Система: понятие, компоненты, свойства, виды. Использование ягод годжи в народной и традиционной медицине

14.Средства аппаратной поддержки ОС.

Аппаратная зависимость и переносимость ОС

Многие операционные системы успешно работают на различных аппаратных платформах без существенных изменений в своем составе. Во многом это объясняется тем, что, несмотря на различия в деталях, средства аппаратной поддержки ОС большинства компьютеров приобрели сегодня много типовых черт, а именно эти средства в первую очередь влияют на работу компонентов операционной системы. В результате в ОС можно выделить достаточно компактный слой машинно-зависимых компонентов ядра и сделать остальные слои ОС общими для разных аппаратных платформ.

Типовые средства аппаратной поддержки ОС

Четкой границы между программной и аппаратной реализацией функций ОС не существует - решение о том, какие функции ОС будут выполняться программно, а какие аппаратно, принимается разработчиками аппаратного и программного обеспечения компьютера. Тем не менее практически все современные аппаратные платформы имеют некоторый типичный набор средств аппаратной поддержки ОС, в который входят следующие компоненты:

Средства поддержки привилегированного режима;

Средства трансляции адресов;

Средства переключения процессов;

Система прерываний;

Системный таймер;

Средства защиты областей памяти.

Средства поддержки привилегированного режима обычно основаны на системном регистре процессора, часто называемом «словом состояния» машины или процессора. Этот регистр содержит некоторые признаки, определяющие режимы работы процессора, в том числе и признак текущего режима привилегий. Смена режима привилегий выполняется за счет изменения слова состояния машины в результате прерывания или выполнения привилегированной команды. Число градаций привилегированности может быть разным у разных типов процессоров, наиболее часто используются два уровня (ядро-пользователь) или четыре (например, ядро- супервизор- выполнение- пользователь у платформы VAX или 0-1-2-3 у процессоров Intel x86/Pentium). В обязанности средств поддержки привилегированного режима входит выполнение проверки допустимости выполнения активной программой инструкций процессора при текущем уровне привилегированности.

Средства трансляции адресов выполняют операции преобразования виртуальных адресов, которые содержатся в кодах процесса, в адреса физической памяти. Таблицы, предназначенные при трансляции адресов, обычно имеют большой объем, поэтому для их хранения используются области оперативной памяти, а аппаратура процессора содержит только указатели на эти области. Средства трансляции адресов используют данные указатели для доступа к элементам таблиц и аппаратного выполнения алгоритма преобразования адреса, что значительно ускоряет процедуру трансляции по сравнению с ее чисто программной реализацией.

Средства переключения процессов предназначены для быстрого сохранения контекста приостанавливаемого процесса и восстановления контекста процесса, который становится активным. Содержимое контекста обычно включает содержимое всех регистров общего назначения процессора, регистра флагов операций (то есть флагов нуля, переноса, переполнения и т. п.), а также тех системных регистров и указателей, которые связаны с отдельным процессом, а не операционной системой, например указателя на таблицу трансляции адресов процесса. Для хранения контекстов приостановленных процессов обычно используются области оперативной памяти, которые поддерживаются указателями процессора.

Переключение контекста выполняется по определенным командам процессора, например по команде перехода на новую задачу. Такая команда вызывает автоматическую загрузку данных из сохраненного контекста в регистры процессора, после чего процесс продолжается с прерванного ранее места.

Система прерываний позволяет компьютеру реагировать на внешние события, синхронизировать выполнение процессов и работу устройств ввода-вывода, быстро переходить с одной программы на другую. Механизм прерываний нужен для того, чтобы оповестить процессор о возникновении в вычислительной системе некоторого непредсказуемого события или события, которое не синхронизировано с циклом работы процессора. Примерами таких событий могут служить завершение операции ввода-вывода внешним устройством (например, запись блока данных контроллером диска), некорректное завершение арифметической операции (например, переполнение регистра), истечение интервала астрономического времени. При возникновении условий прерывания его источник (контроллер внешнего устройства, таймер, арифметический блок процессора и т. п.) выставляет определенный электрический сигнал. Этот сигнал прерывает выполнение процессором последовательности команд, задаваемой исполняемым кодом, и вызывает автоматический переход на заранее определенную процедуру, называемую процедурой обработки прерываний. В большинстве моделей процессоров отрабатываемый аппаратурой переход на процедуру обработки прерываний сопровождается заменой слова состояния машины (или даже всего контекста процесса), что позволяет одновременно с переходом по нужному адресу выполнить переход в привилегированный режим. После завершения обработки прерывания обычно происходит возврат к исполнению прерванного кода.

Прерывания играют важнейшую роль в работе любой операционной системы, являясь ее движущей силой. Действительно, большая часть действий ОС инициируется прерываниями различного типа. Даже системные вызовы от приложений выполняются на многих аппаратных платформах с помощью специальной инструкции прерывания, вызывающей переход к выполнению соответствующих процедур ядра (например, инструкция int в процессорах Intel или SVC в мэйнфреймах IBM).

