Статическое электричество кто открыл. Кто и в каком году изобрел электричество: история открытия

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. - ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. - Петров открыл электродугу;
  • 1827 г. - Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. - член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. - академик Якоби создал электродвигатель;
  • 1836 год - С. Морзе запатентовал телеграф;
  • 1847 г. - Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год - Якоби изобрел буквопечатающий телеграф;
  • 1866 г. - Сименс предложил динамо-машину;
  • 1872 г. - А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г - изобретен телефон;
  • 1879 год - Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год - стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. - появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

. (история открытия явления)

До 1600 г. знания европейцев об электричестве оставалось на уровне древних греков, что повторяло историю развития теории паровых реактивных двигателей ("Элеопил" А. Герона).

Основоположником науки об электричестве в Европе стал выпускник Кембриджа и Оксфорда английский физик и придворный врач королевы Елизаветы - Уильям Гилберт (1544-1603). С помощью своего "версора" (первого электроскопа) У. Гильберт показал, что способностью притягивать легкие тела (соломинки) обладает не только натертый янтарь, но и алмаз, сапфир, карборунд, опал, аметист, горный хрусталь, стекло, сланцы и др., которые он назвал "электрическими" минералами.

Кроме того, Гильберт заметил, что пламя "уничтожает" электрические свойства тел, приобретенные при трении, и впервые исследовал магнитные явления, установив, что:

Магнит всегда имеет два полюса - северный и южный;
- одноименные полюса отталкиваются, а разноименные притягиваются;
- распиливая магнит, нельзя получить магнит только с одним полюсом;
- железные предметы под влиянием магнита приобретают магнитные свойства (магнитная индукция);
- природный магнетизм может быть усилен с помощью железной арматуры.

Изучая магнитные свойства намагниченного шара с помощью магнитной стрелки, Гильберт пришел к выводу, что они соответствуют магнитным свойствам Земли, а Земля является самым большим магнитом, что и объясняет постоянное наклонение магнитной стрелки.

1650 г.: Отто фон Герике (1602-1686) создает первую электрическую машину, извлекавшую из натираемого шара, отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако тайна свойств «электрической жидкости» , как в то время называли это явление, не получила тогда никакого объяснения.

1733 г.: французский физик , член Парижской Академии наук, Шарль Франсуа Дюфе (Dufay, Du Fay, 1698-1739) открыл существование двух видов электричества, которые назвал "стеклянным" и "смоляным". Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п.

После многочисленных экспериментов Ш. Дюфе впервые электризовал тело человека и "получил" из него искры. В область его научных интересов входил магнетизм, фосфоресценция и двойное лучепреломление в кристаллах, ставшее впоследствии основой для создания оптических лазеров. Для обнаружения измерения электричества пользовался версором Гилберта, сделав его намного более чувствительным. Впервые высказал мысль об электрической природе молнии и грома.

1745 г.: выпускник Лейденского университета (Голландия) физик Питер ван Мушенбрук (Musschenbroek Pieter van, 1692-1761) изобрел первый автономный источник электроэнергии - лейденскую банку и провел с ней ряд опытов, в ходе которых установил взаимозвязь электрического разряда с его физиологическим действием на живой организм.

Лейденская банка представляла собой стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой, и являлась первым электрическим конденсатором. Если обкладки прибора, заряженного от электростатического генератора О. фон Герике соединяли тонкой проволокой, то она быстро нагревалась, а иногда и плавилась, что указывало на наличие в банке источника энергии, которую можно было транспортировать далеко от места ее зарядки.

1747 г.: член Парижской Академии наук, французский физик-экспериментатор Жан Антуан Нолле (1700-1770) изобрел первый прибор для оценки электрического потенциала - электроскоп , зарегистрировал факт более быстрого "стекания" электричества с острых тел и впервые сформировал теорию действия электричества на живые организмы и растения.

1747–1753 гг.: американский государственный деятель, ученый и просветитель Бенджамин (Вениамин) Франклин (Franklin, 1706-1790) публикует цикл работ по физике электричества, в которых:
- ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «–» ;
- объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки;
- установил тождество атмосферного и получаемого с помощью трения электричества и привел доказательство электрической природы молнии;
- установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил молниеотвод;
- выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил;
- впервые применил электрическую искру для взрыва пороха.

