Строение ядерной оболочки. Расположение ядра в клетке и его структура

Функции ядерной оболочки (кариолемма) состоят в отграничении ядерного содержимого от цитоплазмы, поддержании условий, необходимых для выполнения ядром функций, в частности генетических, в обеспечении доступа к генетическому материалу и структурам (ДНК, хромосомы) сигналов (транскрипционные факторы), меняющих функциональное состояние генов, в упорядочении пространственной организации генетических структур и процессов, в реализации двусторонних ядерно-цитоплазматических обменов и взаимодействий.

Механизмы ядерно-цитоплазматических транспортных потоков разнообразны. Ионы, низкомолекулярные соединения (сахара, аминокислоты, нуклеотиды), некоторые белки (гистоны) проникают в ядро относительно легко и вне связи с порами ядерной оболочки. Известен механизм проникновения в ядро стероидных, в частности половых гормонов (эстрадиол, прогестерон, тестостерон). Будучи жирорастворимыми, они легко проходят через плазмалемму из околоклеточной среды в цитоплазму клетки, где комплексируются с цитозольными рецепторами (семейство «белков теплового шока»). Такой комплекс проходит через ядерную оболочку и связывается с гормонидуцируемыми генами. В итоге - активация последних, обусловливающая цепь событий, необходимых для полового развития организма и осуществления им репродуктивной функции. В рассмотренном примере белки теплового шока - это транскрипционные факторы в неактивном состоянии, активируемые путем взаимодействия с гормоном (рис. 2.9).

Крупные белковые молекулы, рибонуклеопротеидные комплексы (субъединицы рибосом) попадают в ядро или покидают его через особые структуры - ядерные поры. Это проверено введением в цитоплазму клетки частиц коллоидного золота (диаметр порядка 14 нм), которые

Рис. 2.9. Комплексирование сигнальной молекулы (стероидный гормон) с ци-тозольным рецептором (для полового гормона - белки «теплового шока»), приводящее к транспорту в ядро и активации специфического транскрипционного фактора (схема). 1 - сигнальная молекула; 2 - цитозольный рецептор: участок (центр) связывания сигнальной молекулы; 3 - цитозольный рецептор: участок (домен) связывания сигнальной молекулы; 4 - цитозольный рецептор: участок (домен) связывания ДНК; 5 - цитозольный рецептор: участок (домен) активации транскрипции; 6 - ингибирующий белок

проникают из цитоплазмы в ядро, предварительно скапливаясь вблизи ядерных пор.

Ядерная оболочка выполняет в отношении главных ядерных структур хромосом организующую функцию. Преобразования ядерной оболочки и хромосом в митозе взаимосвязаны. В конце анафазы перед началом их декомпактизации хромосомы устанавливают контакты с мембранными пузырьками, которые затем, параллельно процессу де-компактизации, слагаются в ядерную оболочку. Если в эксперименте вызвать декомпактизацию хромосом уже в метафазе митоза, то каждая из них вступит в контакт с мембранным пузырьком и приобретет самостоятельную отдельную оболочку, имеющую строение ядерной. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Несмотря на сходство электронно-микроскопической картины, скорость обмена фосфолипи-дов во внешней мембране в 4 раза превосходит скорость их обмена во внутренней. Перинуклеарное пространство (20-50 нм) сообщается с канальцами цито(эндо)плазматической сети. К наружной мембране ядерной оболочки прикрепляются рибосомы и полисомы. В околоядерной зоне цитоплазмы повышено содержание микрофиламентов и микротрубочек. К внутренней мембране, за исключением участков, занятых

порами, прилежит высоко компактизированный хроматин. Между мембраной и хроматином располагается ядерная ламина (плотная пластинка). Она образована промежуточными микрофиламентами (10 нм) в комплексе с белками внутренней ядерной мембраны. Учитывая прочность связи между пластинкой и хроматином, можно думать, что этим контактом обеспечивается пространственная упорядоченность расположения хромосом в объеме интерфазного ядра, что, возможно, имеет функциональный смысл. Так, образование молекул гемоглобина требует скоординированной транскрипции генов α- и β-глобинов, которые у человека расположены, соответственно, на хромосомах 16 и 11. Такая согласованность может достигаться благодаря пространственному сближению названных хромосом. Плотная пластинка выполняет структурную функцию: при ее наличии ядро сохраняет форму в отсутствии обеих мембран ядерной оболочки.