Системный таймер, часто реализуемый в виде быстродействующего регистра-счетчика, необходим операционной системе для выдержки интервалов времени. Для этого в регистр таймера программно загружается значение требуемого интервала в условных единицах, из которого затем автоматически с определенной частотой начинает вычитаться по единице. Частота «тиков» таймера, как правило, тесно связана с частотой тактового генератора процессора. (Не следует путать таймер ни с тактовым генератором, который вырабатывает сигналы, синхронизирующие все операции в компьютере, ни с системными часами - работающей на батареях электронной схеме, - которые ведут независимый отсчет времени и календарной даты.) При достижении нулевого значения счетчика таймер инициирует прерывание, которое обрабатывается процедурой операционной системы. Прерывания от системного таймера используются ОС в первую очередь для слежения за тем, как отдельные процессы расходуют время процессора. Например, в системе разделения времени при обработке очередного прерывания от таймера планировщик процессов может принудительно передать управление другому процессу, если данный процесс исчерпал выделенный ему квант времени.

Средства защиты областей памяти обеспечивают на аппаратном уровне проверку возможности программного кода осуществлять с данными определенной области памяти такие операции, как чтение, запись или выполнение (при передачах управления). Если аппаратура компьютера поддерживает механизм трансляции адресов, то средства защиты областей памяти встраиваются в этот механизм. Функции аппаратуры по защите памяти обычно состоят в сравнении уровней привилегий текущего кода процессора и сегмента памяти, к которому производится обращение.

Машинно-зависимые компоненты ОС

Одна и та же операционная система не может без каких-либо изменений устанавливаться на компьютерах, отличающихся типом процессора или/и способом организации всей аппаратуры. В модулях ядра ОС не могут не отразиться такие особенности аппаратной платформы, как количество типов прерываний и формат таблицы ссылок на процедуры обработки прерываний, состав регистров общего назначения и системных регистров, состояние которых нужно сохранять в контексте процесса, особенности подключения внешних устройств и многие другие.

Однако опыт разработки операционных систем показывает: ядро можно спроектировать таким образом, что только часть модулей будут машинно-зависимыми, а остальные не будут зависеть от особенностей аппаратной платформы. В хорошо структурированном ядре машинно-зависимые модули локализованы и образуют программный слой, естественно примыкающий к слою аппаратуры, как это и показано на рис. 3.8. Такая локализация машинно-зависимых модулей существенно упрощает перенос операционной системы на другую аппаратную платформу.

Объем машинно-зависимых компонентов ОС зависит от того, насколько велики отличия в аппаратных платформах, для которых разрабатывается ОС. Например, ОС, построенная на 32-битовых адресах, для переноса на машину с 16-битовыми адресами должна быть практически переписана заново. Одно из наиболее очевидных отличий - несовпадение системы команд процессоров - преодолевается достаточно просто. Операционная система программируется на языке высокого уровня, а затем соответствующим компилятором вырабатывается код для конкретного типа процессора. Однако во многих случаях различия в организации аппаратуры компьютера лежат гораздо глубже и преодолеть их таким образом не удается. Например, однопроцессорный и двухпроцессорный компьютеры требуют применения в ОС совершенно разных алгоритмов распределения процессорного времени. Аналогично отсутствие аппаратной поддержки виртуальной памяти приводит к принципиальному различию в реализации подсистемы управления памятью. В таких случаях не обойтись без внесения в код операционной системы специфики аппаратной платформы, для которой эта ОС предназначается.

Для уменьшения количества машинно-зависимых модулей производители операционных систем обычно ограничивают универсальность машинно-независимых модулей. Это означает, что их независимость носит условный характер и распространяется только на несколько типов процессоров и созданных на основе этих процессоров аппаратных платформ. По этому пути пошли, например, разработчики ОС Windows NT, ограничив количество типов процессоров для своей системы четырьмя и поставляя различные варианты кодов ядра для однопроцессорных и многопроцессорных компьютеров.

Особое место среди модулей ядра занимают низкоуровневые драйверы внешних устройств. С одной стороны эти драйверы, как и высокоуровневые драйверы, входят в состав менеджера ввода-вывода, то есть принадлежат слою ядра, занимающему достаточно высокое место в иерархии слоев. С другой стороны, низкоуровневые драйверы отражают все особенности управляемых внешних устройств, поэтому их можно отнести и к слою машинно-зависимых модулей. Такая двойственность низкоуровневых драйверов еще раз подтверждает схематичность модели ядра со строгой иерархией слоев.

Для компьютеров на основе процессоров Intel x86/Pentium разработка экранирующего машинно-зависимого слоя ОС несколько упрощается за счет встроенной в постоянную память компьютера базовой системы ввода-вывода - BIOS. BIOS содержит драйверы для всех устройств, входящих в базовую конфигурацию компьютера: жестких и гибких дисков, клавиатуры, дисплея и т. д. Эти драйверы выполняют весьма примитивные операции с управляемыми устройствами, например чтение группы секторов данных с определенной дорожки диска, но за счет этих операций экранируются различия аппаратных платформ персональных компьютеров и серверов на процессорах Intel разных производителей. Разработчики операционной системы могут пользоваться слоем драйверов BIOS как частью машинно-зависимого слоя ОС, а могут и заменить все или часть драйверов BIOS компонентами ОС.

Переносимость операционной системы

Если код операционной системы может быть сравнительно легко перенесен с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа на аппаратную платформу другого типа, то такую ОС называют переносимой (portable), или мобильной.

Хотя ОС часто описываются либо как переносимые, либо как непереносимые, мобильность - это не бинарное состояние, а понятие степени. Вопрос не в том, может ли быть система перенесена, а в том, насколько легко можно это сделать. Для того чтобы обеспечить свойство мобильности ОС, разработчики должны следовать следующим правилам.

