Современные ландшафты мира. Биосфера. понятие о географическом ландшафте

Изложены основы геоэкологических знаний, показано значение междисциплинарного научного направления, изучающего взаимосвязанные геосферы в тесной интеграции их с социальной сферой. Освещены природные и социально-экономические последствия изменения геосфер под влиянием антропогенного фактора. Рассмотрены природные и социально-экономические факторы экосферы, проблемы глобальных изменений, геоэкологические проблемы атмосферы, гидросферы, литосферы, биосферы. Даны геоэкологические аспекты природно-техногенных систем. С геоэкологических позиций оценены современное состояние и устойчивость биосферы.

Для студентов высших учебных заведений, обучающихся по экологическим специальностям.

В научной литературе встречается разнозначное толкование понятий, обозначаемых словом «биосфера ». Согласно одному, более широкому, биосфера – это область существования живого вещества. В этом смысле биосферу понимал В. И. Вернадский и в этом же смысле оно часто встречается в литературе, в особенности популярной. Понятие «биосфера» во многом совпадает с понятием или географической оболочки, или экосферы, и потому в таком смысле в этой книге не используется. В более узком смысле биосфера – одна из геосфер Земли. Это область распространения живого вещества, и именно в таком смысле мы рассматриваем биосферу.

Биосфера сконцентрирована в основном в виде относительно тонкой пленки на поверхности суши и преимущественно (но не исключительно) в верхних слоях океана. Она не может функционировать без тесного взаимодействия с атмосферой, гидросферой и литосферой, а педосфера без живых организмов просто не существовала бы.

Наличие биосферы отличает Землю от других планет Солнечной системы. Особо следует подчеркнуть, что именно биота, то есть совокупность живых организмов мира, создала экосферу в том виде, как она есть (или, точнее, какой она была до начала активной деятельности человека), и именно биота играет важнейшую роль в стабилизации экосферы. Кислородная атмосфера, глобальный круговорот воды и ключевая роль углерода и его соединений связаны с деятельностью биоты и характерны только для Земли. Биота играет значительную, если не определяющую, роль во всех глобальных биогеохимических циклах. В основном благодаря биоте обеспечивается гомеостазис экосферы, то есть способность системы поддерживать ее основные параметры, несмотря на внешние воздействия, как естественные, так и, в возрастающей степени, антропогенные.

Экология значительно расширила сферу своих исследований и в настоящее время рассматривает закономерности экосистемы в тесной связи с географией и деятельностью человека. Отсюда возникают общие геоэкологические закономерности на уровне биосферы.

Основу географических закономерностей составляют рельеф, единство (целостность) биосферы, сохранение равновесия в природе, зональность и азональность, полярная асимметрия и обмен веществ.

В 1974 г. известным американским экологом Б. Коммонером перечисленные закономерности были объединены в четыре закона:

1. Все связано со всем. Небольшой сдвиг в одном месте экологической системы приводит к непредвиденным последствиям всей экосистемы.

2. Ничто не исчезает бесследно и не исчезает в никуда. Вещество вступает в обмен веществ и переходит из одной формы в другую.

3. Природа знает лучше. Человек не знает, что, "улучшая" природу, может нарушить в ней закономерности развития.

4. За все приходится платить. Человек, безвозмездно и неграмотно используя природные ресурсы, загрязняет воздух, воду, почву. Должен быть предел бесхозяйственной деятельности человека. Все действия человека на равных условиях должны решаться в пользу природы. Будущее биосферы напрямую зависит от разума живущих в ней людей. Только сохраняя качество окружающей среды, человек может защитить себя как биологический вид.

Второй путь сохранения человечества - это возможность приспособления к неблагоприятным условиям среды. По биологическим законам природы, в случае отсутствия названных двух условий человеческое общество постепенно исчезнет. Поэтому сохранение равновесия на планете, изучение закономерностей единства географической оболочки помогают осуществлять жизненные процессы в пределах биосферы.

Биосфера - область исследования экологии, самая крупная экологическая система земного шара. Для более глубокого изучения географической оболочки и биосферы остановимся на некоторых геоэкологических понятиях.

Биосфера - благоприятная среда для существования живых организмов на Земле. Площади ее простираются от небольших нор, гнезд птиц и муравейников до крупных долин, биоценозов и экосистем (рис. 64).

Рис. 64. Цветок - место обитаиия бабочки

Географическая оболочка - единая территориальная система, занимающая весь внешний слой земного шара. Она охватывает все составные части биосферы. Общая глубина географической оболочки составляет 35-40 км.

Строение, характеристика и область исследования географической оболочки и биосферы сходны, это взаимодополняющие друг друга системы. Хотя биосфера уступает географической оболочке по объемам и размерам, в ней сосредоточены все живущие ныне на Земле организмы. Две крупные экосистемы являются объектом исследования экологии. Термин "географическая оболочка" введен в науку А. А. Григорьевым (1932), а "биосфера" - Э. Зюссом (1875).

Одним из основных свойств географической оболочки является неоднородность пространства. Пространственное распределение земной коры - результат длительных и сложных геобиологических процессов. Например, основной показатель географической оболочки - геосистемы, или природные ландшафты.

Экосистемы - природный комплекс, образованный совокупностью живых организмов и непрерывным потоком веществ и энергии на Земле.

Размеры и биомасса экосистемы могут быть самыми разными - от небольших до огромных территорий. Они охватывают надземную (атмосфера), подземную (литосфера) и водную (гидросфера) жизненные среды. Например, понятие "экосистема" применимо, начиная от капли воды до океана. По своей природе экосистемы делятся на естественные и антропогенные.

Одно из основных свойств "экосистемы" - разнообразие размеров. Высшей, глобального масштаба, экосистемой является биосфера. Простые экосистемы (биогеоценозы) характеризуются относительной однородностью. Как единая экосистема взаимодействуют в ней растительные сообщества, животный мир, физико-географические условия, а также постоянный поток энергии и обмен веществ.

Биогеоценоз соответствует географическому понятию "фация". Например: экосистемы берез, долин, степей и т. д.

Основные свойства, характерные для экосистемы, - это круговорот веществ и устойчивость биологической продуктивности.

Геосистема (географическая система) - единый комплекс природных компонентов, развивающихся в тесной взаимосвязи во времени и пространстве и взаимодополняющих друг друга как материальная система. Хотя геосистема и экосистема близки между собой, геосистемы по сравнению с экосистемами охватывают производственные, территориальные комплексы и область распространения производственных мест.

Высшая природная система географической оболочки - это ландшафт (рис. 65, 66).

Рис. 65. Горные луга



Рис. 66. Окжетпес. Горный ландшафт

Ландшафт - территории, однородные по происхождению и истории развития, обладающие единым географическим периодом формирования, однообразными почвой, рельефом, климатом, гидротермическими условиями, биоценозом.

Между экосистемами и геосистемами (ландшафты) существуют сходство и различия. В основе - понятия, описывающие природные комплексы. Но экосистема не имеет твердых территориальных границ, они условны. Например, леса Чарына, Или, экосистема Жетысуского (Джунгарского) Алатау и др.

В пределах географической оболочки выделяют ландшафтную среду. Это слой земли, охватывающий растительный и животный мир, нижние слои воздуха, надземные и подземные воды. Только в данном слое создана благоприятная среда для всех живых организмов. Если ландшафтная среда в зоне тундры занимает 5-10 м, то в тропических зонах достигает 100-150 м. Основные причины этого связаны с развитием рельефа и толщиной органического слоя.

Таким образом, в чем главные отличия геосистемы от экосистемы? Геосистема выполняет полицентральную функцию, а экосистема - биоцентральную, где основу составляют живые организмы.

Полное научное определение географических ландшафтов дал и описал их известный российский ученый П. П. Семенов-Тян-Шанский.

По его систематике различают первичный, частично природный, культурный и восстанавливающий ландшафты.

Если взять современные ландшафты на примере Казахстана, то можно встретить природные, антропогенные и культурные ландшафты.

Природные ландшафты - целинные природные комплексы, где, возможно, не ступала нога человека. Такие ландшафты в Казахстане можно встретить в районе высоких гор, в степных пустынных и полупустынных природных зонах.

Антропогенные ландшафты - это измененные земли, связанные с воздействием человека на природные комплексы непосредственно и косвенно, например появление пастбищ на месте вырубленных лесов. Иногда такие антропогенные ландшафты можно восстановить. Но неграмотное использование ландшафтов человеком превращает их в пустыни и такыры. По научным данным, крупнейшие экосистемы пустынь планеты Сахара, Гоби, Такламакан, Средней Азии - результат непосредственного или косвенного влияния человека. Сюда можно отнести тысячи гектаров непригодных земель Центрального Казахстана, районы Арала, Южного Казахстана с подверженными эрозии почвами (рис. 67).

Рис. 67. Приаральские земли, подверженные эрозии

Самая крупная экосистема земного шара-биосфера (сфера жизни). Ее эволюция развития и будущее связаны только с Землей. Заслуга создания целостного учения о биосфере принадлежит академику В. И. Вернадскому (1863-1945).

Основы его учения о биосфере, изложенные в 1926 г. в книге "Биосфера", сохраняют свое значение и в современной науке.

В книге ученый исследовал развитие, формирование и будущее жизни в биосфере, где основной движущей силой жизни является энергия Солнца. В целом образование, развитие и обмен веществ в биосфере рассматриваются с точки зрения возникновения органических веществ.

Географическая оболочка. Экосистема. Геосистема. Ландшафт.