Ядерная пора (поровый комплекс) - структура диаметром порядка 100 нм, в образовании которой принимают участие обе мембраны ядерной оболочки и более 1000 белков (рис. 2.10). Число ядерных пор на 1 мкм2 ядерной оболочки зависит от интенсивности синтетических процессов в клетке. У низших позвоночных, зрелые эритроциты которых сохраняют ядра, хотя синтезы в них сведены к нулю, на 1 мкм2 ядерной поверхности приходится до 5 пор, тогда как в активно образующих гемоглобин эритробластах - 30. Оболочка ядра зрелого сперматозоида лишена пор. Относительное количество ядерных пор различается у жи-

Рис. 2-10. Поровый комплекс (схема): а - внешний вид ядерных пор в ядре ооцитов; б - схема строения ядерной поры: 1 - кольцо; 2 - спицы; 3 - центральная гранула; 4 - хроматин; 5 - рибосомы

вотных разных видов: для лимфоцитов мышей эта цифра составляет 3,3 на 1 мкм2, а для лимфоцитов человека - порядка 5.

Структуры, аналогичные по строению поровым комплексам, в качестве редких находок обнаружены в мембранах гранулярной эндоплаз-матической сети. Их функция неизвестна. Транслоконы, через которые образующиеся на рибосомах полипептиды проникают в просвет канальцев эндоплазматической сети, имеют другое строение (см. п. 2.4.4.4-а).

Ядерная оболочка (нуклеолемма) представляет собой сложное образование, отделяющее содержимое ядра от цитоплазмы и других элементов живой клетки. Данная оболочка выполняет ряд важных функций, без которых является невозможным функционирование ядер, полноценное . Чтобы определить роль ядерных мембран в жизнедеятельности эукариотных клеток, необходимо узнать не только главные функции, но и особенности строения.

В статье подробно рассматриваются функции ядерной оболочки. Описывается строение, структурные компоненты нуклеолеммы, их взаимосвязь, механизмы транспортировки веществ, процесс деления при митозе.

Строение оболочки

Главное отличие эукариот заключается в наличии ядра и ряда других органелл, необходимых для его поддержания. Такие клетки входят в состав всех растений, грибов, животных, в то время как клетки-прокариоты представляют собой простейшие безъядерные организмы.

Нуклеолемма состоит из двух структурных элементов - внутренней и наружной мембран. В промежутке между ними существует свободное пространство, называемое перинуклеарным. Ширина перинуклеарного промежутка нуклеолеммы составляет от 20 до 60 нанометров (нм).

Внешняя мембрана нуклеолеммы контактирует с клеточной цитоплазмой. На ее наружной поверхности располагается существенное число рибосом, которые отвечают за из отдельных аминокислот. Внешняя мембрана не содержит рибосом.

Мембраны, образующие нуклеолемму, состоят из белковых соединений и двойного слоя фосфолипидных веществ. Механическая прочность оболочки обеспечивается сетью филаментов - нитевидных белковых структур. Наличие филаментной сети характерно для большинства эукариот. Они соприкасаются с внутренней мембраной.

Сети филаментов располагаются не только в области нукелолеммах. Такие структуры также располагаются в цитоплазме. Их функция заключается в сохранении целостности клетки, а также в формировании контактов между клетками. При этом, отмечается, что слои, образующие сеть, регулярно перестраиваются. Данный процесс наиболее активен в период роста клеточного ядра перед делением.

Сеть филаментов, которая поддерживает мембраны, называется ядерной ламиной. Она формируется из определенной последовательности белков-полимеров, которые называются ламинами. Она взаимодействует с хроматином - веществом, участвующим в формировании хромосом. Также ламина контактирует с молекулами рибонуклеиновой кислоты, ответственными за .