Большая часть кода должна быть написана на языке, трансляторы которого имеются на всех машинах, куда предполагается переносить систему. Такими языками являются стандартизованные языки высокого уровня. Большинство переносимых ОС написано на языке С, который имеет много особенностей, полезных для разработки кодов операционной системы, и компиляторы которого широко доступны. Программа, написанная на ассемблере, является переносимой только в тех случаях, когда перенос операционной системы планируется на компьютер, обладающий той же системой команд. В остальных случаях ассемблер используется только для тех непереносимых частей системы, которые должны непосредственно взаимодействовать с аппаратурой (например, обработчик прерываний), или для частей, которые требуют максимальной скорости (например, целочисленная арифметика повышенной точности).

Объем машинно-зависимых частей кода, которые непосредственно взаимодействуют с аппаратными средствами, должен быть по возможности минимизирован. Так, например, следует всячески избегать прямого манипулирования регистрами и другими аппаратными средствами процессора. Для уменьшения аппаратной зависимости разработчики ОС должны также исключить возможность использования по умолчанию стандартных конфигураций аппаратуры или их характеристик. Аппаратно-зависимые параметры можно «спрятать» в программно- задаваемые данные абстрактного типа. Для осуществления всех необходимых действий по управлению аппаратурой, представленной этими параметрами, должен быть написан набор аппаратно-зависимых функций. Каждый раз, когда какому-либо модулю ОС требуется выполнить некоторое действие, связанное с аппаратурой, он манипулирует абстрактными данными, используя соответствующую функцию из имеющегося набора. Когда ОС переносится, то изменяются только эти данные и функции, которые ими манипулируют. Например, в ОС Windows NT диспетчер прерываний преобразует аппаратные уровни прерываний конкретного типа процессора в стандартный набор уровней прерываний IRQL, с которыми работают остальные модули операционной системы. Поэтому при переносе Windows NT на новую платформу нужно переписать, в частности, те коды диспетчера прерываний, которые занимаются отображением уровней прерывания на абстрактные уровни IRQL, а те модули ОС, которые пользуются этими абстрактными уровнями, изменений не потребуют.

Аппаратно-зависимый код должен быть надежно изолирован в нескольких модулях, а не быть распределен по всей системе. Изоляции подлежат все части ОС, которые отражают специфику как процессора, так и аппаратной платформы в целом. Низкоуровневые компоненты ОС, имеющие доступ к процессорно - зависимым структурам данных и регистрам, должны быть оформлены в виде компактных модулей, которые могут быть заменены аналогичными модулями для других процессоров. Для снятия платформенной зависимости, возникающей из-за различий между компьютерами разных производителей, построенными на одном и том же процессоре (например, MIPS R4000), должен быть введен хорошо локализованный программный слой машинно-зависимых функций.

В идеале слой машинно-зависимых компонентов ядра полностью экранирует остальную часть ОС от конкретных деталей аппаратной платформы (кэши, контроллеры прерываний ввода-вывода и т. п.), по крайней мере для того набора платформ, который поддерживает данная ОС. В результате происходит подмена реальной аппаратуры некой унифицированной виртуальной машиной, одинаковой для всех вариантов аппаратной платформы. Все слои операционной системы, которые лежат выше слоя машинно-зависимых компонентов, могут быть написаны для управления именно этой виртуальной аппаратурой. Таким образом, у разработчиков появляется возможность создавать один вариант машинно-независимой части ОС (включая компоненты ядра, утилиты, системные обрабатывающие программы) для всего набора поддерживаемых платформ (рис. 3.9).

Общность понятия «система» затрудняет его адекватную формализацию, но в общем виде она может быть представлена как целостное образование, комплекс взаимосвязанных элементов, обладающих благодаря своему единению качественно новыми характеристиками, относительно индифферентных к внешней среде, причем каждая система выступает элементом системы более высокого порядка, а любой элемент системы – системой более низкого порядка.

Очень важно, что система есть «комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношение приобретает характер взаимоСОдействия компонентов на получение фокусированного полезного результата» (П. К. Анохин).

Функциональная система характеризуется тремя принципиальными моментами: во-первых, в совокупность вовлекаются только специально выбранные компоненты; во-вторых, компоненты не просто взаимодействуют, а взаимосо действуют для чего-то конкретного и определенного; в-третьих, в качестве системообразующего фактора фиксируется получение полезного результата.

Отличительными признаками системы выступают:

1) наличие взаимосвязанных частей в объекте;

2) взаимодействие между частями объекта;

3) упорядоченность данного взаимодействия для достижения общей цели системы.

Все системы имеют непременные атрибуты (модифицируя позицию В. Г. Афанасьева):

Интегративные качества;

Компоненты и элементы системы;

Структуру;

Общую цель и комплекс подцелей;

Взаимоотношения между элементами;

Функции системы и ее компонентов;

Включенность в более сложную систему в статусе компонента и элемента;

Историчность;

Внутренние и внешние возмущающие воздействия;

Структуру управления системой;

Информацию.

Базовым атрибутом системы выступает элемент системы. Под элементом понимают простейшую неделимую часть системы, которая обладает на взгляд субъекта действия (познания) определенной целостностью, состояние и функциональные особенности которой могут быть измерены и описаны в терминах, и которая может иметь отношения с другими частями рассматриваемой совокупности, а также с ее окружением (средой). Кроме функциональной характеристики, минимальность определяется самим субъектом исследования как достаточная часть, удовлетворяющая познавательной и преобразовательной потребности.