1759 г.: В России физик Франц Ульрих Теодор Эпинус (Aepinus, 1724-1802),впервые выдвигает гипотезу о наличии связи между электрическими и магнитными явлениями.

1761 г.: Швейцарский механик, физик и астроном Леонард Эйлер (L. Euler, 1707-1783) описывает новую электростатическую машину, состоящую из вращающегося диска из изоляционного материала с радиально наклеенными кожаными пластинами. Для съема электрического заряда к диску надо было подвести шелковые контакты, присоединенные к медным стержням со сферическими окончаниями. Приближая сферы друг к другу, можно было наблюдать процесс электрического пробоя атмосферы (искусственная молния).

1785-1789 гг.: Французский физик Шарль Огюстен Кулон (S. Coulomb, 1736-1806) публикует семь работ. в которых описывает закон взаимодействия электрических зарядов и магнитных полюсов (закон Кулона), вводит понятие магнитного момента и поляризации зарядов и доказывает, что электрические заряды всегда располагаются на поверхности проводника.

1791 г.: В Италии издается трактат Луиджи Гальвани (L. Galvani, 1737-1798), «De Viribus Electricitatis In Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении»), в котором доказывалось, что электричество вырабатывается живым организмом и наиболее эффективно проявляется в контакте разнородных проводников. В настоящее время этот эффект лежит в основе принципа действия электрокардиографов.

1795 г.: Итальянский профессор Александр Вольта (Alessandro Guiseppe Antonio Anastasio Volta, 1745-1827) исследует явление контактной разности потенциалов различных металлов и с помощью электрометра собственной конструкции дает численную оценку этому явлению. Результаты своих опытов А.Вольта впервые описывает 1 августа 1786 г. в письме своему другу. В настоящее время эффект контакной разности потенциалов используется в термопарах и системах анодной (электрохимической) защиты металлических сооружений.

1799 г:. А. Вольта изобретает источник гальванического (электрического) тока - вольтов столб . Первый вольтов столб состоял из 20 пар медных и цинковых кружочков, разделенных суконными кусочками, смоченными соленой водой, и предположительно мог давать напряжение 40-50 В и ток до 1 А.

В 1800 г. в журнале «Philosophical Transactions of the Royal Society, Vol. 90» под названием «On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds» («Электричество, получаемое в результате простого контакта разных веществ») было описано устройство, названное «электродвижущий аппарат», А. Вольта считал, что в основе принципа действия его источника тока лежит контактная разность потенциалов, и только спустя много лет было установлено, что причиной возникновения э.д.с. в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью - электролитом. Осенью 1801 г. в России была создана первая гальваническая батарея, состоящая из 150 серебряных и цинковых дисков. Через год, осенью 1802 г., была изготовлена батарея из 4200 медных и цинковых дисков, дающая напряжение в 1500 В.

1820 г.: датский физик Ханс Кристиан Эрстед (Ersted, 1777-1851) в ходе опытов по отклонению магнитной стрелки под действием проводника с током, установил связь между электрическими и магнитными явлениями. Сообщение об этом явлении, опубликованное в 1820 г., стимулировало исследования в области электромагнетизма, что, в конечном счете, привело к формированию основ современной электротехники.

Первым последователем Х.Эрстеда стал французский физик Андре Мари Ампер (1775-1836) сформулировавший в том-же году правило определения направления действия электрического тока на магнитную стрелку, названное им "правилом пловца" (правило Ампера или правой руки), после чего были определены законы взаимодействия электрических и магнитных полей (1820 г.), в рамках которых впервые была сформулирована идея об использовании электромагнитных явлений для дистанционной передачи электрического сигнала.

В 1822 г. А. Ампер создает первый усилитель электромагнитного поля - многовитковые катушки из медного провода, внутри которых помещались сердечники из мягкого железа (соленоиды), ставшие технологической основой для изобретенного им в 1829 г. электромагнитного телеграфа, открывшего эру современной электросвязи.

821 г.: английский физик Майкл Фарадей (М. Faraday, 1791-1867) познакомился с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820) и после исследования взаимосвязи электрических и магнитных явлений установил факт вращения магнита вокруг проводника с током и вращения проводника с током вокруг магнита.