Внешняя мембрана ядра взаимодействует с мембраной, окружающей эндоплазматический ретикулум. В определенных участках оболочки происходит контакт перинуклеарного пространства и внутреннего пространства ретикулума.

Функции эндоплазматического ретикулума:

  • Синтез и транспортировка белков
  • Хранение продуктов синтеза
  • Формирование новой оболочки при митозе
  • Хранение , выполняющих функцию медиатора
  • Продукция гормонов

Внутри оболочки располагаются ядерные поровые комплексы. Это каналы, посредством которых происходит перенос молекул между клеточным ядром, цитоплазмой и другими клеточными органеллами. На одном квадратном микроне поверхности нуклеолеммы располагает от 10 до 20 поровых комплекса. Исходя из этого, в оболочке 1 соматической клетки может находится всего от 2 до 4 тысяч ЯПК.

Помимо транспорта веществ, оболочка выполняет опорную и защитную функцию. Она отделяет ядро от содержимого цитоплазмы, в том числе продуктов деятельности других органелл. Защитная функция заключается в предохранении генетической информации ядра от негативного воздействия, например, .

Считается, что двойная мембрана ядерной оболочки сформировалась в ходе эволюции путем захвата одних клеток другими. Вследствие этого, некоторые поглощенные клетки сохранили собственную активность, но при этом их ядро было окружено двойной мембраной - собственной, и мембраной клетки-хозяина.

Таким образом, ядерная оболочка представляет собой сложную структуру, состоящую из двойной мембраны, содержащей ядерные поры.

Строение и свойства ЯПК

Ядерный поровый комплекс - это симметричный канал, местом локализации которого является сличение наружной и внутренней мембран. ЯПК состоят из набора веществ, включающих около 30 видов белков.

Ядерные поры имеют бочкообразную форму. Образуемый канал не ограничивается ядерными мембранами, а незначительно выступает за их пределы. В результате с двух сторон оболочки возникают кольцеобразные выступы. Размер этих выступов отличается, так как с одной стороны кольцеобразное образование имеет больший диаметр, чем с другой. Элементы ядерных пор, выступающих за пределы мембраны, называются терминальными структурами.

Цитоплазматическая терминальная структура (та что находится на внешней поверхности ядерной мембраны) состоит из восьми коротких фибрилл-нитей. Ядерная терминальная структура также состоит из 8 фибрилл, однако они образуют кольцо, выполняющего функции корзины. Во многих клетках от ядерной корзины исходят дополнительные фибриллы. Терминальные структуры являются местами, где происходит контакт молекул, транспортируемых через ядерные поры.

В месте расположения ЯПК происходит слияние наружной и внутренней ядерной мембраны. Такое слияние объясняется необходимостью обеспечить фиксацию ядерных пор в мембранах с помощью белков, соединяющих их также с ядерной ламиной.

В настоящее время общепринятым считается модульное строение ядерных каналов. Такая модель предусматривает структуру поры, состоящую из нескольких кольцевидных образований.

Внутри ядерной поры постоянно находится плотное вещество. Ее происхождение точно не известно, однако считается, что оно является одним из элементов ЯПК, за счет которого осуществляется транспортировка молекул от цитоплазмы к ядру и наоборот. Благодаря исследованию с использованием электронных микроскопов с высоким разрешением удалось выяснить, что плотная среда внутри ядерного канала способна менять свое месторасположение. Ввиду этого, считается, плотная внутренняя среда ЯПК является карго-рецепторным комплексом.

Транспортные функции ядерной оболочки возможны благодаря наличию ядерных поровых комплексов.

Виды ядерного транспорта

Транспортировка веществ через ядерную оболочку называется ядерно-цитоплазматическим транспортом веществ. Данный процесс предусматривает своеобразный обмен молекулами, синтезируемыми в ядре, и веществами, обеспечивающими жизнедеятельность самого ядра, импортируемыми из цитоплазмы.

