечного сияния наблюдается в июне, наименьшая - в декабре. В отдельных районах наибольшее число часов солнечного сияния приходится на июль.

Таблица 4.4. Продолжительность солнечного сияния.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
Курган-Вороновка

4.2. Температура воздуха и почвы

4.2.1. Температура воздуха

Сведения о температуре воздуха приводятся на основе показаний жидких термометров, помещенных в психометрическую будку на высоте 2 м.

Собственная температура различных поверхностей, расположенных открыто, измеренная одновременно в различной степени отличается от температуры, измеренной в будке в тот же момент.

Таблица 4.5. Средняя месячная и годовая температура воздуха.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
-18,5 -16,7 -10 2,9 11,8 16,8 18,8 16,1 10,4 2,0 -7,8 -15,6 0,8

Таблица 4.6. Средняя минимальная температура воздуха.

I II III IV V VI VII VIII IX X XI XII Год
Курган, город
-23,4 -22,1 -15,7 -2,4 4,9 9,8 12,3 10,2 5,3 -1,8 -11,7 -20,4 -4,6

4.2.2.Температура почвы


Наблюдение за тепловым состоянием почвы производится от поверхности до глубины 3,2 м.

Средняя месячная максимальная и минимальная температура поверхности почвы

Температура поверхности почвы измеряется жидкостными термометрами: ртутными (срочные и максимальные) и спиртовыми (минимальные).

Таблица 4.7. Средняя месячная максимальная и минимальная температура поверхности почвы.

Температура поверхности почвы I II III IV V VI VII VIII IX X XI XII Год
Курган
Средн. -20 -17 -10 -8 -16
Сред. Max -14 -10 -1 -4 -11
Сред. Min -26 -25 -18 -5 -4 -14 -23 -7

Таблица 4.8 . Глубина промерзания почвы (см)


4.3.1. Ветер

Ветровой режим в умеренных широтах СССР формируется под влиянием основных климатических центров действия атмосферы (циклонов и антициклонов), стационирующих над Северной Атлантикой и над континентом Евразии.

Географическое распределение различных направлений ветра и его скоростей определяется сезонным режимом барических образований. Зимой под влиянием западного отрога азиатского антициклона наблюдается увеличение южных и юго-западных ветров.

Летом режим ветра над территорией Уральского УГМС связан преимущественно с воздействием отрога азорского антициклона. Распределение повторяемости направлений ветра в этот период имеет очень сложный характер. Преобладающими направлениями ветра являются северное, северо-западное и западное, но процент их от числа ветров всех направлений невелик (15-25% случаев). Летом нередко отмечается по два преобладающих направления, либо с севера и северо-запада, либо с севера и запада.

В целом за год на большей части территории преобладают ветры юго-западного направления, но из-за сложности рельефа и почти меридионального (вдоль 60° в. д.) расположения Уральского хребта нередко преобладающим направлением в отдельных районах является южное или западное.

Средние многолетние значения скорости ветра являются хорошими сравнительными характеристиками. Несмотря на сложность и разнообразие рельефа на территории прослеживается в определенных физико-географических условиях характерная именно для этих условий повторяемость скоростей ветра. Для большей части территории характерны слабые и умеренные ветры (от 0 до 5 м/сек). Повторяемость скоростей ветра 0-5 м/сек составляет 75-90% случаев, причем слабые ветры (0-1 м/сек) составляют 20-35% случаев, а в долинах, расположенных между холмами, слабые ветры составляют 40% случаев. По характеру кривых повторяемостей выделяются группы станций в зависимости от степени защищенности (открытые, полузащищенные и защищенные), а также станции, ветровой режим которых определяется особенностями рельефа местности.

Наибольшая повторяемость слабых и умеренных ветров (до 5 м/сек) приходится на летние месяцы, а скоростей ветра 6- 10 м/сек - на холодное время года или переходные сезоны. Скорости ветра >10 м/сек наблюдаются сравнительно редко, и повторяемость большей частью составляет менее 8%.

Таблица 4.9. Средняя месячная и годовая скорость ветра (м/сек).

Таблица 4.10. Повторяемость направления ветра и штилей (%).