1. Упругий элемент – противостоящий внешним воздействиям, не воспринимающий их, способный только к однозначной передаче

В отсутствии изменения i элемент находится в состоянии покоя.

2. Рефлексивный элемент – обладает внутренним движением и осуществляет внутреннее преобразование по какому-либо закону и алгоритму.

Частный случай рефлексивности элемента – нейтральный.

3. Элемент – потребитель – воспринимает воздействие в данных условиях без образования направленного эффекта.


4. Элемент – источник – образует в данных условиях направленный эффект «Р» в отсутствии понуждающего внешнего воздействия.


5. Полирецепторный элемент – рефлексивный элемент, образующий направленное воздействие при условии восприятия нескольких понуждающих воздействий.


6. Полиэффекторный элемент – рефлексивный элемент, образующий воздействия по нескольким направлениям при восприятии одного понуждающего воздействия.


7. Полиэлемент – рефлексивный элемент, образующий воздействия по нескольким направлениям при условии восприятия нескольких внешних воздействий.


8. Полиисточник – источник, образующий в данных условиях воздействия по нескольким направлениям.


9. Полипотребитель – потребитель, воспринимающий воздействия по нескольким внешним связям.


Вторым важнейшим атрибутом системы выступают взаимоотношения между элементами или связи. По-другому межэлементарную связь можно определить как каждую из степеней свободы данного элемента, действительно осуществленную в виде определенного взаимоотношения, взаимодействия с другими элементами данной системы, а также с его средой. Это понятие входит в любое определение сис­темы и обеспечивает возникновение и сохранение струк­туры и целостных свойств системы, характеризует какее строение, так и функционирование. Предполагается, что связи существуют ме­жду всеми системными элементами и подсистемами.

Взаимоотношения могут быть:

1. Нейтральными , когда:

1 элемент 2 элемент


где а , в – сила воздействия;

а = в , но противоположны по направлению.

Особенности:

Подобная связь не является статичной.

При любых изменениях воздействие и противодействие остаются равными по величине в каждый рассматриваемый момент их отношений, их геометрическая сумма всегда равна нулю в эти моменты.

Относительная неподвижность (статичность) элементов – есть частный случай нейтральности, когда величины воздействия и противодействия неизменны на рассматриваемом отрезке времени.

Противодействие считается полным, если оно равно по величине воздействию в рассматриваемом диапазоне его изменений.

2. Функциональными , когда:

1) 1 элемент 2 элемент


2) 1 элемент 2 элемент

где а , в – сила воздействия.

Особенности:

Воздействующий элемент обладает направленным эффектом (наличие эффекторных свойств) по отношению к противодействующему.

Противодействующий элемент обладает рецепторным эффектом (наличие рецепторных свойств), т. е. способностью воспринимать внешнее воздействие.

Примечание. В реальных условиях всякий элемент в той или иной мере в различных отношениях обладает и эффекторными и рецепторными свойствами.

Нейтральная связь может превратиться в функциональную при неполном противодействии одной из сторон взаимодействия.

В результате подобных взаимоотношений в случае 2.1 в = 0, сила воздействия первого элемента максимальна и второй элемент может измениться структурно и функционально; в случае 2.2 а > в , сила воздействия первого элемента превосходит силу противодействия второго элемента, что также может приводить к структурно-функциональным изменениям во втором элементе системы .

Сетка связей достаточно обширна (по классификации И. В. Блауберга и Э. Г. Юдина):

Связи взаимодействия;

Связи генезиса;

Связи преобразования;

Связи строения;

Связи функционирования;

Связи развития;

Связи управления.

Связи могут подразделяться по характеру их материальной реализации на:

1) вещественные;

2) энергетические;

3) информационные;

по их месту и структуре:

1) прямые;

2) обратные;

по характеру их проявления:

1) детерминированные;

2) вероятностные;

3) хаотические;

4) непрерывные;

5) случайные;

6) регулярные;

7) нерегулярные.

Особенности: данные классификации относятся к конкретным реализациям систем и не характеризуют их как функциональные образования. Функциональность раскрывается в установлении причинно-следственных отношений между материальными образованиями.

Третьим атрибутом системы является компонент (подсистема), состоящий из ряда элементов системы, которые возможно объединить по схожим функциональным проявлениям. В системе может быть различное количество компонентов. Это зависит от основных функций системы (внутренних и внешних).

Система может быть расчленена на элементы не сразу, а путем последовательного разделе­ния на подсистемы. Подсистемы сами являются систе­мами и к ним, следовательно, относится все, что сказано о системе, в том числе и о ее целостности. Этим подсис­тема отличается от простой совокупности элементов, не объединенных целью и свойством целостности.

Четвертым атрибутом системы выступает структура системы. Под структурой понимается совокупность связей, взаимоотношений между всеми элементами и компонентами системы, между системой и внешней средой. Данные взаимосвязи обеспечивают существова­ние системы и ее основных свойств. Структурные свойст­ва обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, перенося закономерности, выявленные в одной из них, на другую (даже если эти системы имеют разную физическую природу). Структура может быть представлена графическим отображением, теоретико-множественным отношением, в виде матриц. Вид пред­ставления системы зависит от цели отображения.

Особенности определения понятия «структура» системы:

1. Структура всех возможных взаимоотношений в рассматриваемой совокупности отличается от структуры формируемой системы, такая структура называется полной структурой объекта.