Существуют такие виды транспортировки:

  1. Пассивная. Посредством данного процесса осуществляется перемещение небольших молекул. В частности, через пассивный транспорт происходит передача мононуклеотидов, минеральных компонентов, продуктов метаболического обмена. Процесс называется пассивным, так как протекает путем диффузии. Скорость прохождения через ядерную пору зависит от размера вещества. Чем оно меньше, тем выше скорость транспортировки.
  2. Активная. Предусматривает перенос через каналы внутри ядерной оболочки крупных молекул или их соединений. При этом, соединения не распадаются на мелкие частицы, что позволило бы увеличить скорость транспортировки. Данный процесс обеспечивает поступление в цитоплазму синтезируемых в ядре рибонуклеиновых молекул. Из внешнего цитоплазматического пространства за счет активного транспорта происходит перенос белков, необходимых для метаболических процессов.

Выделяют пассивный и активный транспорт белков, отличающийся механизмом действия.

Импорт и экспорт белков

Рассматривая функции ядерной оболочки, необходимо напомнить о том, что транспортировка веществ осуществляется в двух направлениях - из цитоплазмы в ядро и наоборот.

Импорт белковых соединений через мембраны к ядру осуществляется за счет наличия особых рецепторов, называемых транспортинами. Эти компоненты содержат запрограммированный сигнал, за счет которого происходит движение в необходимом направлении. и соединения, не обладающие таким сигналом, способны присоединятся к веществам, у которых он есть, и таким образом беспрепятственно перемещаться.

Важно отметить, что сигналы ядерного импорта обеспечивают избирательность поступления веществ в ядро. Многие образования, в числе которых полимеразы ДНК и РНК, а также белки, участвующие в процессах регуляции, не достигают ядра. Таким образом, ядерные поры представляют собой не только механизм транспортировки веществ, но и их своеобразной сортировки.

Сигнальные белки отличаются друг от друга. Ввиду этого, существует разница между скоростью перемещения через поры. Также они выполняют функцию источника энергии, так как для перемещения крупных молекул, транспортировка которых не возможна диффузным путем, необходимы дополнительные энергетические затраты.

Первый этап импорта белков заключается в присоединении к импортину (транспортину, обеспечивающему перенос через канал к ядру). Полученное в результате слияния сложное образование проходит через ядерную пору. После этого, с ним связывается другое вещество, за счет которого транспортируемый белок освобождается, а импортин возвращается обратно в цитоплазму. Таким образом, импорт в ядро представляет собой цикличный замкнутый процесс.

Транспорт веществ из ядра через оболочку в цитоплазматическое пространство осуществляется аналогичным образом. Исключением является то, что за перенос вещества-груза отвечают уже сигнальные белки, называемые экспортинами.

На первой стадии процесса белок (в большинстве случаев это молекулы РНК) связываются с экспортином и веществом, отвечающим за высвобождение транспортируемого субстрата. После перехода сквозь оболочку нуклеотид расщепляется, за счет чего переносимый белок высвобождается.

В целом, перенос веществ между ядром и цитоплазмой представляет собой цикличный процесс, осуществляемый за счет белков-транспортинов и веществ, отвечающих за высвобождение груза.

Ядерная оболочка при делении

Большинство клеток-эукариотов размножаются путем непрямого деления, которое называется митозом. Данный процесс предусматривает разделение ядра и других клеточных структур с сохранением одинакового количества хромосом. За счет этого сохраняется генетическая идентичность, полученная в результате деления клеток.

В процессе деления нуклеолемма выполняет еще одну важную функцию. После того как происходит разрушение ядра, внутренняя мембрана не позволяет хромосомам расходится на большие расстояния друг от друга. Хромосомы фиксируются на поверхности мембраны до момента полноценного деления ядер и формирования новой нуклеолеммы.

Ядерная оболочка, несомненно, принимает активное участие в клеточном делении. Процесс состоит из двух последовательных этапов - разрушения и перестройки.