Месяц С СВ В ЮВ Ю ЮЗ З СЗ Штиль
Курган, город
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
Год

Примечание: 1. Повторяемость ветра вычислена в процентах от числа случаев ветра. 2. Повторяемость штилей приводится в процентах от общего числа случаев наблюдений.


4.4. Влажность воздуха, атмосферные осадки и снежный покров

4.4.1. Влажность воздуха

Влажность воздуха имеет большое значение для многих отраслей народного хозяйства: для сельского хозяйства, различных отраслей промышленности.

Водяной пар является неустойчивой составной частью атмосферы. Содержание его сильно меняется в зависимости от физико-географических условий местности, времени года и циркуляционных особенностей атмосферы, состояния поверхности почвы и т. п. О влажности воздуха можно судить по величине упругости водяного пара, относительной влажности и недостатку насыщения воздуха водяным паром.

Величина упругости водяного пара характеризует влагосодержание воздуха и подвержена значительным изменениям вследствие большой неоднородности рельефа территории, изменения характера и состояния подстилающей поверхности.

Годовой ход упругости водяного пара очень сходен с годовым ходом температуры воздуха. По этой причине упругость водяного пара в общем увеличивается с севера на юг (зональное распределение) почти в течение года, следуя распределению температуры воздуха. Исключение составляют горные районы, где широтные зоны смещаются на юг.

Относительная влажность воздуха, характеризующая степень насыщения воздуха водяным паром, имеет также своеобразное распределение. Влияние циркуляционных особенностей, а также формы рельефа, близости водоемов, лесных массивов, заболоченных почв и т. д. сказывается на величине изменения относительной влажности наиболее отчетливо. В годовом ходе распределение относительной влажности воздуха наибольший интерес представляет в дневное время, когда наблюдается относительная влажность, близкая к минимуму и наиболее интенсивное испарение. В ночные часы относительная влажность обычно высока в течение всего года.

Таблица 4.11. Средняя месячная и годовая относительная влажность воздуха (№).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка

Величина недостатка насыщения воздуха водяным паром распределяется в годовом ходе от тех же причин, что и относительная влажность. В соответствии с высокой относительной влажностью воздуха и низкими температурами минимальным недостаток насыщения воздуха водяным паром оказывается в ноябре - январе, когда средняя величина его не превышает 0,5 мб. Максимальные значения недостатка насыщения наблюдается в июне. Средняя величина его в горных районах составляет 6-7 мб, а на прилегающих равнинах - 8 - 10 мб, увеличиваясь с севера на юг. Значительный недостаток насыщения отмечается в июле, августе. С сентября с увеличение относительной влажности и понижением температуры воздуха недостаток насыщения уменьшается.

Таблица 4.12. Средний месячный и годовой дефицит насыщения (гПа).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка 0,4 0,4 0,7 3,3 8,1 8,5 6,9 4,3 2,1 0,7 0,4 3,8

4.4.2. Атмосферные осадки

Количество и распределение осадков в течение всего года определяется циклонической деятельностью атмосферы и особенностями рельефа рассматриваемой территории. Меридиональная направленность Уральских гор обуславливает увеличение осадков на западных наветренных склонах и уменьшает их на восточных подветренных.

По степени увлажнения горная часть территории и склоны гор, особенно западная, относятся к зоне избыточного увлажнения. Районы, примыкающие непосредственно к склонам гор, относятся к зоне достаточного увлажнения.

Таблица 4.13. Среднее количество осадков, приведенных к показателям осадкомера (мм).

Станция I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка

Годовые суммы осадков состоят из твердых, смешенных и жидких. В среднем на доля твердых осадков на рассматриваемой территории приходится 20 - 35 %, на доля жидких - 50 - 75 % и на доля смешенных (мокрый снег, снег с дождем и т.д.) -10 -15% от годовой суммы. Длительность периода с тем или иным видом осадков на территории изменяется сравнительно мало, т.к. вид осадков в основном зависит от общеклиматических факторов.

Таблица 4.14. Твердые (т), жидкие (ж) и смешанные (с) осадки в процентах от общего количества.

(-) – пол процента или менее

Годовой ход осадков по всей территории имеет общие черты, свойственные континентальному климату: основное количество осадков выпадает в теплое время года, причем переход от малых зимних осадков к значительным совершается в большинстве районов быстро особенно в Зауралье.