В течение последующих 10 лет М. Фарадей пытался «превратить магнетизм в электричество», результатом чего стало открытие в 1831 электромагнитной индукции , что привело к формированию основ теории электромагнитного поля и появлению новой отрасли промышленности - электротехники. В 1832 г. М. Фарадей публикует работу, в которой выдвигается идея о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий в атмосфере с конечной скоростью, что стало основой для появления новой отрасли знаний - радиотехники.

Стремясь установить количественные соотношения между различными видами электричества, М. Фарадей начал исследования по электролизу и в 1833–1834 гг. сформулировал его законы. В 1845 г., исследуя магнитные свойства различных материалов, М. Фарадей открывает явления парамагнетизма и диамагнетизма и установливает факт вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Это было первое наблюдение связи между магнитными и оптическими явлениями, которое позднее было объяснено в рамках электромагнитной теории света Дж. Максвелла.

Примерно в это-же время свойства электричества изучал немецкий физик Георг Симон Ом (G.S. Ohm, 1787-1854). Проведя серию экспериментов, Г. Ом в 1826 г. сформулировал основной закон электрической цепи (закон Ома) и в 1827 г. дал его теоретическое обоснование, ввел понятия «электродвижущая сила», падение напряжения в цепи и «проводимость».

Закон Ома устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника т.е. RI = U . Коэффициент пропорциональности R , получивший в 1881 г. название омическое сопротивление или просто сопротивление зависит от температуры проводника и его геометрических и электрических свойств.

Исследования Г. Ома завершают второй этап развития электротехники, а именно фомирования теоретической базы для расчета характеристик электрических цепей, что стало основой современной электроэнергетики.

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение - все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно - отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» - источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» - единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу - «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин .

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.

2002-04-26T16:35Z

2008-06-05T12:03Z

https://сайт/20020426/129934.html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Электричество - величайшее изобретение человечества

4241

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита. ----Основные свойства и законы электричества--установлены любителями. Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров. Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания. Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития. Янтарь упорно терли, любовались...

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

Основные свойства и законы электричества--установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,-- первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде "вольтова столба".

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М.Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком. Оно помогало развиваться нашей цивилизации с самого начала своего появления....

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком . Оно помогало развиваться нашей цивилизации с самого начала своего появления. Это самый экологический вид энергии на планете, и вероятно, что именно электричество сможет заменить все сырьевые ресурсы, если оных более не останется на Земле.

Термин пошел от греч. «электрон», и означает «янтарь». Ещё в VII веке до нашей эры древнегреческий философ Фалес заметил, что янтарь имеет свойство притягивать к себе волосы и легкие материалы, например, пробковую стружку. Таким образом, он стал первооткрывателем электричества . Но только лишь к средине XVII века наблюдения Фалеса были подробно изучены Отто фон Герике. Этот немецкий физик создал первый в мире электроприбор. Это был вращающийся шар из серы, зафиксированный на металлическом штифте и был похож на янтарь имеющий силу притяжения и отталкивания.

Фалес — первооткрыватель электричества

За пару столетий «электрическую машину» Герике заметно усовершенствовали такие немецкие ученые, как Бозе, Винклер, а также англичанин Хоксби. Эксперименты с электрической машиной дали толчок к новым открытиям в XVIII столетии : в 1707 году физик дю Фей родом из Франции, выявил разницу между электричеством, которое мы получаем от трения стеклянного круга, и которое мы получаем от трения круга из древесной смолы. В 1729 году английские ученые Грей и Уилер выявили, что некоторые тела могут пропускать через себя электричество, и они были первыми, кто сделал акцент на том, что тела можно разделять на два типа: проводники и непроводники электричества.

Очень значительное открытие было изложено в 1729 году голландским физиком Мушенбруком, который родился в Лейдене. Этот профессор философии и математики был первым, кто выявил, что стеклянная банка, залепленная с двух сторон листками станиоля, может скапливать электричество. Так как опыты проводились в городе Лейдене, прибор так и назвали – лейденская банка .

Ученый и общественный деятель Бенджамин Франклин привел одну теорию в которой он говорил, что существует как положительное, так и отрицательное электричество. Ученый смог объяснить сам процесс заряда и разряда стеклянной банки и привел доказательства того, что обкладки лейденской банки можно непринужденно электризовать разными зарядами электричества.