Распад ядерной оболочки происходит в прометафазе. Разрушение мембран происходит стремительно. После распада хромосомы характеризуются хаотичным расположением в области ранее существовавшего ядра. В дальнейшем образуется веретено деления - биполярная структура, между полюсами которой формируются микротрубочки. Веретено обеспечивает деление хромосом и их распределение между двумя дочерними клетками.

Перераспределение хромосом и формирование новых ядерных мембран происходит в период телофазы. Точный механизм восстановления оболочек не известен. Распространенной является теория о том, что слияние частиц разрушенной оболочки происходит под действием везикул - мелких клеточных органелл, функция которых заключается в сборе и хранении питательных веществ.

Также образование новых ядерных мембран связывают с переформировкой эндоплазматического ретикулума. Из разрушенного ЭПР высвобождаются белковые соединения, которые постепенно обволакивают пространство вокруг нового ядра, в результате чего в дальнейшем образуется целостная мембранная поверхность.

Таким образом, нуклеолемма принимает непосредственное участие в процессе деления клетки путем митоза.

Ядерная оболочка - сложный структурный компонент клетки, выполняющий барьерные, защитные, транспортные функции. Полноценное функционирование нуклеолеммы обеспечивается , взаимодействием с другими клеточными компонентами и биохимическими процессами, протекающими в них.

Ядро клетки - важнейшая ее органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра и его предназначение очень важны для

Расположение ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Некоторые зрелые человеческие клетки не имеют ядра, а другие функционируют в условиях сильного угнетения его деятельности. В общем виде строение ядра (схема) представлено как ядерная полость, ограниченная кариолеммой от клетки, содержащая хроматин и ядрышки, фиксированные в нуклеоплазме ядерным матриксом.

Строение кариолеммы

Для удобства изучения клетки ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро - это пузырек с наследственной информацией, находящийся в толще клетки. От ее цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоев. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоев. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма - с содержимым ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления - отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра служит местом фиксации ядерного матрикса - цепи белковых молекул, которые поддерживают объемную структуру. В двух ядерных мембранах существуют специальные поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой толще ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра позволяют сравнить его с самой клеткой. Внутри ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри нее есть нуклеоскелет (матрикс), представленный фибриллярными белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки. Видимо, такая реакция среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Ядрышко

Строение клеточного ядра не может быть завершенным без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее из нее получится рибосома - органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через кариолеммы и попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра), функцией которого является поддержание формы органеллы. Однако самой важной составляющей ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок, который состоит из полипетида четвертичной структуры, соединенного с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса хроматина составляют гистоны - белки, ответственные за "упаковку" наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов дает возможность уплотнять и укомплектовать нить ДНК в небольшом месте - в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 - это главные гистоновые белки. Нуклеосома образована четырьмя парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате "наматывания" линейной молекулы на 8 белков гистоновой структуры.

Строение ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Фракции хроматина

Ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищен слабее, однако гены могут удваиваться для синтеза белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины всей хромосомы.

Хромосомы

Строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра

Основные особенности строения ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать которого закодирована в гене.

Чтобы ядро "понимало", какой конкретно белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам - кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определенного гена. Он реплицируется, на его основании строится информационная РНК. Позднее по структуре последней синтезируется белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример - эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить ее не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна и для жировых клеток. Строение клеточного ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают "мешки", наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра, однако их не стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.







































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок изучения и первичного закрепления новых знаний.

План урока:

I. Организационный момент

II. Актуализация опорных знаний

III. Изучение новой темы

IV. Закрепление изученного материала

V. Домашнее задание

Ход урока

I. Организационный момент. (Вступительное слово учителя).

II. Актуализация опорных знаний.

Т.о. тема нашего урока “Строение и функции ядра”.

Цели и задачи урока:

1. Обобщить и изучить материал о строение и функции ядра как важнейшего компонента эукариотической клетки.

2. Особенности клеток эукариот. Доказывать, что ядро – центр управления жизнедеятельностью клетки. Строение ядерных пор. Содержимое ядра клетки.