4.4.3. Снежный покров

Зима в пределах рассматриваемой территории - самый продолжительный из всех сезонов года. Из общего количества осадков, выпадающих за год. 20-35% составляют твердые осадки, содержащие основное количество запасов воды. Именно снежный покров создает основной источник для весеннего питания рек. Снежный покров является одним из важнейших факторов, влияющих на формирование климата.

Все физико-географические процессы зимой, в том числе и температурный режим, промерзание почвы, условия перезимовки озимых культур, накопление влаги в почве и т. д., зависят как от высоты, так и от характера залегания снежного покрова.

Характер залегания снежного покрова в сильной степени зависит от скорости ветра и условий открытости или защищенности места.

Таблица 4.15. Средняя декадная высота снежного покрова по постоянной рейку (см).

Продолжение таблицы.

Таблица 4.16 . Плотность снежного покрова по снегосъемкам на последний день декады (г/см 3).

Продолжение таблицы.

4.5. Облачности и атмосферных явлений

Режим облачности и атмосферных явлений (туманы, метели, грозы, град) на рассматриваемой территории в основном обуславливаются особенностями циррсуляции атмосферы в отдельные сезоны и влияние рельефа.

Рассматриваемая территория отчетливо подразделяется на зоны с различной степенью увлажнения. Такое разнообразие природных ландшафтов при значительной неоднородности рельефа приводит к большому разнообразию в распределении по территории облачности и атмосферных явлений.

4.5.1. Облачность

Средний многолетний режим облачности под влиянием циркуля цион н ых процессов, определяющих преобладающее направление воздушных масс и их влагосодержание, а также под влиянием воздействия подстилающих поверхностей.

Под влиянием изменения притока солнечной радиации и характера подстилающих поверхности меняются процессы по сезонам, в соответствии с которыми изменяется количество облачности и форма облаков.

В осенние месяцы и в первую половину зимы, когда наиболее развит циклонический тип погоды, сплошная облачность покрывает весь район. В пониженной части Среднего Урала общая облачность уменьшается до 80%. В предгорьях и горных районах облачность заметно возрастает, причем в теплое время больше сказывается влияние высоты места, чем формы рельефа. В Зауралье в течение года наблюдается небольшое число случаев низкой облачности (около 7%),а в январе и феврале не отмечено ни одного случая с такой облачностью.

Образование низкой облачности в сложных орографических условиях в значительной степени зависит от направления ветра.

Таблица 4.17. Число ясных и пасмурных дней по общей и нижней облачности.

Число дней Облачность I II III IV V VI VII VIII IX X XI XII Год
Курган-Вороновка
Ясная Общая 3,7 4,4 4,6 4,1 2,5 2,7 2,5 3,7 2,3 1,7 2,8 3,4
Нижняя 13,4 16,6 15,8 13,6 11,7 9,9 9,7 11,6 9,1 8,3 9,9 11,5
Пасмурная Общая 10,1 8,1 10,0 9,0 9,5 7,5 9,6 8,2 11,4 15,3 13,7 13,2
Нижняя 1,4 1,4 2,1 2,1 2,4 1,2 2,4 2,4 3,7 4,5 5,0 3,9

Таблица 4.18. Повторяемость ясного (0-2), полуясного (3-7) и пасмурного (8-10) состояния неба по общей и нижней облачности (%).

Облачность, баллы (от-до) I II III IV V VI VII VIII IX X XI XII
Курган-Вороновка
Общая
0-2
3-7
8-10
Нижняя
0-2
3-7
8-10

4.5.2. Атмосферные явления

4.5.2.1. Туманы

Распределение туманов на рассматриваемой территории отличается значительной пестротой. Это объясняется большим разнообразием как физико -географических условий территории, так и особенностями атмосферной циркуляции.

Основной причиной образования туманов является выхолаживание воздуха от подстилающей поверхности, обусловленное эффективным излучением. Таким образом, в результате охлаждения земной поверхности путем излучения, а также в следствии континентального климата, на всей территории в основном преобладает радиационный туман.

В условиях крупного города зимой образуется много радиационных туманов. Максимум числа дней с туманом приходится на январь. Оп связан с тем, что в холодный период при сильных морозах промышленные дымы, копоть играет роль ядер конденсации и при дополнительном поступлении водяного пара существенно способствуют возникновению тумана.