Бенджамин Франклин, более чем достаточно уделил внимания познанию атмосферного электричества, как и русские ученые Г. Рихман, а также М.В. Ломоносов. Ученый изобрел громоотвод , с помощью которого обосновал, что сама молния возникает от разности электрических потенциалов.

В 1785 году был выведен закон Кулона, который описывал между точечными зарядами электрическое взаимодействие. Закон был открыт Ш. Кулоном ученым из Франции, который создал его на основе многократных экспериментов со стальными шариками.

Одним из великих открытий, которое обнаружил итальянский ученый Луиджи Гальвани в 1791 году, было то, что электричество могло появляться при соприкосновении двух неоднородных металлов с телом препарированной лягушки.

В 1800 году итальянский ученый Алессандро Вольта изобрел химическую батарею. Это открытие было важным в изучении электричества . Этот гальванический элемент состоял из серебряных пластинок круглой формы, между пластинками были смоченные предварительно в соленой воде куски бумаги. Благодаря химическим реакциям химическая батарея регулярно получала электрический ток.

В 1831 году известный ученый Майкл Фарадей обнаружил электромагнитную индукцию и на этом базисе изобрел первый в мире электрогенератор. Открыл такие понятия, как магнитное и электрическое поле и изобрел элементарный электродвигатель .

Человек, который вложил огромный вклад в изучение магнетизма и электричества, и применял свои исследования на практике, был изобретатель Никола Тесла. Бытовые и электроприборы, которые создал ученый – незаменимы. Этого человека можно назвать одним из великих изобретателей XX ст.

Кто первым открыл электричество?

Отыскать людей, которые не знали бы, что такое электроэнергия, сложно. А вот кто открыл электричество? Об этом имеет представление далеко не каждый. Нужно разобраться, что же это за явление, кто первым его открыл и в каком году все произошло.

Пара слов об электричестве и его открытии

История открытия электричества довольно обширна. Впервые это произошло в далеком 700 году до н.э. Пытливый философ из Греции по имени Фалес обратил внимание, что янтарь способен притягивать маленькие предметы, когда происходит трение с шерстью. Правда, после этого все наблюдения на долгое время закончились. Но именно он считается первооткрывателем статического электричества.

Дальнейшее развитие произошло значительно позднее — через несколько веков. Врач Уильям Гильберт, которому были интересны основы физики, стал основоположником науки об электричестве. Он изобрел нечто похожее на электроскоп, назвав его версор. Благодаря ему Гильберт понял, что множество минералов притягивают маленькие предметы. Среди них алмазы, стекло, опалы, аметисты и сапфиры.

При помощи версора Гильберт сделал пару любопытных наблюдений:

  • пламя влияет на электрические свойства тел, возникающие при трении;
  • молния с громом — это явления электрической природы.

Слово «электричество» появилось в 16 столетии. В 60-х годах XVII века бургомистр Отто фон Герике создал специальную машину для опытов. Благодаря ей он наблюдал за эффектами притяжения и отталкивания.

После этого исследования продолжились. Использовали даже электростатические машины. В начале 30-х годов XVIII века Стивен Грей преобразовал конструкцию Герике. Он поменял серный шарик на стеклянный. Стивен продолжил эксперименты и обнаружил такое явление, как электропроводность. Несколько позднее Шарль Дюфе обнаружил два вида зарядов — от смол и стекла.

В 40-м году XVIII века Клейст и Мушенбрук придумали «лейденскую банку», ставшую первым конденсатором на Земле. Бенджамин Франклин говорил, что заряд накапливает стекло. Благодаря ему появились обозначения «плюс» и «минус» для электрических зарядов, а также «проводник», «заряд» и «конденсатор».

Бенджамин Франклин вел насыщенную событиями жизнь. Удивительно то, что у него вообще хватало времени на изучение электричества. Однако именно Бенджамин Франклин изобрел первый громоотвод.

В конце XVIII столетия Гальвани выпустил «Трактат о силе электричества при движении мышц». В начале XIX века изобретатель из Италии Вольта придумал новейший источник тока, назвав его Гальванический элемент. Эта конструкция выглядит как столб из серебряных и цинковых колец. Они разделены бумагами, которые смочили в соленой воде. Так и произошло открытие гальванического электричества. Через 2 года изобретатель из России Василий Петров открыл Вольтову дугу.