3.Активизировать познавательную деятельность с использованием технологии “ключевых слов”: кариоплазма, хроматин, хромосомы, ядрышко (нуклеола). Развивать умения работать с тестами.

4. Анализировать и устанавливать связи и отношения между органоидами клетки, проводить сравнения, развивать способность к аналитическому мышлению.

5. Продолжить развитие познавательного интереса у старшеклассников к изучению строения клетки, как единице строения и функции организмов.

6.Способствовать развитию ценностно-смысловых, общекультурных, учебно-познавательных, информационных компетенции. Компетенций личностного самосовершенствования.

III. Объяснение нового материала.

Вводное слово.

Какие органеллы изображены на слайде №4? (Митохондрии, хлоропласты).

Почему их считают полуавтономными структурами клетки? (Содержат собственную ДНК, рибосомы, могут синтезировать собственные белки).

Где ещё содержится ДНК? (В ядре).

Т.о. процессы жизнедеятельности клетки будут зависеть от ядра. Давайте попробуем это доказать.

Посмотреть фрагмент фильма “Клеточное ядро”. (Слайд № 5).

Ядро обнаружил в клетке английский ботаник Р.Броун в 1831 году.

Сделать вывод. Ядро наиболее важный компонент эукариотической клетки.

Ядро чаще всего расположено в центре клетки, и только у растительных клеток с центральной вакуолью - в пристеночной протоплазме. Оно может быть различной формы:

  • сферическим;
  • яйцевидным;
  • чечевицеобразным;
  • сегментированным (редко);
  • вытянутым в длину;
  • веретеновидным, а также иной формы.

Диаметр ядра варьирует в пределах от 0,5 мкм (у грибов) до 500 мкм (в некоторых яйцеклетках), в большинстве случаев он меньше 5 мкм.

Большинство клеток имеют одно ядро, но есть клетки и организмы, содержащие 2 и более ядер.

Давайте вспомним. (Клетки печени, клетки поперечно – полосатой мышечной ткани). Слайд № 6.

Из организмов: гриб - мукор – несколько сотен, инфузория - туфелька имеет два ядра. Слайд №7.

Клетки, не имеющие ядер: ситовидные трубки флоэмы высших растений и зрелых эритроцитов млекопитающих. (Слайд №8).

Посмотреть фрагмент фильма “Строение ядра” (слайд №9, 58 сек.)

  1. Сформулировать функции ядра.
  2. Рассмотреть строение ядерной мембраны и её функции.
  3. Взаимосвязь ядра и цитоплазмы.
  4. Содержимое ядра.

Ядро в клетке различимо только в интерфазе (интерфазное ядро) - период между ее делениями.

Функции: (слайд № 10)

1. Хранит генетическую информацию, заключенную в ДНК, и передает ее дочерним клеткам в процессе клеточного деления.

2. Контролирует жизнедеятельность клетки. Регулирует процессы обмена веществ, протекающих в клетке.

Рассматриваем рис. “Строение ядра” (слайд 11)

Составляем схему: учащиеся составляют самостоятельно, проверка слайд 12.

Рассмотрим ядерную оболочку (слайд 13)

Ядерная оболочка состоит из наружной ивнутренней мембран. Оболочка пронизана ядерными порами. Делаем вывод, что ядро двухмембранная структура клетки.

Работая с рис. 93. стр. 211. (Учебник И.Н. Пономарёва, О.А. Корнилова, Л.В. Симонова, (слайд 14), разбираем строение и функции ядерной мембраны.

Отделяет ядро от цитоплазмы клетки;

Наружная оболочка переходит в ЭПС и несет рибосомы, может образовывать выпячивания.

Ядерная пластинка (ламина) подстилает внутреннюю мембрану, принимает участие в фиксации хроматина – к ней могут прикрепляться концевые и другие участки хромосом.

Перинуклеарное пространство – пространство между мембранами.