1. Географическая оболочка и биосфера - взаимодополняющие единые экосистемы.

2. Существуют природные закономерности развития географической оболочки и биосферы.

3. Законы Б. Коммонера.

1. Что относится к географическим закономерностям?

2. В чем значение законов В. Коммонера?

3. Что такое природное равновесие?

1. Каково общее описание биосферы и ее движущей силы?

2. Что включает в себя географическая оболочка?

3. Какие виды экосистемы вы знаете?

1. В чем сходство и отличие гео- и экосистем?

2. Назовите типы ландшафта и его функции.

3. Есть ли будущее у не пригодных к использованию земель?

Предметом физической географии является географическая оболочка, или ландшафтная сфера, поскольку она представляет собой полый шар (точнее эллипсоид вращения), а ландшафтная — потому, что она состоит из ландшафтов или из ландшафта, понимаемого как совокупность земной коры, водной оболочки (гидросферы), нижней части воздушной оболочки (тропосферы) и населяющих их организмов. Географическая оболочка обладает большой степенью единства; она получает энергию как от Солнца, так и из внутриземных источников — радиоактивных элементов, содержащихся в земной коре. Все виды вещества и энергии проникают друг в друга и взаимодействуют. Жизнь в ее естественных проявлениях (поэтому космонавты — не в счет) возможна на Земле только в пределах географической оболочки, только она одна отличается означенными выше свойствами, а другие сферы Земли, лежащие как внутри ее, так и снаружи, ими не обладают.

Географическая оболочка (ландшафтная сфера) — очень тонкая пленка, но значение ее для человека неизмеримо велико. Он в ней родился, совершенствовался, достиг почетного звания «царя природы» и еще сравнительно до недавнего времени никогда не выходил из ее пределов. Поэтому естественно, что ландшафтную сферу люди должны знать особенно хорошо и посвящают ей особую науку — ф и з и ч е с к у ю географию. Они должны знать ее всю целиком, в основных ее проявлениях, в общих закономерностях, разнообразии, всех местных сочетаний условий, всех форм, которые она принимает, т. е., все типы ландшафта. Поэтому физическая география и делится на две части — общее землеведение и ландшафтоведение.

Границу между двумя частями физической географии нельзя провести точно, есть промежуточные области науки, которые можно отнести как к одной, так и к другой.

Общее землеведение и ландшафтоведение— это и есть то ядро физической географии, которое осталось после отделения от "нее частных или отраслевых наук.

Д.Л. Арманд (1968) понимал недоумение геологов о том, как геологию, имеющую бóльшее значение для народного хозяйства, чем все вместе взятые географические науки, записать в географические науки. Действительно, практическое значение геологии очень значимо и она может быть самостоятельной наукой, но по законам логики и систематики она все же остается наукой географической, поскольку изучает земную кору, а земная кора — одна из четырех геосфер, входящих в ландшафтную сферу (географическую оболочку) и является предметом физической географии. Купить лодки надувные , каркасные и всё необходимое оборудование для лодок, вы сможете на сайте moto-mir.ru. Также же имеется возможность выбора техники бывшего употребления.

Также объяснимо и возможное недоумение со стороны географов-стравоведов (или «физических страноведов»). Их науки вообще нет в этой схеме. Описывая «страны», т. е. государства, или их административные части, они вынуждены укладываться в границы, чуждые природе, искусственные, постоянно меняющиеся. Они делают полезное дело для учебного процесса, для справочных изданий, для туризма, где настоятельно необходимы описания именно в государственных границах. Но сделать научные обобщения применительно к какой-либо стране, разделяющей на части горы и равнины, среди которых она расположена, — это нелогично, исходя из общности развития компонентов географической среды. Иначе обстоит дело в экономической географии. С точки зрения экономико-географа, государственные границы представляют собой реальные рубежи различных экономических систем. Поэтому экономическое страноведение безусловно является закономерной отраслью науки.

Требует ясности также и вопрос о внешних границах физической географии, собственно — о ее «спорных» границах с геофизикой и геохимией. Во-первых, с пространственной точки зрения эти науки изучают весь земной шар, простирающийся и во вне и внутрь неизмеримо дальше тонкого слоя, на который распространяется физическая география. Во-вторых, в пределах этого слоя физическая география рассматривает как живую, так и мертвую природу, в то время как геофизика и геохимия в основном ограничиваются последней. В-третьих, геофизика и в меньшей степени геохимия соответственно изучают общие физические и химические явления независимо от места и времени, в которых они проявились, а физическая география интересуется именно данным местом и временем и особым отпечатком, который накладывают на них конкретные сочетания местных условий. Конечно, находятся геофизики и геохимики, которые, переходя границу, разрабатывают чисто географические проблемы, за что мы, географы, должны быть им только благодарны. В принципе так же (за исключением первого пункта) решается и вопрос о границе географии и биологии. Только, разумеется, биология решает исключительно вопросы живой и неживой природы совместно.

В ряде наук, изучающих вложенные друг в друга материальные системы, физическая география твердо нашла свое место. Этот ряд (разделяя астрономию на три науки, из которых она состоит) имеет следующий вид:

Не раз ставился вопрос о принятии в состав географических наук астрогеографию (или планетологию). Оба эти названия по Д.Л. Арманду (1988) неудачны. Первое потому, что речь вовсе не о звездах, второе — потому, что планетологией разумно назвать науку, аналогичную геологии, изучающую недра, твердые тела планет. А науку, аналогичную географии, следовало бы назвать «планетографией», памятуя при этом, что ее задачи не сводятся к одному лишь описанию, но к всестороннему изучению ландшафтных сфер планет, так же как задачи географий давно уже не сводятся к описанию Земли.

Планетография распадается на лунографию, марсографию и т. д., хотя почему-то их называют селенологией, ареологией и т. д., применяя греческие названия к планетам, которые на европейских языках носят названия, происходящие от латинских корней. Но как бы они ни назывались, изучение ландшафтных сфер планет —это такая грандиозная задача, что она, конечно, заслуживает быть выделенной в отдельную науку. Хотя, несомненно, именно географы будут первыми поставщиками кадров лунографов, по крайней мере до тех пор, пока в наших вузах не будут созданы лунографические факультеты.

Несомненно также, что и краеведение имеет отношение ко всем отраслям географии, но также оно имеет отношение и к этнографии, истории, археологии. Такой широкий фронт интересов мешает ему подняться до уровня настоящей науки, сохраняя за ним очень важное «звание» общественного движения и очень нужную задачу популяризации знаний. Участие в краеведческом движении, в его географической части — прекрасная прикладная область работы географов.

Не смотря на общность характеристик, различие между географической оболочкой и ландшафтной сферой существует.

Географическая оболочка представляет сравнительно мощную (20-35 км) зону взаимопроникновения и взаимодействия литосферы, атмосферы и гидросферы, характеризующуюся проявлениями органической жизни. Изучением географической оболочки Земли, её структуры и развития занимается физическая география. Ландшафтная сфера — это ограниченная по вертикали (от нескольких до 200-300 м) зона прямого соприкосновения и активного взаимодействия литосферы, атмосферу и гидросферы, совпадающая с биологическим фокусом географической оболочки. На океанах ландшафтная сфера приобретает двухъярусное строение. Изучением ландшафтной сферы Земли занимается особая наука — ландшафтоведение. Ландшафтоведение принадлежит к числу частных физико-географических наук, аналогичных геоморфологии, климатологии и гидрологии, и не является синонимом региональной географии.

Географическая среда — та часть ландшафтной оболочки Земли, внутри которой возникла и развивается жизнь человеческого общества (Анучин, 1960).

Элементы взаимопроникновения и взаимодействия атмосферы, гидросферы и литосферы, как и проявления органической жизни, свойственны всей толще географической оболочки, однако непосредственное, прямое соприкосновение их, сопровождающееся вспышкой жизненных процессов, присуще только одной ландшафтной сфере.

Ландшафтная сфера — это совокупность ландшафтных комплексов, выстилающих сушу и океаны. В отличие от географической оболочки, ландшафтная сфера имеет небольшую мощность — не свыше нескольких сот метров. В ландшафтную сферу входят: современная кора выветривания, почва, растительность, животные организмы и приземные слои воздуха. В результате прямого соприкосновения и активного взаимодействия атмосферы, литосферы и гидросферы здесь образуются специфические природные комплексы - ландшафты.

Мощность ландшафтной сферы Земли оценивается по-разному, но едино мнение, что она возрастает от полюсов к экватору. С одной точки зрения, В тундре и арктических пустынях ее мощность в среднем не выходит за пределы 5-10 м под влажными гилеями, где идет на глубину 50-60 м, а над поверхностью почвы на такую же высоту и более поднимается древесный полог, мощность ландшафтной сферы достигает 100- 150 м. В этом возрастании мощности от полюсов к экватору есть известная аналогия между ландшафтной сферой и географической оболочкой Земли.

С другой точки зрения, верхней границей ладшафтной сферы (как предмета физической географии), является тропопауза — поверхность соприкосновения тропосферы со стратосферой. В слоях, лежащих ниже тропопаузы, состав воздуха постоянный, температура в общем падает с высотой, здесь дуют переменные ветры, располагаются облака водяного пара и происходит подавляющее большинство метеорологических явлений. Всего этого нет выше, в стратосфере и ионосфере. Тропопауза лежит на высоте от

9 км (близ полюсов) до 17 км (у экватора) над уровнем океана.