2. Форма структуры прямо зависит от функционального среза как конкретной формы реакции данной совокупности на конкретное внешнее воздействие.

Системам как функциональным материальным образованиям с определенным глобальным эффектом свойственны следующие виды структур:

1. Внутренняя структура объекта – совокупность взаимоотношений компонентов без учета их внешних связей.

2. Функциональная структура – совокупность взаимоотношений, связанных непосредственно с функционированием каждого элемента в данной системе в направлении образования ее глобального эффекта.

3. Абсолютная структура – действительно возможная структура внешнего целого, рассматриваемого субъектом в качестве конкретно познаваемого объекта.

Исходя из важнейшей характеристики функциональных систем, выделяют два основных класса системных структур:

Нормальные структуры – структуры, в которых сохраняются все отношения и их направления, то есть:

1) элементы системы выделены на том структурном уровне, который рассматривается;

2) данные элементы неизменны и являются начальными структурными образованиями с точки зрения субъекта;

3) полная структура объекта остается неизменной в данном промежутке времени и в данных условиях;

4) норма существования структуры сохраняется неизменной.

Динамические структуры – структуры, изменяющиеся во времени, то есть:

1) количество и направление отношений между элементами системы изменяется;

2) в системе, в установившихся связях между элементами присутствует внутреннее движение;

3) изменяется элементарный состав системы.

Динамика структуры отражает динамику системы. Функциональная система может считаться изменчивой только при условии структурных перестроек при сохранении возможной функциональности каждой связи, включая и вновь образовавшиеся.

Изменение элементарного состава системы выступает вторичным фактором.

Понятия динамической структуры и динамической системы не тождественны. Динамическая система имеет больший объем, так как динамизм системы связан, помимо изменений в структуре, с возможными изменениями норм состояния ее элементов и элементарного состава. Таким образом могут происходить более глубинные изменения, чем только во взаимоотношениях между элементами.

Понятия нормальной и динамической структур, отнесенные к одной системе, есть взаимоотрицающие понятия, т. е. одна и та же система в одном промежутке времени не может иметь и нормальную и динамическую структуру.

Разрушение нормальной структуры не означает разрушение в смысле отмирания, уничтожения системы. Основной критерий системности заключен в глобальном эффекте системы, а не в структуре.

Поэтому динамическая структура, отрицая нормальную, отражает существо изменяющейся в этом отношении системы, но не прекращение ее существования. Образование глобального эффекта системы возможно в условиях происходящих изменений.

Таким образом, динамические системы – это системы с переменной структурой при относительной определенности их внешних проявлений, рассматриваемых в качестве их глобального эффекта.

Если рассматривать совокупность всех связей внутри системы, то такая структура будет внутренней. Если рассматривать совокупность всех связей как внутри системы, так и системы с внешней средой – такая структура называется полной структурой. Качественная система представляет собой единое целое, состоящее из множества различных составляющих, организованных на разных уровнях в особого рода целостности.

Пятым атрибутом системы выступают функции, понимаемые как деятельность, работа, внешнее прояв­ление свойств какого-либо объекта в данной системе отношений. Функции классифицируются по различным признакам в зависимости от целей управленца или исследователя.

Весьма важным атрибутом системы выступают свойства, понимаемые как качества параметров объектов, т. е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возмож­ность описывать объекты системы количественно, выра­жая их в единицах, имеющих определенную размер­ность. При этом они могут изменяться в результате функционирования системы.

Одним из ключевых атрибутов системы является цель, лежащая в основе развития системы и обеспе­чивающее ее целенаправленность (целесообразность). Цель можно определить как желаемый результат дея­тельности, достижимый в пределах некоторого интервала времени. Цель становится задачей, стоящей перед сис­темой, если указан срок ее достижения и конкретизиро­ваны количественные характеристики желаемого резуль­тата. Цель достигается в результате решения задачи или ряда задач, если исходная цель может быть подвергнута разделению на некоторую совокупность более простых (частных) подзадач.

«Компоненты здоровья» - Мы знаем чего боятся микробы! - Сколько снега намело! Мы точно знаем какая сегодня погода! Моё настроение. Наш снежный спортивный городок. «Наша прогулка». Сколько интересного вокруг! Реснички опускаются – глазки закрываются… Игры с валеологическим содержанием. А почему надо сушить одежду после прогулки?

«Модель объекта» - Прогнозирования. Натурная модель подъёмного крана воспроизводит: состав; движения частей механизма. Натурные модели - реально воспроизводят внешний вид, структуру и поведение объекта. Давайте обсудим. Моделирование - процесс создания и использования модели. Объект огромный. Свойства моделей. Различают натурные и информационные модели.

«Объект-модель» - Автоматическая замена формальных соседей на фактические во время счета. 5. Хранения множества объектов программной модели в файле объектов (базе данных). Контрольные точки и рестарты. Решетка из полос ширины 2 * L – некорректные значения после первого шага. Буквальный цифровой аналог натурного моделирования.

«Модель представление» - Направленные связи указывают направление передачи сигналов. Первая часть вещественного числа - мантисса, определяет точность представления. Модель среды - описание среды на входе и выходе. Рис. 2.1. Модель странного аттрактора в форме ориентированного графа. В процессе суммирования получаем: Отсюда следуют основные функции модели?-?объяснительная и прогностическая.