Поры осуществляют избирательный транспорт веществ из ядра в цитоплазму и из цитоплазмы в ядро. Число пор непостоянно и зависит от размеров ядер и их функциональной активности.

Транспорт веществ через поры (слайд 15).

Пассивный транспорт: молекулы сахаров, ионы солей.

Активный и избирательный транспорт: белки, субъединицы рибосом, РНК.

Знакомимся с поровым комплексом, стр. 212. рис.94 (слайды 16,17).

Делаем вывод: функция ядерной оболочки регуляция транспорта веществ из ядра в цитоплазму и из цитоплазмы в ядро.

Содержимое ядра (слайд18,19,20).

Ядерный сок (нуклеоплазма, или кариоплазма, кариолимфа) - это бесструктурная масса, окружающая хроматин (хромосомы) и ядрышки. Похожа на цитозоль (гиалоплазму) цитоплазмы. Содержит различные РНК и белки-ферменты, в отличие от гиалоплазмы содержит большую концентрацию ионов Na, + K + , Cl - ; меньшим содержанием SO 4 2- .

Функции нуклеоплазмы:

  • заполняет пространство между ядерными структурами;
  • участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро;
  • регулирует синтез ДНК при репликации, синтез иРНК при транскрипции

Хроматин имеет вид глыбок, гранул и нитей (слайд 20,21).

Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП).

Хроматин - форма существования генетического материала в интерфазных клетках. В делящейся клетке нити ДНК спирализуются (конденсация хроматина), образуя хромосомы.

Хромосомы ядра составляют его хромосомный набор - кариотип.

Функции хроматина:

  • Содержит генетический материал - ДНК, состоящую из генов, несущих наследственную информацию;
  • Осуществляет синтез ДНК (при удвоении хромосом в S-период клеточного цикла), иРНК (транскрипция при биосинтезе белка);
  • Регулирует синтез, белков и контролирует жизнедеятельность клетки;
  • Гистоновые белки обеспечивают конденсацию хроматина.

Ядрышко. В ядре одно или несколько ядрышек. У них округлая структура (слайд 22, 23)

Оно содержит: белок - 70-80% (определяет высокую плотность), РНК - 5-14%, ДНК – 2-12%.

Ядрышко - несамостоятельная структура ядра. Оно образуется на участке хромосомы, несущем гены рРНК. Такие участки хромосом называются ядрышковыми организаторами. В образовании ядрышка клетки человека участвуют петли десяти отдельных хромосом, содержащие гены рРНК (ядрышковые организаторы). В ядрышках синтезируется рРНК, которая вместе с поступившим из цитоплазмы белком образует субъединицы рибосом.

Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме.

Завершается сборка рибосом в цитоплазме. Во время деления клетки ядрышко распадается, а в телофазе вновь формируется.

Функции ядрышка:

Синтез рРНК и сборка субъединиц рибосом (завершается сборка рибосом из субъединиц в цитоплазме после их выхода из ядра);

Подводим итог:

Клеточное ядро - центр управления жизнедеятельностью клетки.

  1. Ядро -> хроматин (ДНП) -> хромосомы -> молекула ДНК -> участок ДНК – ген хранит и передаёт наследственную информацию.
  2. Ядро находится в постоянном и тесном взаимодействии с цитоплазмой, в нём синтезируются молекулы иРНК, которые переносят информацию от ДНК к месту синтеза белка в цитоплазме на рибосомах. Однако само ядро также испытывает влияние цитоплазмы, т. к. синтезируемые в ней ферменты поступают в ядро и необходимы для его нормального функционирования.
  3. Ядро контролирует синтез всех белков в клетке и через них – все физиологические процессы в клетке

Еще в конце прошлого века было доказано, что лишенные ядра фрагменты, отрезанные от амебы или инфузории, через более или менее короткое время погибают.

Для того чтобы выяснить роль ядра, можно удалить его из клетки и наблюдать последствия такой операции. Если с помощью микроиглы удалить ядро у одноклеточного животного - амебы, то клетка продолжает жить и двигаться, но не может расти и через несколько дней погибает. Следовательно, ядро необходимо для метаболических процессов (в первую очередь - для синтеза нуклеиновых кислот и белков), обеспечивающих рост и размножение клеток.