Соответственно, за нижнюю границу ландшафтной сферы принимается внутренняя граница земной коры, так называемый предел (граница) Мохоровичича. Выше него происходят процессы перемешивания земной толщи в ходе горообразования, циркулируют ювенильные (происходящие из глубинных пород) воды, образуются местные очаги расплавов, дающие начало большей части вулканов, и очаги местных землетрясений. Раздел Мохоровичича — пластичная зона, в ней вещество Земли пребывает в вязком состоянии и гасятся внешние возмущения, за исключением продольных волн землетрясений. Предел Мохоровичича находится на глубинах от

3 км (под океанами) до 77 км (под горными системами).

Своеобразный двухъярусный вариант ландшафтной сферы возникает в Мировом океане, где нет условий для прямого соприкосновения и активного взаимодействия сразу всех четырех основных оболочек Земли: литосферы, атмосферы, гидросферы и биосферы. В океане наблюдается прямое взаимодействие лишь трех геосфер и, причем, в отличие от суши, - в двух разобщенных по вертикали местах: на поверхности океана (атмосферы с гидросферой и биосферой) и его дне (гидросферы с литосферой и биосферой). Тем не менее, элементы литосферы присутствуют и на поверхности океана в виде растворенных и взвешенных частиц.

В итоге взаимодействия гидросферы с атмосферой и биосферой верхние слои воды в Мировом океане насыщены газами атмосферы и пронизаны солнечным светом, что создает на поверхности океанов благоприятные условия для развития жизни. Поглощение солнечного света и особенно красной части его спектра, необходимой для фотосинтеза, происходит в морской воде сравнительно быстро, вследствие чего даже в морях, отличающихся прозрачной водой, растительные организмы исчезают на глубинах 150-200 м, а глубже обитают микроорганизмы и животные, для которых вышележащий слой фитопланктона служит основным источником питания. Именно этот нижний предел фотосинтеза и следует считать нижней границей поверхностного яруса ландшафтной сферы в океанах.

Нижний, донный ярус ландшафтной сферы в океанах формируется даже в глубоководных впадинах и желобах. В жизненных процессах нижнего яруса ландшафтной сферы океанов исключительно большую роль играют бактерии, обладающие огромной биохимической энергией.

По окраинам океанов, в пределах материковой отмели и в верхней части материкового склона, верхний и нижний ярусы ландшафтной сферы сливаются между собой, образуя одну ландшафтную сферу, насыщенную органической жизнью.

Ландшафтная сфера составляет предмет изучения особой физико-географической науки - ландшафтоведения, которая стоит в одном ряду с частными физико-географическими науками (гидрологией, климатологией, геоморфологией, биогеографией). Все они объектом изучения имеют отдельные компоненты - слагаемые географической оболочки: гидросферу, атмосферу, ландшафтную сферу, рельеф, органический мир. Поэтому нельзя согласиться с широкораспространенным мнением о том, что ландшафтоведение представляет собой синоним региональной (частной) физической географии.

Степень изменчивости природных компонентов ландшафтов во времени различна. Наибольшей консервативностью отличается литогенная основа, особенно ее геологический фундамент, наиболее крупные черты рельефа — геотекстуры, обязанные своим происхождением силам общепланетарного (космического) масштаба, и морфоструктуры, возникшие в результате взаимодействия эндогенных и экзогенных сил, при ведущей роли первых — движений земной коры. Морфоскульптурные черты рельефа, обязанные своим происхождением экзогенным процессам, взаимодействующим с другими рельефообразующими факторами, подвержены значительно более быстрым изменениям. Быстрой изменчивостью во времени обладают также климат, почва и особенно биоценозы. Современный облик этих компонентов — результат событий в основном последней геологической эпохи.

Особенности ландшафтной сферы

Ландшафтная Сфера обладает еще одной характерной чертой — сложной и подвижной структурой: и толщи земной коры, и воды океана, и воздушные массы постоянно изменяются в пространстве и времени. К тому же в органическом мире (царство растений и царство животных) наблюдаются проявления самой сложной материи — живой. Вещество в пределах ландшафтной сферы отличается крайним разнообразием, множество химических соединений существует в этой тонкой пленке в самых критических условиях температуры и давления. Выше и ниже ландшафтной сферы наблюдается другая картина: однородные массы и условия простираются здесь на больших пространствах, границы их немногочисленны и постепенны.

Хотя в ландшафтной сфере твердые, жидкие и газообразные тела довольно резко разделены, они все время проникают друг в друга: пыль и водяные пары насыщают атмосферу, грунтовые и ювенильные-воды и воздух пронизывают земную кору, наносы, растворенные твердые вещества и тот же воздух содержатся в воде всех океанов. И во все сферы проникает жизнь. Недаром А.А. Григорьев назвал ландшафтную сферу «сферой взаимодействия атмосферы, литосферы, гидросферы, биосферы, радиации и других категорий энергии...».

Что касается энергии, то основных ее видов два: электромагнитная (лучистая) энергия Солнца, притекающая на внешнюю границу Земли с интенсивностью 2 кал/см 2 мин, и энергия радиоактивного излучения горных пород, слагающих земную кору, поток которой через поверхность суши и океанов, направленный вверх, достигает 0,0001 кал/см 2 мин. Как видим, второй поток исключительно мал по сравнению с первым, но проявления внутренней энергии Земли велики и сравнимы с деятельностью солнечной энергии. Все дело в условиях, в которых энергия выделяется. Внутриземная энергия, выделяющаяся в виде тепла в толще массивных горных пород, производит в них коренные изменения. Она расплавляет одни, заставляет расширяться другие, а так как их сдавливают лежащие выше слои, то они изгибаются, образуют складки, вспучиваются, иногда медленно, на протяжении миллионов лет, иногда бурно, разряжая внутренние напряжения разрушительными землетрясениями. При этом они создают рельеф земной поверхности, материки и океаны, горы и тектонические впадины. Они почти всегда работают против силы тяжести, вздымая на километры триллионы тонн горных пород.

Лучистая энергия по самой своей природе не способна непосредственно проникать в непрозрачные среды. Поэтому она входит в твердую земную кору только на глубину до

20 м, благодаря теплопроводности горных пород, а глубже — вместе с погребенными горючими ископаемыми. На поверхности Земли она нагревает массы воды и воздуха, которые при этом всплывают в верхние слои, вызывая, в свою очередь, приходящие им на смену течения в атмосфере и океане. Эти течения в виде ветра, морского прибоя и увлекаемых с воздушными потоками и вновь низвергаемых осадков постоянно обтачивают, обрабатывают земную кору. Их усилия всегда выражаются в денудации этой последней, т. е. сглаживании, сполаживании гор, заполнении и заилении котловин и океанов. Работая всегда в направлении силы тяжести, они стремятся придать Земле однообразную форму сфероида вращения.

Но тектонические движения вновь и вновь нарушают ровную поверхность, не давая солнечной энергии довести до конца ее работу. Причем внутренние (эндогенные) силы поднимают земную кору большими массами, не нарушая цельности ее дневной поверхности (за исключением, правда, вулканов), а внешние (экзогенные) стремятся нивелировать, все время обновляя эту поверхность.

На Земле есть и другие источники энергии: энергия приливов — преобразованная энергия вращения Земли в поле тяготения Луны и Солнца, которая, постоянно расходуясь, замедляет это вращение, энергия опускания наиболее тяжелых горных пород к центру Земли, энергия экзотермических (выделяющих тепло) химических реакций, которая действует вместе с радиоактивным распадом, и некоторые другие, не играющие большой роли.

В течение XX века уточнялись наши представления о распределении тепла по поверхности Земли. Трудами В.В. Докучаева, А.И. Воейкова и Л.С. Берга не только была приведена воедино картина тепловых поясов зонального строения Земли, но и было объяснено в основном происхождение каждой зоны, связанное с распределением по поверхности шара солнечной энергии и всеобщей циркуляции атмосферы.

Следующее уточнение в теорию зональности внес А.А. Григорьев, обратив внимание на чередование на Земле влажных и сухих зон. Зоны повышенной влажности повторяются в каждом полушарии по три раза. Особенно много осадков выпадает около 70º и 30º, а также близ экватора (рис. 2). А температура от полюса к экватору повышается почти непрерывно. Различные сочетания тепла и влаги обусловливают разные условия развития растительности, причем она развивается тем лучше, тем богаче и обильнее, чем больше соответствие между теплом и влагой, а также чем больше общее количество энергии, получаемой местностью. М.И. Будыко нашел для этой закономерности количественное выражение. Он показал, что процветание растительности зависит от величины радиационного индекса сухости R /Lr , где R — солнечная радиация, r — осадки, L — коэффициент скрытой теплоты испарения. От полюсов к экватору это отношение сначала возрастает (в связи с возрастанием солнечной радиации R ), затем падает (там, где начинается зона повышенных осадков и увеличивается r ), затем снова возрастает до уровня более высокого, чем в предыдущем случае, вновь падает и т. д. При этом там, где отношение меньше единицы, т. е. тепла поступает меньше, чем может испариться (R Lr ), т. е. тепла приходит больше, чем нужно для испарения всей выпадающей воды. Излишек тепла сильно нагревает земную поверхность, наступает царство пустынь. Вместе с растительностью то становится богаче, то вновь угасает и животный мир, сменяются плодородные и скудные почвы, расцветает и беднеет сельское хозяйство. И это повторяется все с большей силой в каждом тепловом поясе по мере приближения к экватору. А.А. Григорьев и М.И. Будыко назвали открытое ими явление «периодическим законом зональности». Конечно, это только схема, и на реаальной Земле многое искажает это простое правило. Таково свойство всех географических законов, которые не так непреложны, как законы физики, и, может быть, поэтому лучше говорить только о географических закономерностях.