Зимой продолжительность туманов обычно больше, чем летом.

Таблица 4.19. Среднее число дней с туманом.

I II III IV V VI VII VIII IX X XI XII X-III IV-IX Год
Курган-Вороновка

Таблица 4.20. Наибольшее число дней с туманом.

I II III IV V VI VII VIII IX X XI XII Период Год
X-III IV-IX
Курган-Вороновка

4.5.2.2. Метели

На рассматриваемой территории в зимний период, когда происходит усиление циклонической деятельности, метели - обычное явление. В зависимости от физико-географических и циркуляционных условий и общей защищенности местности в одних районах повторяемость и интенсивность больше, в других повторяемость их меньше и они слабее.

Основная роль в синоптических процессах, вызывающих метели, принадлежит циклонам. При прохождении циклонов усиливается ветер, при котором возникают метели. Они могут возникать при циклонах различного происхождения, но чаще всего бывают связаны с прохождением южных и западных циклонов, которые вызывают кратковременное повышение температуры воздуха, усиление ветра и сильные метелиОсобенно сильное развитие метелей происходит при приближении циклона к усиливающемуся антициклону, когда значительно увеличиваются горизонтальные барические градиенты и возрастает скорость ветра. Образование больших барических градиентов впереди циклона обычно приводит к расширению зоны метелей, так как при усилении ветра поземки и низовые метели начинаются еще задолго до прохождения теплого фронта.

Продолжительность метелей, как и число дней с метелью, оказывается наибольшей на открытых склонах, возвышенностях и вершинах гор.

Поземки чаще наблюдаются в области антициклона. Они обычно отмечаются при более низких температурах, когда снег сухой. В этих случаях достаточно небольшого усиления ветра, чтобы возникла поземная метель.

Среднее число дней с поземком меняется в зависимости как от формы рельефа, состояния снежного покрова, так и от общей защищенности местности. Больше всего поземков бывает в степной части территории и на открытых возвышенных местах (более 15 дней в год).

Зимой в условиях преобладания западного отрога азиатского антициклона наблюдается увеличение в Зауралье - юго-западных и западных ветров, при которых чаще всего наблюдаются метели. Очень редко метели отмечаются при северных ветрах.

Скорость ветра при метелях еще в большей степени, чем направление зависит от физико-географических условий и общей защищенности местности. Метели наблюдаются как при малых, так и при больших скоростях ветра.

Таблица 4.21. Среднее число дней с метелью.

4.5.2.3. Грозы

Образование гроз связано с прохождением холодных фронтов, с процессами конвенции и мощными восходящими потоками в атмосфере.

Термические внутримассовые грозы бывают редко. Возникновение гроз тесно связано с условиями орографии.

Наиболее часто грозы возникают при наличии малоподвижного арктического антициклона над районом среднего Урала. Эти грозы образуются как при прохождении фронта, так и внутри воздушной массы.

На рассматриваем территории грозы наблюдаются преимущественно с апреля по сентябрь.

Таблица 4.23. Среднее число дней с грозой.


Град

Град наблюдается преимущественно в теплый период. Обычно он выпадает пятнами. Редко град выпадает полосами, протяженностью в несколько километров и шириной до 1-1.5 км. Выпадение града обычно сопровождается ливневыми осадками, грозами, иногда шквалистым ветром. Град во время грозы чаще всего выпадает при вторжениях холодных масс воздуха и бывает нередко крупных размеров.

Выпадение града связано с прохождением областей пониженного давления, неустойчивостью воздушных масс и местными орографическими факторами. На увеличение или уменьшение числа случаев выпадения града большое влияние оказывают возвышенности и горы, а также крупные водоемы, лесные массивы. В равнинных условиях даже небольшие возвышенности влияют на увеличение числа случаев выпадения града.

Таблица 4.25. Среднее число дней с градом.

