Сходимость и расходимость несобственных интегралов. Примеры исследования несобственных интегралов на сходимость

1. Несобственные интегралы с бесконечными пределами

Вспомним определение интеграла как предела интегральных сумм:

В определении предполагается, что интервал интегрирования конечен, а функция f (x) непрерывна в нем. Нарушение этих предположений приводит к несобственным интегралам.

Определение. Если интеграл стремится к конечному пределу при неограниченном возрастании “b” , то этот предел называют несобственным интегралом с бесконечной верхней границей от функции f (x) и обозначают символом

В этом случае говорят, что несобственный интеграл существует или сходится.

Если указанный предел не существует или существует, но бесконечен, то говорят, что интеграл не существует или расходится.

Аналогично определяется несобственный интеграл с бесконечной нижней границей:

Несобственный интеграл с двумя бесконечными границами определяется формулой:

где с - любая фиксированная точка на оси Ох.

Итак, несобственные интегралы могут быть с бесконечно нижней границей, с бесконечно верхней границей, а также с двумя бесконечными границами.

Признаки сходимости. Абсолютная и условная сходимость

Интеграл существует только тогда, когда существует каждый из интегралов: и .

Пример. Исследовать на сходимость интеграл

Полагая с = 0, получим:

т.е. интеграл сходится.

Иногда нет необходимости вычислять несобственный интеграл, а достаточно лишь знать, сходится он или расходится, сравнив его с другим интегралом.

Теорема сравнения несобственных интегралов.

Пусть в интервале функция f (x) имеет несколько (конечное число) точек разрыва первого рода, это “препятствие” легко устранить, разбив отрезок точками разрыва на несколько отрезков, вычислить определенные интегралы на каждом отдельном участке и результаты сложить.

Рассмотрим определенный интеграл от функции, неограниченной при приближении к одному из концов отрезка , например, .

(В таких случаях обычно говорят: ’’Функция имеет бесконечный разрыв на правом конце отрезка интегрирования’’.)

Ясно, что обычное определение интеграла здесь теряет свой смысл.

Определение . Несобственным интегралом от функции f(x), непрерывной при а £ х < b и неограниченной при x ® b - 0, называется предел:

Аналогично определяется несобственный интеграл от функции, имеющей бесконечный разрыв на левом конце отрезка:

Следовательно, на участке [ -1, 0] интеграл расходится.

Значит на участке интеграл также расходится.

Таким образом, данный интеграл расходится на всем отрезке [-1, 1]. Отметим, что если бы мы стали вычислять данный интеграл, не обращая внимания на разрыв подынтегральной функции в точке x = 0, то получили бы неверный результат. Действительно,

, что невозможно.

Итак, для исследования несобственного интеграла от разрывной функции, необходимо "разбить" его на несколько интегралов и исследовать их.

Как известно, нахождение интеграла может представлять собой достаточно сложную задачу. Было бы большим разочарованием заняться вычислением несобственного интеграла и обнаружить в конце пути, что он расходится. Поэтому представляют интерес методы, позволяющие без серьезных вычислений по одному виду функций сделать заключение о сходимости или расходимости несобственного интеграла. Первая и вторая теоремы сравнения, которые будут рассмотрены ниже, в значительной степени помогают исследовать несобственные интегралы на сходимость.

Пусть f(x)?0. Тогда функции

являются монотонно возрастающими от переменных t или-д (поскольку берем д>0, -д стремится к нулю слева). Если при возрастании аргументов функции F 1 (t) и F 2 (-д) остаются ограниченными сверху, это означает, что соответствующие несобственные интегралы сходятся. На этом основана первая теорема сравнения для интегралов от неотрицательных функций.

Пусть для функции f(x)и g(x) при x?a выполнены условия:

  • 1) 0?f(x)?g(x);
  • 2) Функции f(x) и g(x)непрерывны.

Тогда из сходимости интеграла следует сходимость интеграла, а из расходимости интеграла следует расходимость

Поскольку 0?f(x)?g(x) и функции непрерывны, то

По условию интеграл сходится, т.е. имеет конечную величину. Следовательно, интеграл сходится также.

Пусть теперь интеграл расходится. Предположим, что интеграл сходится, но тогда должен сходиться интеграл, что противоречит условию. Наше предположение неверно, интеграл расходится.

Теорема сравнения для несобственных интегралов 2-го рода.

Пусть для функций f(x) и g(x) на промежутке , неограниченно возрастает при x>+0. Для нее при x>+0 справедливо неравенство <. Несобственный интеграл есть эталонный интеграл 2-го рода, который при p=<1 сходится; следовательно, по 1-й теореме сравнения для несобственных интегралов 2-го рода интеграл сходится также.

Теорема сравнения для несобственных интегралов 1-го рода.

Пусть для функции f(x) и g(x) на промежутке , а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений. Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто. В случае, когда график функции y = f (x ) находится выше оси Ox , определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой y = f (x ) , осью абсцисс и ординатами x = a , x = b . В свою очередь несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f (x ) (на рисунке ниже - красного цвета), x = a и осью абсцисс.

Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного интеграла. Для того, чтобы вычислить несобственный интеграл, нужно использовать предел определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то несобственный интеграл называется сходящимся, а в противном случае - расходящимся. К чему стремится переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода - с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f (x ) на промежутке от a до называется предел интеграла этой функции с верхним пределом интегрирования b и нижним пределом интегрирования a при условии, что верхний предел интегрирования неограниченно растёт , т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся , а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень икса - не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость. То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится, а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл (нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при имеет место . Если , то и не существует.

Вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница , можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

Несобственные интегралы второго рода - от неограниченных функций и их сходимость

Пусть функция f (x ) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b , в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f (x ) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c , если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена , т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае - расходящимся.

Используя формулу Ньютона-Лейбница, выводим.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...