А как же обстоит дело с Мировым океаном? Есть.ли там широтная зональность? Тепловые пояса, безусловно, есть, но более дробное деление вряд ли можно означить, зато четко выражена вертикальная ярусность. Жизнь простирается на гораздо большую глубину, чем на суше, причем одни ее формы располагаются над другими. Отчасти подобное положение существует в горах, но там высотные ландшафты помещаются как бы на разных ступенях лестницы и их все же можно изобразить на карте, в то время как морские ландшафты поддаются изображению только на профиле.

Географ И.М. Забелин советует всегда помнить, что ландшафтная сфера (по его терминологии — биогеносфера) трехмерна, поскольку имеет глубину. Он делит ее на объемные, а не площадные единицы; особенно много И.М. Забелин находит их, в море.

К сожалению, объемным районированием океана географы занимаются еще мало, хотя будущее океана, как главного кормильца человечества, подлежащего заботливому сохранению, заслуживает более пристального внимания. Пока же интересы географов относятся преимущественно к суше, которую они делят, т. е. районируют в первом приближении, как двухмерную площадь.

Районирование суши одна из весьма важных задач физической географии в области изучения ландшафта. Простым делением Земли на природные зоны уже нельзя ограничиться, поскольку не все факторы в природе зональны. Например, общие черты рельефа или состав горных пород могут быть одинаковыми на крайнем севере и под экватором. Когда природная зона проходит через горный хребет, все ее свойства меняются. Если горы высоки, она даже может смениться другой природной зоной, которая на равнине проходит в гораздо более высоких широтах. Когда природная зона пересекает песчаные пространства, меняются ее почвы, они становятся супесчаными, меняется растительность, например, еловым лесам приходят на смену сосновые, появляется легкая холмистость — результат образования дюн, весь облик местности становится суше, благодаря тому, что дождевые воды не застаиваются на песке. Словом, мы вступаем в песчаный вариант той же природной зоны. В этом случае говорят, что на зональные факторы наложились азональные. Действие последних также должно быть изучено, а для этого необходимо их сперва нанести на карту. При районировании нужно придерживаться определенного порядка, определяемого соподчинением компонентов (составляющих) ландшафта. Изменение одних компонентов чрезвычайно сильно отзывается на других, наоборот, обратное действие бывает лишь слабым и косвенным. Поэтому не все компоненты имеют в природе равное значение, они разделяются на определяющие (ведущие) и определяемые (ведомые).

В такой примерно ряд можно уложить составляющие ландшафта. Каждый вышележащий элемент этой схемы является определяющим по отношению к нижележащему. Земная кора и атмосфера имеют равные права, потому что каждый из них имеет независимый источник энергии и формируется относительно самостоятельно. Почва помещена в самом низу под животным миром, потому что примерно 9 / 10 последнего составляют низшие организмы, живущие в почве и создающие ее в ходе своего обмена веществ.

При физико-географическом районировании всегда выделяются участки в чем-либо схожие, родственнее по природным условиям. Для любого хозяйственного начинания необходимо знать, на какую территорию можно распространить то или иное мероприятие и где лежат его естественные границы. Физико-географическое районирование необходимо, например, для размещения сельскохозяйственных культур и пород скота по территории страны, для отвода земель под мелиорацию, для отбора лесов, подлежащих рубке, для борьбы с эрозией, для постройки курортов, для выбора районов нового заселения, для научных целей и многого другого. Для каждого мероприятия приходится обращать внимание на свои, особые черты природы. Было бы нелепо выбирать климатические условия для больных туберкулезом по тем же признакам, как и для выращивания арбузов. Поэтому районирование для каждой отдельной цели будет в каждом случае свое.

Некоторые географы думают, что районирование заложено в самой природе, что нужно только внимательно посмотреть, чтобы «заметить» границы. Это — заблуждение, которое основано на естественном стремлении людей схематизировать, упрощать природу. Многие изменения в природе, например, климатические изменения, происходят не резко, а достаточно постепенно. Поэтому так же постепенно изменяются и все зональные признаки: почвы, растительность, зависящие от климата. Рельеф азонален и накладывается на ту зональность самым непредсказуемым (прихотливым) образом. Многие границы его тоже постепенны: например, области отступания ледника или моря. А те грани-цы, которые кажутся резкими, оказываются таковыми лишь в мелком масштабе. При укрупнении карты и они расплываются; например, берега — границы морей — лишь на тех картах изображаются линией, на которых можно пренебречь зоной прилива-отлива. При таких условиях нельзя с уверенностью сказать, где кончается один тип ландшафта и где начинаете» другой, надо ли выделить на местности 5 типов или 7. Чтобы избежать неопределенности, прибегают к количественным признакам. Условливаются, например, выделить в особый тип местности безлесные низменности, покрытые черноземной почвой. Безлесными считать территории, на которых лес занимает не больше 3% площади, низменностями — равнины не выше

200 м над уровнем моря, а черноземами — почвы, содержащие не меньше 4% гумуса. Вот тогда выделенная территория получает определенность и может быть установлена с точностью, которая зависит только от степени ее изученности. Разумеется, это достигается благодаря введенным нами условностям. Если бы мы договорились считать за нижний предел тучности чернозема не 4, а, скажем, 5%, то и граница, проведенная по почвам, и вся карта районирования получилась бы несколько другая. Обычно в качестве предельных цифр выбирают те, которые имеют хозяйственное или иное значение, а если такие неизвестны, то просто круглые цифры.

Как правило, границы для взятых нами признаков не совпадают друг с другом и районировать приходится по ступеням — скажем, сперва отделить низменности от возвышенностей (1-я ступень), потом в пределах низменностей выделить безлесные участки, отделив их от лесов (2-я ступень), потом подразделить по почвам на черноземы, каштановые почвы, солонцы и т. д. (3-я ступень). Проделав эти операции, мы как бы постепенно врастаем в ландшафт. Если объектом районирования является весь Земной шар, то мы идем примерно от определяющих компонентов к определямым. Вначале выделяем пояса, которые обладают единством только в термическом отношении, потом в их пределах — страны, обладающие единством и в термическом и в тектоническом отношении, потом отрезки зон в пределах стран — это единство тепла, влаги и тектоники, затем провинции по геоморфологическим признакам; здесь к числу компонентов, которые стали едиными, присоединяется рельеф, далее—растительность, почвы в т. д., пока не получаем вполне комплексные, ландшафтные единицы.

Таким образом, природа существует объективно, а деление ее — всегда обобщение, производимое человеком, результат деятельности его разума. Это, конечно, не исключает того, что природа местами подсказывает географу, какие типы ландшафта имеет смысл выделять. Когда какая-нибудь местность, относительно однородная, тянется на большое расстояние, то ясно, что она заслуживает выделения в качестве особого типа, имеющего значение для большинства целей, которые могут быть поставлены. Мы тогда можем уверенно нанести на карту очаг или ядро данного типа, а затем уже можем договориться относительно признака, по которому проводим границу между этим и соседними типами.

Однако не все географы поступают, как описано выше. Иногда границы проводят сразу, «по комплексу признаков». Но комплекс — это понятие неопределенное, районирование получается непоследовательным и произволъным, зависящим от наличия у автора интуиции и глазомера.

Другое недоразумение связано с так называемыми «основными» и «наименьшими» таксономическими единицами. Существует представление, что ландшафт Земли подобен полу, выложенному плитками. Они могут быть большие и маленькие, но всегда одного ранга и ложатся точно впритык. Границы более крупных районов, которые объединяют несколько соседних «плиток» и более мелкие, на которые они разбиваются, не столь важны и не столь заметны. При этом ссылаются на аналогию: все организмы построены из клеточек, а химические вещества — из молекул. Существует, кроме того, предел деления, ниже которого географы не опускаются. Они принимают некоторые единицы за далее неделимые и закрывают глаза на существующие в них внутренние различия. Эти представления — опять же упрощение. Сравнение не доказательство, клеточки здесь не подходят. Ландшафтная сфера состоит из земной коры, мирового океана, атмосферы, не имеющих клеточного строения. А если они не имеют его порознь, то тем более не будут иметь вместе, переплетаясь в сложные сочетания, образующие ландшафт. Их переплетения имеют различный размер, степень сложности и выраженности и степень четкости границ. Поэтому на Земле нельзя выделять какую-то «основную» ступень районирования, на карте одинаково важны и крупные и самые мелкие объекты, все они заслуживают изучения и все вместе образуют пестрый ковер, который мы называем ликом Земли.

Что касается наименьших единиц, то части самой маленькой из них всегда отличаются друг от друга по какому-нибудь признаку. На болоте могут быть выделены кочки, окна водной поверхности, участки со своеобразной растительностью, а на склоне балки каждый горизонт отличается от следующего степенью увлажнения, количеством смываемого или намываемого материала. Известный лесовед и ботаник В.Н. Сукачев первоначально считал мельчайшей однородной и неделимой единицей биогеоценоз, а когда изучил его подробнее, пришлось ввести новую единицу — «парцеллу», и таких единиц оказалось в биогеоценозе с десяток или более. Конечно, правы те ученые, которые говорят, что где-то надо остановиться. Но где именно — это опять-таки определяется не самой природой, а только уровнем развития науки и запросами практики, требования которой к детальности изучения природы все возрастают.