IV V VI VII VIII IX X Год
Курган-Вороновка
0,1 0,1 0,3 0,4 0,3 0,1 - 1,3


СОЛНЕЧНОЕ СИЯНИЕ, время, в течение которого прямые солнечные лучи освеща­ют земную поверхность. На метеорологических станциях про­должительность С, с. измеряется гелиогра­фом. Зависит от дл. дня и облачности, выражается в часах или в процентах от наибольшей возможной продолжительно­сти. На террит. обл. наименьшее число часов С. с. за год (1000-1200) наблюдается на побережье Карского моря, что объясня­ется положением в высоких широтах, боль­шой облачностью и частыми туманами. К Ю. продолжительность С. с. увеличивает­ся и составляет в р-не Сев. полярного кру­га 1500 ч, в Сред. Приобье - 1700 ч, в юж. р-нах - 2020 ч. Нек-рое уменьшение про­должительности С. с. отмечается в пром. городах из-за большой загрязнённости воз­духа. Наиб. число часов С. с. отмечается в июле между 60° и 69° с. ш. - 290-320 ч (45-55% от возможной величины), что обуслов­лено гл. обр. увеличением длины дня в лет. время в высоких широтах. К Ю. от 60° с. ш. число часов С. с. уменьшается до 270-290. Наименьшая продолжительность С. с. от­мечается в декабре. КС. от Сев. полярного круга в это вр. наблюдается полярная ночь, к Ю. число часов увеличивается: на Ю. ЯНАО -10 ч, в Сред. Приобье - 20 ч, на Ю. обл. - 40 ч, Весной число часов С. с. в 2-3 раза больше, чем осенью, что связано с го­довым ходом облачности, В теч. всего года продолжительность С. с. в дополуден. часы меньше, чем в послеполуденные. Лит.: Солнечная радиация, радиационный баланс и солнечное сияние: Справочник по кли­мату СССР. Вып. 17.4.1.-Л., 1966. О. В. Соромотина

  • Орлецы - Орлецы - небольшие круглые ковры с изображением одноглавого орла, имеющего сияние вокруг головы и парящего над городом. Стоять на О. при богослужении дозволяется только архиереям, которые вводятся на...
  • Поправка часов - Поправка часов - величина, которую нужно придать к показанию часов, чтобы получить действительное время. Отрицательна - когда часы идут вперед, положительна - когда они отстают. Изменение поправки час...
  • Прабха - Прабха - (санскр. Prabh = "проблеск", сияние, заря, рассвет) - в позднейшей индийской мифологии (напр. в Матсья-пуране) жена Солнца (Вивасвата), от которого у нее был сын Прабхата. По другим источника...
  • БЕРИНГОВ ПРОЛИВ - БЕРИНГОВ ПРОЛИВ, между материками Евразия и Северная Америка. Соединяет Северный Ледовитый океан с Тихим океаном. Длина 96 км, наименьшая ширина 86 км, наименьшая глубина 36 м. Назван по имени В. Бери...
  • ВИЛЬКИЦКОГО ПРОЛИВ - ВИЛЬКИЦКОГО ПРОЛИВ, между п-овом Таймыр и о. Большевик (Северная Земля), соединяет моря Карское и Лаптевых. Длина 104 км, наименьшая ширина 55 км, наименьшая глубина 32 м. Назван по имени Б. А. Вильки...
  • "ВОСТОК" - "ВОСТОК", российская полярная станция в районе Южного геомагнитного полюса в Восточной Антарктиде, на высоте 3488 м, в 1250 км от берега. Основан в декабре 1957. Полюс холода Земли (ок. -90 °С). Назва...
  • ДОГОВОР ОБ ОБРАЗОВАНИИ СССР - ДОГОВОР ОБ ОБРАЗОВАНИИ СССР, юридически закрепил объединение 4 республик - РСФСР, УССР, БССР и ЗСФСР - в одно союзное государство (Союз ССР). Принят 29.12.1922 конференцией полномочных делегаций респу...
  • МАТОЧКИН ШАР - МАТОЧКИН ШАР, пролив между Северным и Южным о-вами Новой Земли. Соединяет Баренцево и Карское моря. Длина 98 км, наименьшая ширина ок. 0,6 км, наименьшая глубина 12 м. Б.ч. года покрыт льдом.
  • ЯНЕНКО Николай Николаевич - ЯНЕНКО Николай Николаевич (1921-1984), математик, академик АН СССР (1970), Герой Социалистического Труда (1981). Труды по многомерной дифференциальной геометрии, нелинейным задачам математической физи...
  • Шри - Шри (санскрит. r - великолепие, красота, блеск, счастье, богатство, величие) - 1) в индийской мифологии (уже в Шатапатха-брахмане) олицетворение красоты или счастья; 2) в позднейшей мифологии супруга...
  • двенадцать - двенадцать - число лет порабощения (Быт 14.4), число князей, сыновей Измаила (Быт 17.20), число сыновей Нахора (Быт 22.21-22,24), число колен Израиля (Быт 49.28), число источников Елима (Исх 15....
  • семьдесят - семьдесят - число сыновей Сима, Хама и Иафета (Быт 10.2-4,6-8,11,13-18,21-29), число душ, перешедших с Иаковом в Египет (Быт 46.27; Исх 1.5; Вт 10.22), число дней оплакивания Израиля (...
  • сорок - сорок - число дней наводнения (Быт 7.17), число дней от остановки ковчега до выпускания ворона (Быт 8.6), возраст Исаака, когда он женился (Быт 25.20), возраст Исава, когда он взял Иег...