«Компоненты умножения» - Найдите лишние числа. Компоненты действия умножения. Сравните. Х + 5 = 8. Компоненты действия вычитания. Компоненты действия сложения. Взаимосвязь между компонентами и результатом умножения. Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

«Модель атома» - Поэтому электрон должен терять энергию на электромагнитное излучение и падать на ядро. Теория Бора сыграла огромную роль в создании атомной физики. Пребывая в одном из стационарных состояний, атом не излучает энергию. Дальнейшие максимумы наблюдаются при 2·4.86 B и 3·4.86 B. 7.2. Ядерная модель атома (модель Резерфорда).

Тема 1.4 Методологические аспекты исследования систем управления

Лекция 5

Цель: раскрыть сущность методологии исследования систем управления.

1. Система: понятие, компоненты, свойства, виды.

2. Система управления и ее элементы. Классификация систем управления.

3. Методологические исследования систем управления:

3.1 Процессный подход к управлению.

3.2 Системный подход в исследовании проблем управления.

3.3 Ситуационный подход в процессе управления.

4. Исследование систем управления и их проектирование.

1. Веснин В. Р. Менеджмент: учебник для вузов / В. Р. Веснин. - 3-е изд, перераб. и доп. - М. : ТК Велби. - 2006. - 504 с.

2. Мескон М. Х. Основы менеджмента / М. Х. Мескон, М. Альберт, Ф. Хедоури; пер. с англ. – М. : Дело, 2005. - 720 с.

3. Основы теории управления: учебник для вузов / под ред. В. Н. Парахиной, Л. И. Ушвицкого. – М. : Финансы и статистика. - 2004. – 560 с.

4. Рой О. М. Теория управления: учебное пособие / О. М. Рой. – СПб. : Питер, 2008. – 256 с.

5. Теория управления: учебник для вузов / под ред. А. Л. Гапоненко, А. П. Панкрухина. – 2-е изд. - М. : Изд-во РАГС, 2005. - 558 с.

Управление обладает свойством системности, поэтому его изучение мы начина­ем со знакомства с основными положениями теории систем.

Под системой понимается некоторое множество взаимосвя­занных частей - компонентов, объединенных ради достижения общей цели (эффекта системы) в единое целое, взаимодействие между которыми характеризуется упорядоченностью и регуляр­ностью на конкретном отрезке времени.

К основным компонентам системы относят: элемент систе­мы, взаимоотношения между элементами, подсистему, структу­ру системы.

Первый компонент системы – элемент - минимальная целая часть сис­темы, которая функционально способна отразить некоторые общие закономерности системы в целом.

Выделяются две разновидности элементов: рабочие (основная функция состоит в преобразовании исходных факторов в определенный результат) и защитные .

В каждой системе есть основной системообразующий элемент (качество, отношение), который в той или иной степени обеспечивает единство всех остальных. Если он определяется природой системы, то называется внутренним, в противном случае - внешним. В социальных системах этот элемент может быть как явным, так и неявным.

Например, в СССР системообразующим элементом были КПСС и ее конституционно закрепленная руководящая роль. Непонимание этого обстоятельства привело к ли­шению КПСС этой роли без возложения ее на иной институт. В результате разруши­лась не только политическая и идеологическая система, но и само государство.


В результате воздействия системообразующего элемента у остальных элементов формируются общесистемные качества, т. е. признаки, свойственные каждому из них в отдельности и системе в целом.

Единство элементов системы возникает в результате того, что между ними уста­навливаются связи , т. е. реальные взаимодействия, которые характеризуются: типом (бывают последовательными, сходящимися, расходящимися); силой; характером (могут быть подчиненными, равноправными, безразличными); характером (односторонние или взаимные); степенью постоянства (эпизодические, регулярные и проч.).

То есть, вторым компонентом системы выступают взаимоотношения между элементами или связи. Взаимоотношения могут быть нейтральными , когда оба элемента не претерпевают каких-ли­бо структурных или функциональных изменений, или функци­ональными , когда один элемент, воздействуя на другой, приво­дит к структурным или функциональным изменениям в этом элементе.

Третьим компонентом системы является подсистема , состоя­щая из ряда элементов системы, которые возможно объединить по схожим функциональным проявлениям. В системе может быть различное количество подсистем. Это зависит от основ­ных функций подсистемы: внутренних и внешних.

Четвертым компонентом системы выступает структура сис­темы - определенное строение, взаим­ное расположение элементов и существующих между ними связей, способ организа­ции целого, составленного из частей. Связи, как и системообразующий элемент, обеспечивают целостность системы, ее единство.

Характер связи между элементами зависит не только от взаимного расположе­ния последних, но и от их особенностей (например, отношения в одинаковом по размерам женском, мужском и смешанном коллективах будут различны).

Структура определяется целями и функциями системы, но в ее характеристике отсутствует момент взаимодействия.

В широком понимании структуру можно рассматривать как совокупность пра­вил и предписаний, регламентирующих деятельность системы.

Структуру системы можно классифицировать по следующим основаниям:

По числу уровней иерархии (одноуровневые и многоуровневые);

По принципам подчиненности (централизация - децентрализация);

По целевому назначению;

По выполняемым функциям;

По принципам разбивки элементов на подсистемы (таковыми могут быть функциональный и объектный).

В целом структуру системы описывают две основные группы характеристик:

Связанные с иерархичностью (число подсистем, уровней, связей; принципы
разбивки на подсистемы; степень централизации);

Отражающие эффективность функционирования (надежность, живучесть, быстродействие, пропускная способность, гибкость, изменчивость и т. д.).