Понятия географическая оболочка, ландшафтное пространство, ландшафтная оболочка, природный территориальный комплекс, биосфера, ноосфера, витасфера

Одним из важнейших свойств нашей планеты как космиче­ского тела является ясно выраженное ее оболочечное строение. Начиная от центра Земли к периферии (ближнему и дальнему Космосу) последовательно сменяют друг друга внутреннее и внешнее ядра, нижняя и верхняя мантии, земная кора с базальто­вым, гранитным и осадочным слоями, гидросфера с абиссальной, батиальной и литоральной зонами, биосфера с почвенным слоем (педосферой) и биостромом (зоной концентрации, растений и жи­вотных у поверхности Земли), ландшафтная сфера, включающая в себя кору выветривания, почвы, биостром и приземные слои воздуха, географическая оболочка, простирающаяся от астено­сферы до озонового экрана, и, наконец, атмосфера с тропосфе­рой, стратосферой, мезосферой, термосферой и экзосферой .

Все многообразие сфер, образующих планету Земля сложилось в ходе длительной эво­люции и разбивается на две большие группы (табл. 1).

Таблица. 1

Элементы структурной и функциональной групп образующих планету Земля.

Вторая группа возникла в ходе взаимодействия первых, поэтому она называется функциональной. Характерной чертой этой группы является то, что все, ее элементы образуются в контактных зонах и свою внутреннюю структуру формируют за счет природных тел других сфер, располагающихся вблизи той или иной контактной зоны.

Географическая оболочка Земли – сложный природный комплекс, возникающий в зоне взаимопроникновения и взаимодействия литосферы, атмосферы и гидросферы. Географическая оболочка формируется под воздействием солнечной энергии и характеризуется развитием органической жизни. В нее входит нижняя часть атмосферы (тропосфера) (10 км), вся гидросфера, верхний слой литосферы (на материках – 4 – 5 км, на океанах 11 – 12 км), соответствующий оболочке осадочных пород и биосфера. Общая мощность географической оболочки – 20 – 35 км .

Критерием обособления ландшафтного пространства является наблюдаемая в нем и свойственная только ему интеграция всех состояний вещества, характерных для земной поверхности: абиогенного – твердого, жидкого, газообразного и живого. Ландшафтное пространство занимает ту контактную позицию в географической оболочке, в которой наиболее тесно смыкаются, пронизывают друг друга, осуществляют взаимный обмен веществом и энергией литосфера, атмосфера, гидросфера и биосфера. Если первые три составляющие большей своей частью выходят далеко за пределы контактного ландшафтного пространства, то биосфера, основной своей массой сконцентрирована именно в нем. Ландшафтное пространство облекает всю нашу планету. Будучи трехмерным (объемным) образованием, оно вместе с тем имеет «пленочный», пограничный характер, т. е. распластано по земной поверхности.

Впервые как самостоятельное природное тело ландшафтная оболочка (сфера) была вы­делена Воронежским географом Федором Николаевичем Мильковым в 1959 году. Ландшафтная оболочка представ­ляет собой тонкий слой прямого соприкосновения и энергичного взаимодействия верхних слоев земной коры, нижних слоев тро­посферы и водной оболочка Земли. Вся она (от своей верхней границы до нижней) пронизана жизнью и может быть определена как биологический фокус географической оболочки .

Ландшафтная оболочка - место трансформации солнечной энергии в различные виды земной энергии, среда, наиболее благоприятная для развития жизни. Ландшафтная оболочка - это совокупность ландшафтных комплексов, выстилающих сушу, океаны и ледниковые покровы .

В ландшафтную оболочку входят:

Современная кора выветривания;

Приземные слои воздуха;

Растительность;

Животные организмы.

При непосредственном участии или под контролем живых организмов здесь происходит множество процессов энерго-массообмена, результатом которых становятся специфичные ландшафтные тела, которые не могут возникнуть и существовать в каких-либо иных условиях.

Ландшафтная оболочка является относительно малой по объему частью географической оболочки, но она наиболее сложно организованная, гетерогенная, энергетически самая активная и наиважнейшая в экологическом отношении. В обобщенном виде ее определение может быть следующим: ландшафтная оболочка - тонкий приземный слой географической оболочки, представляющая зону контакта и активного энерго-массообмена литосферы, атмосферы, гидросферы и биосферы, питаемую лучистой энергией Солнца и энергией внутриземного происхождения, сферу наивысшего сгущения жизни на Земле, зарождения, развития и современного существования человечества и земной цивилизации .

Ландшафтная оболочка - одна из наиболее древних функциональных оболочек. Она возникла в начале геологического этапа развития Земли и была представлена абиогенной корой выветривания, контактирующей с достаточно тонким слоем приземной атмосферы. В ходе своей эволюции, и особенно с появлением на Земле живого вещества, ландшафтная сфера приобрела сложную внутреннюю структуру, перейдя в разряд биокосных систем, т.е. систем, в строении которых равнозначную роль играют как орга­ническая, так и неорганическая материи.

Можно выделить две основные функции ландшафтной оболочки.

1. В ее пределах происходит преобразование солнечной энергии в другие виды, а также рассеивание этой энергии не только в границах ландшафтной оболочки, но и всей гео­графической оболочки в целом.

2. В пределах ландшафтной оболочки создаются наи­более благоприятные условия для возникновения и существова­ния жизни .

Каковы вертикальные границы ландшафтной оболочки? Верхняя граница ландшафтной оболочки совпадает с верхней границей приземных слоев воздуха. Эти слои, средней мощно­стью 30-50 м, находятся под непосредственным воздействием подстилающей поверхности Земли. Для их толщи характерны су­точные колебания температуры и влажности воздуха, хорошо развитая термическая конвекция, кроме того, здесь наблюдаются повышенная запыленность воздуха и наличие спор и пыльцы растений. Мощность слоя определяется характером подстилающей поверхности. В высоких широтах, где эта поверхность достаточ­но однородна (снег, лед), верхняя граница располагается на высо­те первых десятков метров. В низких широтах подстилающая по­верхность представлена влажными тропическими лесами, где только высота древесного яруса достигает 70-80 м, и поэтому граница располагается уже на высоте первых сотен метров.



Нижняя граница совпадает с нижней границей коры вывет­ривания, которая представляет собой продукты прямого воздей­ствия воздуха, воды, растительности и животных на горные по­роды. Кора выветривания распространена повсеместно и варьи­рует от нескольких метров в высоких широтах до нескольких де­сятков метров, а иногда сотен, в тропиках.

Таким образом, средняя мощность ландшафтной оболочки равна нескольким десяткам метров, причем при движении от эк­ватора к полюсам ее мощность уменьшается .

Ландшафтная оболочка в ходе своей длительной эволюции породила человечество, на протяжении тысячелетий была колыбелью его цивилизации и ныне является сферой обитания человека и объектом его труда. Со временем ландшафтная оболочка стала антропогенной, техногенной и интеллектуальной и духовной .

Целостность ландшафтной оболочки обеспечивается ее внут­ренней структурой, т.е. совокупностью ее частей, характером их взаимосвязей и взаимодействия. Различают три основных струк­турных уровня ее организации:

1. Вещественный (геокомпонентный);

2. Вертикальный (радиальный);

3. Лате­ральный (комплексный).

Вещественному уровню принадлежит важная роль в обособлении отдельных частей (геокомпонентов) ландшафтной сферы. Геокомпоненты - это совокупность веществ однородных по сво­ему химическому, физическому, биологическому составу. Различают следующие компонен­ты:

Горные породы (минералы);

Растения;

Животные.

За каждым из компонентов стоит определенный тип вещества. Кроме того, к компонентам относят рельеф и климат (микроклимат), не имеющие под собой какого-либо вещественного содержания.

Геокомпоненты в ландшафтной оболочке формируют четыре контрастные среды: земную кору (горные по­роды и минералы), воздушную тропосферу (воздух) и гидросферу - в твердом (лед) и жидком (вода) состояниях. В формировании внутренней структуры ландшафт­ной оболочки принимают участие не все среды одновременно, а лишь отдельные их комбинации, разобщенные территориально.

На Земле наблюдается пять комбинаций прямого со­прикосновения контрастных сред. Комбинации отличаются друг от друга интенсивностью и формами взаимного обмена веществом и энергией, и, следова­тельно, в каждой из них формируется особая ландшафтная обста­новка, принципиально отличающаяся от других. Вследствие это­го внутри ландшафтной оболочки формируются особые ее вариан­ты (табл. 2).

Таблица 2

Комбинаций прямого со­прикосновения контрастных сред ландшафтной сферы

Наземный вариант формируется в условиях суши, где осуществляется контакт литогенной и воздушной сред. Это наиболее изученный в настоящее время вариант ландшафтной сфе­ры.

Водный, или водноповерхностный, вариант охватывает поверхностную часть вод Мирового океана и имеет максималь­ную площадь среди всех других вариантов. Включает в себя кро­ме приземных слоев воздуха, также верхнюю толщу вод океана до глубины 200 м, так как именно в этих пределах возможен про­цесс фотосинтеза.

Донный вариант весьма своеобразен. Здесь атмосфера за­мещена водой, а почвы - илами. Полностью отсутствует свет. Возникает он на дне Мирового океана, охватывая его батиальную и абиссальную зоны.