Примерно в тот же временной период Жан Антуан Нолле сконструировал электроскоп. Он зарегистрировал быстрое «стекание» электричества с тел острой формы. На основе этого появилась теория о том, что ток влияет на живые существа. Благодаря обнаруженному эффекту появился медицинский электрокардиограф.

С 1809 году в сфере электричества случилась революция. Изобретатель из Англии Деларю придумал лампочку накаливания. Спустя век были созданы приборы с вольфрамовой спиралью, которые заполняли инертным газом. Ирвинг Ленгмюр стал их основоположником.

Прочие открытия

В XVIII столетии знаменитый в дальнейшем Майкл Фарадей придумал учение об электромагнитных полях.

Электромагнитное взаимодействие обнаружил во время своих экспериментов ученый из Дании по имени Эрстед в 1820 году. В 1821 году физик Ампер в собственном трактате связал электричество и магнетизм. Благодаря этим исследованиям зародилась электротехника.

В 1826 году Георг Симон Ом провел опыты и обозначил главный закон электрической цепи. После этого возникли специализированные термины:

  • электродвижущая сила;
  • проводимость;
  • падение напряжения в сети.

Андре-Мари Ампер позднее придумал правило, как определять направление тока на магнитную стрелку. У него было множество названий, но больше всего прижилось «правило правой руки». Именно Ампер сконструировал усилитель электромагнитного поля — катушки с множеством витков. Они сделаны из медных проводов, в которых с установлены железные сердечники. В 30-х годах XIX века был изобретен электромагнитный телеграф на основании вышеописанного правила.

В 20-х годах XX века в Советском Союзе правительство начало глобальную электрификацию. В этот период возник термин «лампочка Ильича».

Волшебное электричество

Дети должны знать, что такое электричество. Но обучать нужно в игровой форме, чтобы полученные знания не наскучили в первые же минуты. Для этого можно посетить открытое занятие «Волшебное электричество». В него входят следующие образовательные задачи:

  • обобщение у детей информации про электричество;
  • расширить знания о том, где обитает электричество и чем оно может помочь людям;
  • познакомить ребенка с причинами возникновения статического электричества;
  • объяснить правила безопасности в обращении с бытовыми электроприборами.

Также ставятся и иные задачи:

  • у ребенка формируется желание открывать что-то новое;
  • дети учатся взаимодействовать с окружающим миром и его объектами;
  • развивается мышление, наблюдение, способности к анализу и умение делать правильные выводы;
  • осуществляется активная подготовка к школе.

Занятие необходимо и в воспитательных целях. Во время его проведения:

  • подкрепляется интерес к изучению окружающего мира;
  • появляется удовлетворение от открытий, которые получились в результате проведенных экспериментов;
  • воспитывается умение работать в коллективе.

В качестве материала предоставляются:

  • игрушки с батарейками;
  • пластмассовые палочки по числу присутствующих;
  • шерстяная и шелковая ткани;
  • обучающая игрушка «Собери предмет»;
  • карточки «Правила по использованию бытовых электроприборов»;
  • цветные шарики.

Для ребенка это будет отличным занятием на лето.

Заключение

Мы не можем точно утверждать, кто на самом деле первым открыл электричество. Есть все основания полагать, что о нем знали еще до Фалеса. Но большинство ученых (Уильям Гилберт, Отто фон Герике, Вольт Ом, Ампер) в полной мере внесли собственный вклад в развитие электричества.

Альтернативная версия истории открытия электричества

Науке не известно, когда произошло открытие электричества. Еще древние люди наблюдали молнии. Позже они заметили, что некоторые тела, если их потереть друг о друга, могут притягиваться или отталкиваться. Свойство притягивать или отталкивать небольшие предметы хорошо проявлялось у янтаря.
В 1600 г. появился первый термин, связанный с электричеством, — электрон. Ввел его Уильям Гилберт, заимствовавший это слово из греческого языка, где оно обозначало янтарь. Позже такие свойства были обнаружены у алмаза, опала, аметиста, сапфира. Эти материалы он назвал электриками, а само явление — электричеством.
Отто фон Герике продолжил исследования Гилберта. Он изобрел электростатическую машину — первый прибор для изучения электрических явлений. Она представляла собой вращающийся металлический стержень с шаром, сделанным из серы. При вращении шар терся о шерсть и приобретал значительный заряд статического электричества.