Структура придает системе целостность и внутреннюю организацию, в рамках ко­торой взаимодействие элементов подчиняется определенным законам. Если такая организация минимальна, системы называются неупорядоченными, например толпа на улице.

Поскольку элементы и связи неоднородны в рамках одного и того же структур­ного их набора, система будет иметь модификации. Например, коллективы двух организаций, имеющих одинаковое штатное расписание, будут абсолютно различ­ны, поскольку сами люди и их личные взаимоотношения являются иными.

Система характеризуется рядом свойств:

· Система имеет границы, отделяющие ее от внешней среды. Они мо­гут быть «прозрачными», допускающими проникновение в нее внешних импуль­сов, и «непрозрачными», наглухо отделяющими ее от остального мира.

· Системе присуща эмерджентность, т. е. появление качественно новых свойств, отсутствующих или нехарактерных для ее элементов. В то же время объеди­ненные в систему элементы могут терять свойства, присущие им вне системы. Таким образом, свойства целого не равны сумме свойств частей, хотя и зависят от них.

· Система обладает обратной связью , под которой понимается опреде­ленная реакция ее в целом (отдельных элементов) на импульсы друг друга и внеш­ние воздействия. Обратная связь обеспечивает их информацией о реальной си­туации, компенсирует влияние помех. Например, в системе взаимоотношений «руководитель - подчиненный» формой обратной связи может быть заявление об уходе.

· Система характеризуется адаптивностью, т.е. способностью сохра­нять качественную определенность в изменяющихся условиях. Адаптивность обес­печивается простотой структуры, гибкостью, избыточностью ресурсов.

· Системе свойственна редукция, проявляющаяся в том, что при опре­деленных условиях она ведет себя проще, чем ее отдельные элементы. Это объясняется тем, что такие элементы в системе накладывают друг на друга огра­ничения, которые не позволяют им независимо выбирать свои состояния. Поэтому поведение системы в целом подчинено не частным, а общим закономерностям, ко­торые обычно проще сами по себе.

· Система со временем может разрушаться под воздействием как внешней среды, так и внутренних процессов.

· Системой можно управлять с целью обеспечения следования ею задан­ной траектории развития и функционирования. Для этого существуют следующие способы:

1) регулирование и корректировка в случае непредсказуемых воздействий, вызывающих отклонения;

2) изменение параметров системы на основе прогнозирования, применяемое
в случае невозможности задать опорную траекторию развития на весь период или значительных отклонений, не позволяющих на нее вернуться;

3) коренная структурная перестройка, если цели недостижимы в принципе
и нужен поиск новой системы, при которой это удается сделать.

Рассмотрим, какими бывают системы.

По направленности связей между элементами системы делятся на централизованные (все связи осуществляются через один центральный элемент) и децентра­лизованные (преобладают прямые контакты между элементами). Примером цент­рализованной системы являются министерство и его органы на местах; децентра­лизованной - ассоциация.

Системы, где связь элементов идет только по одной линии получили название частичных, а по многим - полных . Система, где каждый элемент связан по одной линии только с предыдущим и последующим, называется цепной . Ее примером яв­ляется конвейер.

По составу элементов системы бывают гомогенными (однородными) и гетерогенными (разнородными). Например, по возрастному признаку школьный класс - обычно система гомогенная, а по половому - гетерогенная.

Системы, характеризующиеся преобладанием внутренних связей по сравнению с внешними, где центростремительность больше центробежности, а отдельным элементам присущи общие характеристики, получили название целостных. Приме­ром целостной системы сегодня является блок НАТО.

Система, сохраняющаяся в целом при изменении или исчезновении одного или нескольких элементов, называется устойчивой, например любой биологический организм. Если при этом возможно восстановление утраченных элементов, то она является регенеративной (например, ящерицы).

Системы могут быть изменяющимися (динамичными) и неизменными (статич­ными). К первым относятся живые организмы, ко вторым - большинство техни­ческих устройств. Динамичные системы подразделяются на первичные, исходные, и вторичные, уже претерпевшие определенные изменения.

Если изменения осуществляются линейно, однонаправленно, будет наблюдать­ся рост системы. Нелинейные, разнонаправленные изменения, происходящие с неодинаковой интенсивностью, в результате которых меняются связи, соотноше­ние элементов, характеризуют процесс ее развития.

Незавершенность бывает субстратной (преобразования происходят в самих элементах) и структурной (изменяется их состав и соотношение). Если система со­храняет характеристики при изменении субстрата, она называется стационарной. Например, замена подвижного состава придает системе городского транспорта субстратную незавершенность, а изменение маршрутов и числа машин на линии - структурную. Поскольку возможность нормального функционирования этой сис­темы не зависит от того, какие марки транспортных средств используются, она яв­ляется стационарной.

Система, состоящая из ряда разнородных элементов, называется сложной . Сложность системы обусловлена их большим числом, разнообразием, взаимосвя­занностью, неопределенностью поведения и реакций. Такие системы обычно явля­ются многоуровневыми и иерархичными (высший уровень управляет нижестоя­щим и одновременно сам подчиняется вышестоящему). Введение в них дополни­тельного элемента (даже аналогичного имеющимся) порождает новые и изменяет существующие в рамках системы отношения.

Системы делятся на механистические и органические.