Земноводный вариант по совокупности образующих его компонентов наиболее сложный. Он охватывает все поверхност­ные, воды (реки, озера и др.), морские мелководья (до глубины 200 м), а также собственно литоральную зону, являющуюся ядром этого варианта.

Ледовый вариант включает в себя ледники суши и много­летние морские льды. И те, и другие - производные климатиче­ских, условий. Их основная область распространения - высокие широты обоих полушарий и высокогорья Земли.

Вертикальная структура ландшафтной оболочки выражается через набор ее ярусов, сменяющих друг друга снизу вверх (от центра Земли к ее периферии). При движении в этом направлении в границах ландшафтной сферы хорошо обо­собляются, но при этом активно взаимодействуют следующие ее горизонты, или ярусы:

1) литогенный, совпадающий в основном с корой выветрива­ния;

2) почвенный;

3) биогенный, образованный растениями и жи­вотными;

4) воздушный, с органическими включения­ми: спорами, пыльцой, насекомыми, птицами и т.д.

Данная вертикальная структура характерна только назем­ному варианту ландшафтной сферы. В других вариантах она но­сит иной, резко отличный от представленного, характер.

3. Горизонтальная структура ландшафтной оболочки связана с неравномер­ным распределением солнечной радиации по поверхности Земли, а также, сложным вещественным и гипсометрическим устройством ее поверхности. Подобный характер горизон­тальной структуры выражается в формировании разнообразных ландшафтов .

Помимо понятия «ландшафтная оболочка», в ландшафтоведении закрепилось понятие природный территориальный комплекс (ПТК). Он определяется как пространственно-временная система географических компонентов, взаимообусловленных в своем размещении и развивающихся как единое целое. ПТК характеризуется сопряженностью с некоторой территорией в рамка пространсттвенных пороговых критериев и обозначает класс природных географических систем локальной и региональной размерности (рис. 2) .

ПТК - ландшафтное понятие, однозначно интерпретируемое практически во всех трудах ландшафтоведов как совокупность взаимосвязанных природных компонентов (литогенной основы, воздушных масс, природных вод, почв, растительности и животного мира) в форме территориальных образований различного иерархического ранга .

Ландшафтные ПТК – это саморегулируемые и самовосстанавливаемые системы взаимосвязанных компонентов и комплексов функционирующие под воздействием одного или нескольких компонентов, выступающих в роли ведущего фактора.


Рисунок 2. Геосистема (I) и природный территориальный комплекс (ландшафт) (II) горного массива

Термин «биосфера» впервые употреблен Э. Зюссом в его классическом труде «Лик Земли» (1875), а после него и рядом других исследователей, но ни достаточно строгой формулировки этого понятия, ни точного определения границ биосферы, ни исследования значения биосферы в общей энергетике и геохимической работе Земли этими авторами сделано не было. Лишь В. И. Вернадский, пришедший на основании своих геохимических исследований к выводу об исключительно большом значении живых организмов в протекании геохимических процессов на земной поверхности и в формировании лика Земли, сформулировал общее учение о биосфере в своей работе 1926 года «Биосфера» .

По Вернадскому, биосфера это оболочка земли состав которой в основных чертах предопределены деятельностью живых существ: вся тропосфера, гидросфера, литосфера: мощностью до 30 – 40 км, населенная живыми организмами, а также область «былых биосфер», очерченная распределением на Земле биогенных осадочных пород; в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетарного масштаба. Это область системного взаимодействия живого и косного вещества на планете.

Биосфера не есть только так называемая область жизни. Вещество ее состоит из семи глубоко разнообразных частей:

1) живое вещество;

2) биогенное;

3) косное;

4) биокосное;

5) радиоактивное;

6) рассеянные атомы;

7) вещество космического происхождения.

Следовательно, биосфера понятие планетарное, широкое, намного превосходящее по объему поле исследования лесовода, биолога и почвоведа, которое ограничивается «областью жизни». Поэтому для обозначения «области жизни» или биогеоценотической оболочки применяется термин витасфера. Частица «вита» подчеркивает тот факт, что этот слой населен ныне живущими организмами. Таким образом, витасфера (эпигенема, фитогеосфера, биогеоценотическая оболочка) – слой биосферы, или область жизни, включающая ныне живущие организмы и вовлекаемые ими в биологический круговорот части атмосферы, гидросферы, литосферы; мощность на суше до сотни метров.

Ноосфера (ноос – разум) – это сфера земли, охваченная деятельностью человека. Сейчас, в связи с космическими полетами границы ноосферы вышли за пределы биосферы Земли .

Биосфера (от греч. «биос» - жизнь, «сфера» - шар) - это область существования и распространения живого вещества. Академик В. И. Вернадский сформулировал понятие биосферы следующим образом: «Биосфера есть организованная, определенная оболочка земной коры, сопряженная с жизнью, и ее пределы обусловлены прежде всего полем существования жизни». Он считал, что биосфера геологически вечна. Следовательно, биосфера - это самая крупная экологическая система, система высшего ранга. В современном состоянии она охватывает нижнюю часть до высоты озонового слоя, всю , педосферу и верхнюю часть литосферы до глубины распространения живых микроорганизмов. Если верхняя граница биосферы достаточно четкая, то нижняя расплывчата и- изменяется не только от к континентам, но и в пределах самих континентов. В их пределах и под дном океанов она ограничивается температурами существования микроорганизмов.

Биосфера Земли функционирует благодаря взаимодействию с атмосферой, гидросферой и литосферой, получая от них , биофильтруя вещества и химические соединения, необходимые для жизнедеятельности.

Наличие биосферы отличает Землю от других планет . Кислородная атмосфера, глобальный круговорот , глобальные круговороты фосфора, углерода, азота и их соединений, так необходимые для функционирования биосферы, существуют только на Земле. Биота играет определяющую роль во всех глобально протекающих биогеохимических процессах и циклах. Благодаря биоте обеспечивается гомеостаз системы, т.е. способность поддерживать ее основные параметры в благоприятных для жизнедеятельности условиях, несмотря на внешние воздействия как естественного, так и антропогенного характера.

Основной процесс образования органического вещества - фотосинтез. Главной целью этого процесса является создание живого вещества из неживого, что обеспечивает устойчивое образование важнейшего из природных ресурсов - первичной биологической продукции.

Судьбу современной биосферы во многом предопределил процесс цефализации. Он заключается в обособлении головы у билатерально-симметричных животных и сосредоточении в ней органов чувств, передних отделов центральной нервной системы, которые у остальных животных находятся в других частях тела. Для защиты этих жизненно важных органов у позвоночных развился череп.

Биосфера возникла на самой ранней стадии развития Земли и в течение длительной геологической истории медленно эволюционировала. На первых этапах (4,0-3,5 млрд. лет назад) биосфера Земли состояла в основном из прокариотных существ, среди которых главными были сине-зеленые водоросли, бактерии и вирусы. Их существование обеспечивала восстановительная бескислородная атмосфера. С возникновением эвкариот существенно меняются функции и условия взаимодействия биосферы с другими геосферами. На протяжении длительного времени (3,5-0,65 млрд. лет) совместно существовали прокариотные и эвкариотные существа, которые в основном являлись одноклеточными формами. Важнейшей вехой в развитии биосферы было появление свободного кислорода в атмосфере и гидросфере и постепенное возникновение озонового экрана. С этого времени главенствующая роль переходит к многоклеточным формам. Появляются и расселяются организмы с твердым известковым, хитиновым и кремнистым скелетом, развиваются разнообразные водоросли и грибы.

Важным рубежом для развития биосферы был ордовикский период, в течение которого растительность постепенно переместилась на сушу, а среди водных организмов появились позвоночные животные с обособленным черепом. Около 350 - 400 млн. лет назад, в девонском периоде, животные вышли на сушу. В течение последующих геологических периодов позвоночные освоили для обитания все существовавшие экологические ниши. В триасовом периоде появились первые млекопитающие, которые заняли главенствующее положение в палеогеновом периоде, после массового вымирания динозавровой фауны 65 млн. лет тому назад. В это же время началось выделение приматов. Около 35-40 млн. лет назад возникли антропоиды. Среди них около 5 млн. лет назад появились гоминоиды, а всего 3,5 млн. лет назад возник человек.

Биологическое разнообразие и биоиндикация

Общее число организмов, населяющих Землю, весьма велико. Считается, что на Земле существуют одновременно от 5 до 80 млн. видов организмов. Значительную часть из них составляют насекомые, бактерии и вирусы. Более или менее четкая таксономическая принадлежность установлена всего для 1,5 млн. видов. Из этого числа около 750 000 составляют насекомые, 41 000 - позвоночные и около 25 000 - растения. Остальные виды представлены сложным набором беспозвоночных, грибов, водорослей и микроорганизмов.

Различные ландшафтно-климатические области отличаются одна от другой не только качественным составом, но и числом видов. Биологическое разнообразие меняется от полюса к экватору. Число пресноводных в тропических экосистемах почти в 5 раз выше, чем в умеренном климате. Во влажных тропических лесах, например в Амазонии, на одном гектаре встречается до 100 видов деревьев, в то время как в аридных областях тропиков их число не превышает 30.

В морской среде наблюдается такая же закономерность. Так, число видов асцидий в Арктике едва превышает 100, а в тропиках достигает 600. Биоразнообразие - основа жизни на Земле и составляет важнейший жизненный ресурс. Люди используют в пищу около 7 000 видов растений, но около 90% мирового продовольствия создается за счет всего 20 видов, из которых пшеница, рожь, кукуруза и рис покрывают около половины всех потребностей. Биологические ресурсы - важный источник сырья для промышленности, в том числе и для медицинской.