В 1729 г. англичанин Стивен Грей усовершенствовал машину Герике, заменив в ней серный шар на стеклянный.

В 1745 г. Юрген Клейст и Питер Мушенбрук изобрели лейденскую банку, представляющую собой стеклянную емкость с водой, способную накопить значительный заряд. Она стала прототипом современных конденсаторов. Ученые ошибочно полагали, что накопителем заряда является вода, а не стекло. Позже вместо воды стали использовать ртуть.
Бенджамин Франклин расширил набор терминов для описания электрических явлений. Он ввел понятия: заряд, два рода зарядов, плюс и минус для их обозначения. Ему принадлежат термины конденсатор, проводник.
Множество проведенных в 17 веке экспериментов носило описательный характер. Практического применения они не получили, но послужили фундаментом для развития теоретических и практических основ электричества.

Первые научные эксперименты с электричеством

Научные исследования электричества начались в 18 веке.

В 1791 г. итальянский врач Луиджи Гальвани обнаружил, что ток, протекающий по мышцам препарированных лягушек, вызывает их сокращение. Свое открытие он назвал животным электричеством. Но Луиджи Гальвани не смог полностью объяснить полученные результаты.

Открытие животного электричества заинтересовало итальянца Александро Вольта. Известный ученый повторил опыты Гальвани. Он повторно доказал, что живые клетки вырабатывают электрический потенциал, но причина его появления химическая, а не животная. Так произошло открытие гальванического электричества.
Продолжая свои опыты, Александро Вольта сконструировал устройство, вырабатывающее напряжение без электростатической машины. Это была стопка чередующихся медных и цинковых пластин, разделенных смоченными в растворе соли кусочками бумаги. Устройство получило название вольтового столба. Оно стало прототипом современных гальванических элементов, служащих для выработки электроэнергии.
Важно отметить, что Наполеон Бонапарт очень заинтересовался изобретением Вольта, и в 1801 г. пожаловал ему титул графа. А позже знаменитые физики решили в его честь назвать единицу измерения напряжения 1 В (вольт).

Луиджи Гальвани и Александро Вольта — великие экспериментаторы в области электричества. Но в 18 в. объяснить суть явлений они не могли. Построение теории электричества и магнетизма началось в 19 в.

Научные исследования электричества в 19 веке

Русский изобретатель Василий Петров, продолжая эксперименты Вольта, в 1802 г. открыл вольтову дугу. В его опытах использовались угольные электроды, которые вначале сдвигались, за счет протекания тока раскалялись, а затем раздвигались. Между ними возникала устойчивая дуга, способная гореть при напряжении всего в 40-50 вольт. При этом выделялось значительное количество тепла. Опыты Петрова впервые показали возможности практического применения электричества, способствовали изобретению лампы накаливания и электросварки. Для своих опытов В. Петров сконструировал батарею длиною 12 м. Она была способна создать напряжение 1700 вольт.

Недостатками вольтовой дуги были быстрое сгорание углей, выделение углекислого газа и копоти. За усовершенствование источника света взялись несколько величайших изобретателей того времени, каждый из которых внес свой вклад в развитие электрического освещения. Все они считали, что источник тепла и света должен находиться в стеклянной колбе, из которой выкачан воздух.
Идею использования металлической нити накаливания еще в 1809 г. предложил английский физик Деларю. Но в течение многих лет продолжались эксперименты с угольными стержнями и нитями.
В американских учебниках по электричеству утверждается, что отцом лампы накаливания является их соотечественник Томас Эдисон. Он внес огромный вклад в историю открытия электричества. Но опыты Эдисона по усовершенствованию ламп накаливания закончились в конце 1870-х гг., когда он отказался от металлической нити накала и вернулся к угольным стержням. Его лампы могли бесперебойно гореть около 40 часов.

Спустя 20 лет русский изобретатель Александр Николаевич Лодыгин изобрел лампу, в которой использовалась проволочная нить накала из тугоплавкого металла, скрученная в спираль. Из колбы был выкачан воздух, из-за которого происходило окисление нити и ее перегорание.
Крупнейшая компания мира по производству электротехнической продукции General Electric выкупила у Лодыгина патент на производство ламп с вольфрамовой нитью. Это позволяет считать, что отцом лампы накаливания является наш соотечественник.
Над усовершенствованием лампы накаливания работали химики и физики, и их открытия, изобретения и усовершенствования позволили создать лампу накаливания, которой люди пользуются сегодня.