Продолжительность солнечного сияния представляет собой суммарное число часов в течение суток, месяца, года, когда Солнце в данной местности находится над и не закрыто облаками. Она зависит от широты места, долготы дня и количества облаков.

В годовом ходе минимум продолжительности солнечного сияния на всей территории приходится на декабрь, максимум на июль; иногда он смещается на июнь, в зависимости от годового хода . На Дальнем Востоке максимум отмечается в марте, поскольку летом из-за большого числа пасмурных дней в условиях летнего муссона продолжительность солнечного сияния резко снижается (см. таблицу, м. Лопатка).

Для распределения продолжительности солнечного сияния по территории России в осенне-зимний период характерно увеличение ее с севера на юг. Наибольшие значения отмечаются на юге Приморского края (до 200 часов в месяц). В весенне-летний период распределение продолжительности солнечного сияния по территории представляет собой достаточно сложную картину, так как влияние широты перекрывается влиянием облачности. Так, в апреле максимальные значения продолжительности солнечного сияния (более 300 часов) имеют место на северо-западе Республики Саха(Якутия), в то время как на этих же широтах Европейской части России, где сильно влияние Атлантики и, следовательно, увеличена облачность, продолжительность солнечного сияния составляет 180 часов и менее.

В июле уменьшение продолжительности солнечного сияния отмечается вдоль северного и восточного побережий также из-за увеличения облачности. На севере это связано с усилением циклонической деятельности на полярном фронте, на востоке – с влиянием муссона. На , и Курильских островах облачность и снижают продолжительность солнечного сияния до 120–160 часов. Максимальная продолжительность солнечного сияния в июле наблюдается в северных районах Восточной Сибири и на юге европейской части России (более 320 часов), что составляет 50–70% от возможной. При этом продолжительность солнечного сияния в день с солнцем составляет в среднем 10–11 часов.

В целом за год наибольшее число часов солнечного сияния на территории России характерно для , Амурской области и юга Приморского края (более 2400–2600 часов), наименьшее – для северных прибрежных районов, юга Камчатки и Курильских островов (1200 часов и менее).

В условиях горного рельефа продолжительность солнечного сияния резко уменьшается, особенно в долинах, котловинах и на защищенных склонах гор. Только для станций, расположенных на открытой местности, отмечается увеличение продолжительности солнечного сияния с широтой. Разница в продолжительности солнечного сияния между станциями, находящимися в горных долинах и на ровном открытом месте, может составлять 200 часов и более.