В последние десятилетия человечество осознало важность и полезность диких растений и животных. Многие из них не только содействуют развитию сельского хозяйства, используются в медицине и промышленности, но и полезны для окружающей среды, составляя основу природных экосистем. Биоразнообразие считается главным фактором, определяющим устойчивость биогеохимических циклов вещества и энергии в биосфере. Велика роль организмов, которые напрямую используются человеком в пищу, а также животных фильтраторов и детритофагов, которые вносят существенный вклад в круговорот биогенных . И следовательно, среди огромного разнообразия организмов существуют группы, которые приносят пользу косвенным путем. Многие организмы на заре развития Земли внесли огромный вклад в становление и развитие атмосферы и климата Земли, например сине-зеленые водоросли. Деятельность целого ряда животных и растений до сих пор является мощным стабилизирующим фактором в отношении климата.

Итак, под биоразнообразием понимают все виды организмов, которые являются составляющей частью экологических систем и экологических процессов.

Биоразнообразие может рассматриваться на трех уровнях: генетическом, видовом и экосистемном. Генетическое разнообразие представляет собой особый вид генетической , содержащейся в генах организмов, которые обитают на Земле. Видовое разнообразие - это разнообразие видов , населяющих Землю. Разнообразие экосистем касается различных сред обитания, биотических сообществ и экологических процессов в биосфере.

Целый ряд органических сообществ, групп видов и отдельные виды определенным образом реагируют на различные антропогенные нагрузки. Степень реагирования живых экосистем на антропогенную нагрузку носит название биоиндикации. Функции индикатора выполняют тот вид, особь или группы особей, которые имеют узкую амплитуду экологической толерантности по отношению к какому-либо фактору.

Индикация экологических условий проводится на основе оценки состояния видового разнообразия, которая отражает их способность накапливать химические элементы и соединения, поступающие из окружающей среды. Причем при растущей загрязненности мест обитания одни виды растений и животных могут исчезать из биоценоза (майский жук, лишайники в промышленно развитых областях) или, наоборот, увеличивать свою численность (сине-зеленые водоросли).

Биоиндикация - составная часть экологического мониторинга (от лат. «монитор» - напоминающий, надзирающий), который является системой наблюдения и контроля за состоянием окружающей среды на определенной территории. Это осуществляется в целях рационального использования природных ресурсов и охраны природы.

Экологический мониторинг основывается на определении содержания загрязняющих веществ в воздушной, водной или почвенной среде. Составная часть экологического мониторинга - биологический, тест-объектами которого служат живые организмы и их сообщества.

Рост загрязняющих веществ в воздушной, водной и геологических средах может быть как природным фактором, так и обусловленным антропогенной деятельностью.

В воздушной и водной средах загрязняющие вещества вызывают закупорку и разъедание газами тканей и органов дыхания животных и растений. Неблагоприятные факторы среды приводят к нарушению формообразовательных процессов, угнетению роста, цветения и плодоношения у растений. Но степень восприимчивости растений и животных к загрязнению окружающей среды зависит от видовой принадлежности.

Считается, что биоиндикация более точно отражает экологическую ситуацию, чем непосредственные инструментальные наблюдения и измерения.

Растения часто используют в качестве тест-индикаторов загрязнения окружающей среды, особенно при выбросах веществ, содержащих серу и тяжелые , которые начинают накапливаться в ассимиляционных органах. В зависимости от технологических процессов на промышленных предприятиях, от которых зависит химический состав аэрозольных и газовых выбросов в воздушный бассейн, используют различные виды растений и применяют разнообразные методы исследований - от экспериментов в специальных камерах с заданным составом воздуха до тонких физико-химических методов анализа. Важным является и определение химического состава коры хвойных деревьев, которая поглощает примеси и пыль, находящиеся в атмосферном воздухе.

В наибольшей степени чувствительны к атмосферному загрязнению низшие растения, в частности лишайники. Их использование в экологическом мониторинге носит название лихеноиндикации. Чувствительность низших растений к антропогенным выбросам известна с середины XIX в., но их стали использовать в качестве биоиндикаторов только со второй половины XX в. Исследования, проведенные в Канаде, Великобритании и Скандинавских странах, показали прямую связь состояния лишайников и степень концентрации в них загрязняющих веществ, в частности тяжелых металлов и диоксидов серы с уровнем загрязненности воздушной среды. Среди лишайников встречаются виды с разной чувствительностью к атмосферному загрязнению, но большинство видов отличается высоким уровнем чувствительности, в сотни раз превышающим чувствительность животных и людей.

Исходя из уровня загрязнения воздушной среды, установленного по различным видам лишайников, составляют специальные карты, на которых показывают разную степень загрязненности воздуха. Нередко на таких картах, построенных для территорий с высоким уровнем развития промышленности, отражают территории, полностью лишенные лишайниковой растительности: некоторые районы Кольского полуострова, Норильска и т. д.

Биоиндикационные исследования в системе экологического мониторинга позволяют проследить пространственное распределение многих вредных для здоровья населения и природной среды веществ на фоне общего загрязнения территории в целом. Полученные значения концентрации тех или иных веществ в конкретных экосистемах могут быть использованы в моделировании и прогнозировании загрязнения и в оценке его экологических последствий при глобальном, региональном и локальном уровнях поступления вредных веществ в окружающую среду.

Индикаторами загрязнения водной среды могут служит как водоросли и макрофиты, так и отдельные животные, в частности рачки, раки, креветки, крабы. Эвтрофикация воды в результате интенсивного размножения сине-зеленых и зеленых водорослей является следствием поступления в водоемы большого объема биогенных веществ и служит характерным предупреждением начавшегося загрязнения водоема.

Вместе с тем водные и наземные растения обладают уникальной фильтрующей способностью. Они поглощают из воздуха и нейтрализуют в тканях значительное количество вредных компонентов, поступающих в воздушный бассейн от теплоэнергетических объектов, промышленных предприятий, транспорта и сельского хозяйства. В водной среде растения выполняют средообразующие функции. Среди них важными являются фильтрационная функция, с помощью которой задерживаются и осаждаются различные механические примеси, осуществляются переработка и усвоение органических веществ; поглотительно-накопительная, когда происходит накопление минеральных соединений, в том числе и радиогенных, и детоксикационная, благодаря которой некоторые виды водных растений в процессе своей жизнедеятельности осуществляют детоксикацию вредных загрязнителей, тем или иным путем поступающих в водоемы.

Неустойчивая биосфера и устойчивое развитие

В течение последних десятилетий учеными разных направлений весьма интенсивно исследуются глобальные процессы, вызванные нарушением биогеохимических циклов, вторжением в климатическую систему и сокращением биоразнообразия в результате антропогенной деятельности. Это, так же как и проблемы лавинообразного прироста численности населения, дефицит продовольствия, голод и недостаток чистой питьевой воды со всей неотвратимостью поднимают вопрос о емкости биосферы и способности систем жизнеобеспечения продолжать выполнять свои функции в условиях растущего антропогенного пресса.

Как известно, прямые и обратные связи поддерживают гомеостаз. Это означает, что планетная биота управляет связями между атмосферой, Мировым океаном и верхней частью литосферы. Этим она поддерживает и сохраняет стабильность потоков вещества и энергии в биосфере. Гомеостаз имеет место только при определенном высоком уровне поглощения планетарной биотой солнечной энергии, возможен только при отсутствии экстремальных космических и планетарных воздействий на биосферу. Он основан на связях, разрушение которых носит триггерный характер. Это означает, что живая природа и многие биокосные образования, поддерживающие гомеостатичность биосферы, оказываются хрупкими, спонтанно разрушающимися в ходе нарушения экологического баланса силами органической природы. Дестабилизация биосферы возможна в результате воздействия трех сил: космической, геологической и антропогенной.

В результате исследований биосферы с точки зрения природной системы, осуществленной Г. Лавлоком (1982), который конкретизировал и несколько видоизменил представления В.И.Вернадского об организованности биосферы, а также В. Г. Горшкова (1995), который математически выразил идею Г. Лавлока о гомеостазе глобальной экосистемы, можно констатировать:

естественная биота Земли устроена таким образом, что она способна с высочайшей точностью поддерживать пригодное для жизни состояние окружающей среды;

огромная мощность продукции, достигнутая биотой, позволяет ей восстанавливать любые естественные нарушения окружающей среды в кратчайшие сроки, измеряемые десятками лет;

огромная мощность, развиваемая биотой Земли, таит в себе скрытую опасность быстрого разрушения окружающей среды за десятки лет, если целостность биоты будет нарушена. При этом установлено, что широкомасштабное окультуривание ландшафтов опаснее образования антропогенных пустынь;

биосфера в определенной степени способна компенсировать любые возмущения, производимые человечеством, но только в том случае, если доля его потребления не превышает 1% продукции биосферы;

современные изменения биосферы человеком, ведущие к выбросу биотой 2,3 млрд. т/год углерода в атмосферу, свидетельствуют о переходе ее в неустойчивое состояние, о сильном нарушении глобальных биогеохимических циклов и о существенном подавлении дестабилизирующего равновесного состояния процессов ее естественного саморегулирования;

современное состояние биосферы в определенной степени обратимо. Она способна вернуться в прежнее состояние, имевшее место в прошлом веке, но для этого необходимо на порядок снизить потребление ее естественной продукции;

другого устойчивого состояния биосферы не существует, и при сохранении или росте степени антропогенной нагрузки устойчивость окружающей среды будет нарушена и биосфера начнет разрушаться;

из-за инерционности демографических процессов рост населения Земли до 8 млрд. чел. неизбежен. Однако после стабилизации на этом уровне необходимо почти на порядок снизить число людей на планете путем планирования семьи, и только в этом случае дестабилизированная биосфера возвратится в устойчивое состояние саморегулирования в соответствии с принципом Ле Шателье, так как отторжение человеком ее продукции не будет превышать 1% (К. С. Лосев и др., 1993).