В 19 в. электричество стало применяться не только для освещения.
В 1807 г. английскому химику Хэмфри Дэви электролитическим способом удалось выделить из раствора щелочные металлы натрий и калий. Других способов получения этих металлов в то время не было.
Его соотечественник Уильям Стэрджен в 1825 г. изобрел электромагнит. Продолжая исследования, он создал первую модель электродвигателя, работу которого продемонстрировал в 1832 г.

Становление теоретических основ электричества

Кроме изобретений, получивших практическое применение, в 19 в. началось построение теоретических основ электричества, открытие и формулировка основных законов.

В 1826 г. немецкий физик, математик, философ Георг Ом экспериментально установил и теоретически обосновал свой знаменитый закон, описывающий зависимость тока в проводнике от его сопротивления и напряжения. Ом расширил набор терминов, используемых в электричестве. Он ввел понятия электродвижущей силы, проводимости, падения напряжения.
Благодаря нашумевшим в научном мире публикациям Г. Ома, теория электричества стала бурно развиваться, но сам автор подвергся гонениям со стороны начальства и был уволен с должности школьного учителя математики.

Огромный вклад в развитие теории электричества внес французский философ, биолог, математик, химик Андре-Мари Ампер. По причине бедности родителей он вынужден был заниматься самообразованием. В возрасте 13 лет он уже овладел интегральным и дифференциальным исчислением. Это позволило ему получить математические уравнения, описывающие взаимодействия круговых токов. Благодаря трудам Ампера в электричестве появились 2 смежные области: электродинамика и электростатика. По неизвестным причинам Ампер в зрелом возрасте перестал заниматься электричеством и увлекся биологией.

Над развитием теории электричества трудились многие физики разных национальностей. Изучив их труды, выдающийся английский физик Джеймс-Клерк Максвелл построил единую теорию электрических и магнитных взаимодействий. Электродинамика Максвелла предусматривает наличие особой формы материи — электромагнитного поля. Свой труд, посвященной этой проблеме, он опубликовал в 1862 г. Теория Максвелла позволила описать уже известные электромагнитные явления и предсказать неизвестные.

История развития электрических средств связи

Как только у древних людей возникла потребность в общении, появилась необходимость в организации обмена сообщениями. История развития средств связи до открытия электричества многогранна и у каждого народа своя.

Когда люди оценили возможности электричества, встал вопрос о передаче информации с его помощью.
Первые попытки передачи электрических сигналов были предприняты сразу после опытов Гальвани. Источником энергии служил вольтов столб, приемником — лягушечьи лапки. Так появился первый телеграф, который долгое время усовершенствовался и модернизировался.

Для передачи информации ее сначала нужно было кодировать, а после приема раскодировать. Для кодирования информации американский художник Самюэл Морзе в 1838 г. придумал специальную азбуку, состоящую из комбинаций точек и тире, разделенных промежутками. Известна точная дата первой телеграфной передачи — 27 мая 1844 г. Связь была установлена между Балтимором и Вашингтоном, расположенных на расстоянии 64 км.

Средства связи такого рода умели передавать сообщения на большие расстояния, сохранять их на бумажной ленте, но имели и ряд недостатков. На кодирование и декодирование сообщений тратилось много времени, приемник и передатчик должны были обязательно соединяться проводами.

В 1895 г. русскому изобретателю Александру Попову удалось продемонстрировать работу первого беспроводного передатчика и приемника. В качестве приемного элемента использовалась антенна (или вибратор Герца), а в качестве регистрирующего элемента — когерер. Для питания прибора использовалась батарея постоянного тока с напряжением в несколько вольт.
В изобретении когерера велика заслуга французского физика Эдварта Бранли, открывшего возможность изменять сопротивление металлического порошка за счет воздействия на него электромагнитных волн.
Средства связи, построенные на основе передатчика и приемника Попова, служат и в настоящее время.

Сенсационное сообщение о своих открытиях в области передачи электромагнитных волн в 1891 г. сделал сербский ученый Никола Тесла. Но человечество не было готово принять его идеи и понять, как на практике применить изобретения Тесла. Через много десятилетий они легли в основу сегодняшних средств электронных коммуникаций: радио, телевидения, сотовой и космической связи.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...