О солнечном сиянии и его продолжительности

По материалам ж-ла "Наука и жизнь"
Кандидат географических наук
В. АЛЕКСЕЕВ

Продолжительность солнечного сияния - такой же, только, может быть, реже упоминаемый метеорологический показатель, как температура воздуха, влажность, облачность, величина и продолжительность атмосферных осадков. Солнечное сияние - это освещенность земной поверхности прямыми лучами солнца, не закрытого от нас плотными облаками. Это часть потока солнечной энергии так и называется "прямой радиацией".
Прямую солнечную радиацию измеряют с помощью специального прибора, актинометра (буквально "лучемер"). Это небольшая труба, направленная строго на солнечный диск. есть и другой способ: измерив величину общей радиации, исключить из нее ту часть, которая обусловлена рассеянием, а для этого затенить приемник прибора, измеряющего величину всего потока солнечной энергии, который называется пиранометром.
Продолжительность солнечного сияния лучи солнца способны записать сами, если сфокусировать их на специально разграфленной по времени суток ленте, установленной в фокусе стеклянного шара. Прибор этот - гелиограф . Им снабжены все метеостанции мира. Устроен гелиограф просто: чугунная подставка, в которой крепится стеклянный шар и устанавливается лента, ориентируется в соответствии с географической широтой места, взаиморасположением стран света. Гелиограф стоит неподвижно, а солнце перемещается по небосводу, и его лучи, пройдя через стеклянный шар, оставляют на ленте черную прорезь прожога - дымящийся след своего движения по небу с момента восхода до заката.
Если солнце сияет весь день без перерыва, число часов солнечного сияния практически совпадает с продолжительностью светового дня. Так бывает в ясные дни. Но если хоть на десять минут меркло солнце, закрытое набежавшими облаками, прожог на ленте гелиографа прерывается. В конце дня можно подвести итог - сколько часов и минут поступал от солнца поток прямой радиации. Величина продолжительности солнечного сияния - важная характеристика погоды и климата, изменяющаяся в зависимости от географической широты (вслед за изменением длительности светового дня) и от условий циркуляции атмосферы. смена воздушных масс, а вместе с ней облачности и степени прозрачности атмосферы то приближает реально наблюдающуюся продолжительность сияния солнца к возможной при идеальных условиях величине, то удаляет от нее.
В полярных областях суточная продолжительность солнечного сияния может составлять все 24 часа. Эффект круглосуточного дня поразителен - несмотря на частое ненастье летом, в Заполярье число часов солнечного сияния очень велико. Следствие этого - значительный суммарный приход лучистой энергии, не уступающий в летние месяцы экваториальным величинам. Годовая сумма этого тепла в районе Северного полюса втрое меньше, чем на экваторе, но месячные суммы в мае, июне, июле примерно одинаковы за счет большей продолжительности солнечного сияния.
Антарктида представляет в этом отношении один из замечательнейших парадоксов. На ледяной материк, несмотря на полугодовую полярную ночь, поступает в среднем за год около 120 килокалорий лучистой энергии, почти годовое поступление солнечного тепла в экваториальной зоне. В летние месяцы, при круглосуточном сиянии солнца, холодная Антарктида получает значительно больше тепла, чем экваториальные жаркие страны. Это объясняется большой прозрачностью атмосферы и близким соответствием реально наблюдающихся величин солнечной радиации идеально возможным. Иное дело, что белый щит ледяного покрова почти все это тепло отражает обратно в мировое пространство...
Метеорологи широко применяют этот показатель, который дает возможность представить, в какой степени используются солнечные ресурсы. Сравнивая отношение реальной продолжительности солнечного сияния к возможной в данном месте, можно выявить районы, особенно богатые солнцем.
Одно из самых солнечных мест на территории бывшего СССР - западный берег Крыма, где годовая продолжительность солнечного сияния превышает 3000 часов, а в июле в Севастополе не закрытый облаками солнечный диск господствует на небе в течение 356 часов. Это на несколько часов больше, чем восточнее - в Ялте и Алуште, и на 122 часа больше, чем в более южном черноморском городе Батуми. В то же время в заполярном Верхоянске, близ "полюса холода" северного полушария, продолжительность солнечного сияния в мае точно так же велика, как в Севастополе в июле. Лишь немного меньше она в июне и июле. Годовая сумма часов солнечного сияния в Верхоянске больше, чем в Батуми, и на 400-500 часов больше. чем в Москве.
Конечно, каждый год наблюдаются определенные отклонения (иногда значительные) от этих средних показателей. "Год на год не приходится" - эта истина справедлива и для продолжительности солнечного сияния.

I II III IV V VI VII VIII IX X XI XII год
Севастополь 62 75 145 202 267 316 356 326 254 177 98 64 2.342
Алушта 77 79 146 184 253 299 340 323 261 180 106 73 2.321
Батуми 99 105 126 148 199 235 214 223 201 176 125 107 1.958
Москва 30 58 113 161 242 256 258 218 136 73 32 20 1.597

Продолжительность солнечного сияния в некоторых городах бывшего СССР

I II III IV V VI VII VIII IX X XI XII
Севастополь 25 30 44 56 63 74 82 81 75 57 39 27
Алушта 31 31 44 50 60 71 80 80 76 60 42 30
Батуми 37 37 37 40 47 66 61 56 67 55 46 42

Отношение реально наблюдающейся продолжительности солнечного сияния к возможной (в процентах)

Раздел метеорологии, изучающий солнечную, земную и атмосферную радиацию, называется актинометрией. Ее основная задача - измерение потоков лучистой энергии. Актинометрические данные нужны для научного ведения сельского хозяйства, в строительстве, при проектировании зданий и сооружений, для работы и исследований в области гелиотехники. Солнечная радиация широко используется в лечебных целях в курортологии.