Таким образом, ведущие экологи однозначно свидетельствуют о том, что стихийно развивающаяся цивилизация вплотную подошла к порогу устойчивости биосферы. Главная опасность заключается в том, что антропогенные воздействия привели к нарушению процессов саморегулирования биогеохимических циклов. Поэтому человечество оказалось перед экологическим императивом: либо восстановление дикой природы на уровне XIX в. или даже несколько более ранних времен, либо конец света. Третьего не дано. Согласно В. Г. Горшкову, биосфера гомеостатична только в рамках условий дотехногенного голоцена и ей не свойственны другие устойчивые состояния. Однако этот вывод, сделанный на основе прямого применения метода актуализма, требует определенных корректив. Вся история биосферы, начиная с самых ранних этапов ее возникновения и развития, - это непрерывная череда гомеостазисов и бифуркаций-катастроф (кризисов и революций).

До наших дней биосфера прошла сложный и нелегкий путь усложнения и ускорения. На ее долю выпадали самые разнообразные катастрофы, начиная от крупнейших космических и планетарных до региональных и локальных. Их развитие нередко ставило биосферу на грань самоуничтожения и полного распада. Однако каждый раз благодаря внутренней энергии биосфера с честью выходила из сложнейших ситуаций, и вновь возрождалась жизнь. Такие случаи в геологической истории многочисленны. Ярким примером может служить глобальный кризис биосферы, который произошел 65 млн. лет назад. В результате столкновения Земли с крупным космическим телом (астероидом) возникла экологическая катастрофа. Изменились газовый состав атмосферы и температуры приземной части воздуха и морских акваторий, на просторах суши начались масштабные лесные пожары и т. д. Взрыв космического тела массой в несколько сотен миллиардов тонн и диаметром около 10 км сначала вызвал значительный подъем приземных температур в результате пожаров, а затем - похолодание, похожее на «ядерную зиму».

Нарушение природного баланса было настолько значительно, что привело к гибели крупных наземных позвоночных, в том числе и динозавров. Органический мир Земли лишился почти всего лесного покрова. Исчезли все головоногие моллюски (аммониты и белемниты), все семейства планктонных организмов, кораллов и мшанок, 75% семейств брахиопод, такое же количество двустворчатых и брюхоногих моллюсков и других организмов. Однако через сравнительно недолгое время, спустя 3-5 млн. лет, органическая жизнь на Земле возродилась.

Между тем эта космическая катастрофа была все же не самой крупной в истории Земли. В течение последних 800 млн лет геологической истории подобных космических катастроф насчитывается 21. Это не только прямые удары и взрывы астероидов, но падения комет или их пролеты вблизи Земли. Все это фиксируется в истории развития органического мира и отмечено крупными рубежами геохронологической шкалы. Не упади на Землю астероид 65 млн. лет, не произойди в это время космическая бомбардировка, неизвестно, сколько миллионов лет могла продлиться эпоха жизни динозавров. А ведь экологическую нишу динозавров после их исчезновения заняли млекопитающие, эволюция которых привела к появлению Homo sapiens и к тому, что в настоящее время происходит с биосферой.

Среди планетарных процессов надо отметить региональные по масштабам и глобальные по степени воздействия вулканические извержения, гигантские процессы столкновения литосферных плит и такие скромные по сравнению с ними процессы, как великие оледенения и межледниковья. Правда смена ледниковых периодов межледниковьями, так же как и резкие понижения температур, вызвавшие появления оледенений, могли быть результатом космических причин, в частности связанных с прилетом комет, и с астрономическими циклами.

Связь четвертичных ледниковых эпох и межледниковий с астрономическими циклами М. Миланковича в настоящее время общепризнанна. Этот ученый связывает наступление ледниковых эпох с изменениями трех параметров земной орбиты: эксцентриситета, т. е. степени отклонения орбиты от круговой, наклона земной оси (угла между осью и перпендикуляром к плоскости орбиты) и времени прохождения Землей перигелия, т. е. моментом наиболее близкого расположения Земли от Солнца. На каждый из перечисленных параметров влияет притяжение Луны и других планет. Эксцентриситет достигает максимальных значений через каждые 92 тыс. лет, циклы колебаний наклона земной оси и времени прохождения перигелия периодически повторяются через каждые 41 тыс. и 21 тыс. лет соответственно.

Конечным результатом изменений положения Земли на орбите по отношению к являются циклические изменения летней инсоляции в высоких широтах в условиях относительного постоянства радиационного баланса в целом. В высоких широтах такого изменения достаточно для существенного снижения среднегодовых температур, которые влекут за собой появление и саморазвитие ледниковых покровов на равнинах и плоскогорьях и горных ледников. В свою очередь, такие огромные по масштабам изменения напрямую дестабилизируют биосферу, которая каждый раз прилагает огромные усилия по дополнительному расходу энергии и вещества для того, чтобы вначале приспособиться к возникающим непривычным обстановкам, а затем выйти из создавшихся кризисных или критических ситуаций.

В геологической истории Земли гляциоэры разной продолжительности происходили по крайней мере шесть раз, и каждый раз рост криосферы суживал развитие биосферы и нарушал ее гомеостаз. Нарушался не только температурный режим земной поверхности, который вызывал миграции или изменения в образе жизни животных и растений. Он приводил в том числе и к существенному сокращению биомассы, а значит, нарушал биологический круговорот веществ. Нарушался и гидрологический цикл. В ледниковые эпохи снижался влагообмен между океаном и атмосферой, падало содержание влаги в атмосфере, а значит сокращалась составляющая парникового эффекта. Вследствие развития криосферы на значительных площадях существенно увеличивалось альбедо земной поверхности и снижался радиационный баланс, а все это еще больше усиливало эффект выхолаживания планеты.

Активный вулканизм, особенно при значительном выбросе пирокластического материала в атмосферу, определенным образом снижал альбедо атмосферы, но выброс значительных количеств углекислоты, наоборот, способствовал усилению парникового эффекта.

Как в случае отрицательного (выхолаживание), так и положительного развития планетарных событий, когда появлялось большое число благоприятных для жизнедеятельности организмов ландшафтов, биосфера успешно справлялась с возникавшими трудностями и продолжала развиваться.

Однако совершенно другой сценарий возможен при антропогенном воздействии, если фактором деструкции станет криогенно-гляциальное воздействие, вызванное человеком. Оно может возникнуть при ядерном конфликте и масштабном использовании ядерных устройств. Это вызывает явление, описанное как «ядерная зима». В этом случае нарушится энергообеспеченность Земли, а криосфера получит планетарное распространение, т.е. Земля может превратиться в новую ледяную планету.

Сравнения современных условий с палеогеографическими, т. е. с физико-географическими условиями геологического прошлого, свидетельствуют о том, что современная дестабилизация биосферы хотя и уникальна по происхождению, но далеко не первая. Однако это вовсе не означает, что биосфера даже в ее современном состоянии способна перенести еще более серьезные воздействия со стороны современной цивилизации.

Современная ситуация необычайна еще и тем, что она накладывается на условия природного гомеостаза в биосфере, и поэтому ее развитие может считаться однонаправленным. Явления как дестабилизирующего, так и благоприятно развивающегося характера дают некоторую стабилизацию в развитии, но главное заключается в том, какие явления пересилят.

В современной биосфере экологические ресурсы восстанавливаются не полностью. Однако биосфера обладает еще одним уникальным качеством. Находясь в дестабилизированном состоянии, она не полностью утрачивает свои экологические функции. Живое вещество способно аккумулировать рассеиваемую неорганическими источниками энергию и при этом перераспределять ее вновь в окружающее пространство таким образом, что косная среда, в основном неорганическая, превращается в фактор прогрессивного увеличения функционального и статического потенциала живой природы. Работая на себя, живое вещество меняет действие процессов в неживой природе (С. П. Горшков, 1998). Таким образом, в биосфере происходят процессы, восстанавливающие гомеостаз.

Со времени своего возникновения биосфера постоянно взаимодействует с Космосом. Это взаимодействие вытекает из длительности развития биосферы, которая существует на Земле почти 4 млрд. лет, и постоянного увеличения биоразнообразия и биологических функций живого вещества.

Эти два фактора свидетельствуют об удивительной устойчивости биосферы, об определенной ограниченности масштабов воздействия на биосферу неорганической природы, об ускорении космического воздействия на биосферу, по крайней мере в течение фанерозойской истории. По мнению ведущих экологов, для выработки научно обоснованной стратегии устойчивого развития и оптимальных условий выживания человечества необходимо установить следующие приоритеты (С. П. Горшков, 1998):

высший - эколого-экономическая оптимизация природно-антропогенных и антропогенных систем. От успехов реализации высшего приоритета зависит и решение демографической проблемы; высокий - охрана природных систем и биоразнообразия. В условиях сочетания демографического, социально-экономического и экологического кризисов должны быть более приоритетными цели, защищающие человека и природу одновременно.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...