Механистические системы облада­ют постоянным набором неизменных элементов, четкими границами, однознач­ными связями, не способны изменяться и развиваться, функционируют под воз­действием внешних импульсов. В механистической системе связи между элементами носят внешний характер, не затрагивают внутренней сути каждого из них. Поэтому элементы менее зависи­мы от системы и вне ее сохраняют самостоятельное бытие (колесико от часов может продолжительное время играть роль запасной детали). Но потеря такой системой хотя бы одного элемента ведет к нарушению всего механизма функционирования. Наиболее наглядный пример этому - те же часы.

Органические системы характеризуются противоположными качествами. В них увеличивается зависимость части от целого, а целого от части, наоборот, уменьша­ется. Например, человек при потере многих органов может продолжать свою жиз­недеятельность. Чем глубже связь элементов органической системы, тем больше роль целого по отношению к ним. Таким системам присущи свойства, которых нет у механистических, например способность к самоорганизации и самовоспроизве­дению.

Специфической формой органической системы является социальная (общество, фирма, коллектив и проч.).

Компоненты I Компоне́нты (в термодинамике и химии)

независимые компоненты, химически индивидуальные вещества, из которых состоит термодинамическая система.

К. называют не общее число составляющих систему веществ, а такое их число, которое достаточно для выражения состава любой фазы системы. Так, в системе из окиси кальция CaO и двуокиси углерода СО 2 образуется соединение - углекислый кальций по реакции CaO + CO 2 ⇔ CaCO 3 . В этой системе за независимые К. можно принять CaO и CO 2 , а CaCO 3 рассматривать как продукт их соединения. С равным правом за К. можно принять CaO и CaCO 3 , а CO 2 считать продуктом термической диссоциации (См. Диссоциация) CaCO 3 .

Для К. характерно то, что масса каждого из них в системе не зависит от массы других (К. можно независимо вводить в систему и выделять из неё). Поэтому в химических системах, в которых составляющие вещества вступают в химические реакции, число К. определяется разностью между числом составляющих веществ и числом независимых химических реакций, могущих идти в системе. Систему, в которой вещества не реагируют друг с другом, называют физической (например, жидкая смесь бензол - глицерин), для неё число К. равно числу составляющих веществ. В зависимости от числа К. различают системы однокомпонентные, двухкомпонентные (Двойные системы), трёхкомпонентные (тройные системы) и многокомпонентные (см. Фаз правило). Понятие К. было введено в 1875-76 американским физиком Дж. У. Гиббс ом.

Лит.: Гиббс Дж. В., Термодинамические работы, пер. с англ., М. - Л., 1950, с. 95, 104-05; Курс физической химии, под общей ред. Я. И. Герасимова, т. 1, М., 1969, с. 331; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. - Л., 1947, с. 43.

II Компоне́нты (биологическое)

входящие в состав Фитоценоз а виды растений, вегетирующие ежегодно, независимо от климатических условий (в частности, от запаса воды в почве). Этим К. отличаются от ингредиентов, которые, будучи преимущественно однолетними растениями, вегетируют лишь в годы достаточного увлажнения. Примеры К. - ковыль, типчак и др. Иногда термином «К.» обозначают всякий организм (в том числе и животный), входящий в состав Биоценоз а. К. называют также живые и неживые элементы биогеосферы, биогеоценоза или экосистемы.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Компоненты" в других словарях:

    - (от лат. componens, род. падеж componentis составляющий) в термодинамике, химически индивидуальные в ва, из к рых состоит термодинамич. система и к рые могут быть выделены из системы и существовать вне её. Числом независимых К. наз. не общее… … Физическая энциклопедия

    В термодинамике химически индивидуальные вещества, наименьшего числа которых достаточно для образования всех фаз системы. Количество каждого компонента в системе может изменяться независимо от других компонентов. число компонентов равно числу… … Большой Энциклопедический словарь

    - (от лат. componens составляющий) в фитоценологии, многолетние виды растений с ежегодно развивающимися надземными органами, составляющие основу фитоценозов, в отличие от ингредиентов растений, заполняющих промежутки между К., у к рых надземные… … Биологический энциклопедический словарь

    компоненты - Чистые химич. эл ты или устойчивые химич. соединения, входящие в состав сплава. В завис ти от числа к. различают двух, трех и многокомпонентные сплавы. Понятие компонента как химич. индивид. вещ ва было введено в 1875 76 гг. амер. физиком Дж. У … Справочник технического переводчика

    КОМПОНЕНТЫ - (components). У лишайников грибы и водоросли, составляющие вместе единое растительное тело (статья 13) … Термины ботанической номенклатуры

    Компоненты - 2.7 Компоненты 2.7.1 ИЗОЛИРУЮЩИЙ ТРАНСФОРМАТОР Трансформатор, имеющий ЗАЩИТНОЕ РАЗДЕЛЕНИЕ между входной и выходной обмотками. 2.7.2 РАЗДЕЛИТЕЛЬНЫЙ ТРАНСФОРМАТОР Трансформатор, у которого входные обмотки отделены от выходных обмоток, по крайней… … Словарь-справочник терминов нормативно-технической документации

    компоненты - независимые компоненты; компоненты Вещества, наименьшее число которых необходимо и достаточно для образования всех возможных фаз данной системы, находящейся в равновесном состоянии … Политехнический терминологический толковый словарь

Книги

  • Компоненты содержательной структуры слова , Н. Г. Комлев. В книге раскрывается характер основных семантических компонентов слова --- знака, лексического понятия и денотата --- и дается анализ их взаимодействия в разных словах и разных условиях…


Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...