Солнце - источник энергии почти для всех природных процессов на Земле. Энергия, поступающая из глубинных слоев земли, а также излучение, приходящее от звезд, ничтожно малы по сравнению с энергией, поступающей от Солнца.

Рассмотрим некоторые определения, используемые в метеорологии. Энергия, излучаемая солнцем и поступающая на Землю, называется солнечной радиацией . Радиация, (не путать с радиоактивностью - ионизирующим излучением) поступающая в атмосферу и затем на земную поверхность в виде пучка лучей, называется прямой . Часть солнечной радиации, отражающейся от земной поверхности и от облаков, называется отраженной радиацией . Суммарная радиация - это сумма прямой и рассеянной радиации . Состав суммарной радиации меняется в зависимости от высоты солнца, прозрачности атмосферы и облачности. Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца. Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации. Суммарная радиация существенно зависит так же от широты места. С уменьшением широты ее суточные суммы увеличиваются, а амплитуда ее годового хода уменьшается.

На всей территории Приморья наблюдается обычный годовой ход суммарной радиации с минимумом в декабре (3.2-6.0 ккал/см 2 - данные до 1951г.) и максимумом в конце весны - начале лета (9.2-15.4 ккал/см 2). На северных станциях края максимум суммарной радиации приходится на июнь, а при переходе к южным широтам наблюдается смещение его на май.

Если сравнить величины о сезонных значениях суммарной радиации для некоторых пунктов Приморья и Европейской территории России и Украины, расположенных на одной и той же широте, то оказывается, что зимой Владивосток получает больше солнечной радиации, чем города Краснодар и Сочи. Это объясняется тем, что зима в Приморье отличается малой облачностью. Летом же, в Приморье солнце показывается реже, преобладает облачность и частые дожди.

Величины суммарной радиации (ккал/см 2)
для некоторых пунктов Приморского края, России и Украины


Для туристов и отдыхающих на юге Приморья интересна действительная продолжительность солнечного сияния. Она зависит от продолжительности дня, облачности и закрытости горизонта. Наибольшие значения продолжительности солнечного сияния приходятся на март, сентябрь и октябрь. Минимальные значения наблюдаются в июне и июле. Происходит это потому, что весной и осенью продолжительность солнечного сияния достаточно велика по сравнению с зимними месяцами, а повторяемость дней с облачностью и туманами гораздо меньше, чем летом.

Радиационный баланс атмосферы и подстилающей поверхности - это алгебраическая сумма потоков радиации, поглощаемой и излучаемой атмосферой. Эти потоки являются основными климатообразующими факторами, важнейшими компонентами теплового баланса атмосферы. Он может быть положительным и отрицательным.

На территории Приморского края радиационный баланс в течение четырех месяцев (ноябрь, декабрь, январь, февраль)оказывается отрицательным. В остальные месяцы и за год его значения положительные. Радиационный баланс на территории края изменяются в пределах от 22 ккал/см 2 (Агзу) до 46 ккал/см 2 (Владивосток).

Интересно сравнить его значения для некоторых пунктов Приморья и Европейской территории России. Годовые величины радиационного баланса для пунктов Приморья оказываются на 12 - 18 ккал/см 2 меньше, чем годовые величины радиационного баланса для пунктов Европейской части, расположенных соответственно на тех же широтах. Это объясняется главным образом тем, что в Приморье в летнее время облачность значительно снижает приходную часть радиационного баланса.

С развитием строительства зон отдыха и важности солнечной энергетики для автономных систем электроснабжения появляется необходимость в качественных данных о суммарной радиации в пунктах Приморского края. Такую информацию можно получить в Отделе автоматизации и режимной гидрометеорологии Приморскгидромета.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...