Можно возразить, что к гибели приводит не утрата ядра, а сама операция. Для того чтобы выяснить это, необходимо поставить опыт с контролем, т. е. подвергнуть две группы амеб одной и той же операции, с той разницей, что в одном случае ядро действительно удаляют, а в другом в амебу вводят микроиглу, передвигают ее в клетке подобно тому, как это делается при удалении ядра, и выводят, оставив ядро в клетке; это называется “мнимой” операцией. После такой процедуры амебы оправляются, растут и делятся; это показывает, что гибель амеб первой группы вызывалась не операцией как таковой, а именно удалением ядра.

Ацетабулярия представляет собой одноклеточный организм, гигантскую одноядерную клетку, имеющую сложное строение (слайд 26).

Состоит из ризоида с ядром, стебелька и зонтика (шапочки).

Ампутация ножки (ризоида), которая содержит единственное клеточное ядро растения. Образуется новый ризоид, который, однако, не имеет ядра. Клетка может выжить в благоприятных условиях несколько месяцев, но уже не способна к размножению.

Энуклеированное (лишённое ядра) растение способно восстановить утраченные части: зонтик, ризоид: всё, за исключением ядра. Такие растения погибают через несколько месяцев. Напротив, части этого одноклеточного растения с ядром способны неоднократно восстанавливаться после повреждения.

Выполнить тест (комментировать ответ, слайды 27-37).

1. Какие клетки человека в процессе развития теряют ядро, но в течение длительного времени продолжают выполнять свои функции?

а) нервные клетки

б) клетки внутреннего слоя кожи

в) эритроциты +

г) поперечно-полосатые мышечные волокна

(Клетки эритроцитов. Молодые имеют ядро, зрелые его теряют, продолжают функционировать 120 дней).

2. Главная генетическая информация организма хранится в:

3. Функцией ядрышка является образование:

(В ядрышке синтезируется рРНК, которая вместе с белком, поступающим из цитоплазмы, формирует рибосомы).

4. Белки, входящие в состав хромосом, называются:

(Гистоновые белки обеспечивают конденсацию хроматина).

5. Поры в оболочке ядра:

(Поры образованы белковыми структурами, через них пассивно и избирательно происходит связь ядра и цитоплазмы).

6. Что правильно?

а) в процессе деления клетки ядрышки в ядре исчезают +

б) хромосомы состоят только из ДНК

в) в клетках растений ядро оттесняет вакуоль к стенке

г) белки гистоны устраняют нарушения в ДНК

(Ядрышко - несамостоятельная структура ядра. Оно образуется на участке хромосомы, несущем гены рРНК. Такие участки хромосом называются ядрышковыми организаторами. Перед делением ядрышко исчезает, а затем образуется вновь).

7. Главная функция ядра: (2 ответа)

а) управление внутриклеточным обменом веществ +

б) изоляции ДНК от цитоплазмы

в) хранении генетической информации +

г) объединении хромосом перед спирализацией

(В ядре находится ДНК, которая хранит и передаёт генетическую информацию, через иРНК, на рибосомах происходит синтез белка, осуществляется обмен веществ между ядром и цитоплазмой)

Выбрать три ответа.

8. Укажите структуры клетки эукариот, в которых локализованы молекулы ДНК.

(Полуавтономные органоиды клетки митохондрии и хлоропласты. Ядро, которое контролирует все процессы жизнедеятельности в клетке).

9. Ядрышки состоят из:

(белок - 70-80% (определяет высокую плотность), РНК - 5-14%, ДНК – 2-12%).

10. Что правильно?

а) ядрышки - это “мастерские” по производству лизосом

б) внешняя мембрана покрыта множеством рибосом +

в) репликацией называют процесс самокопирования ДНК +

г) рибосомная РНК образуется в ядрышках +

Дать ответ на вопрос.

  • Каково строение и функции оболочки ядра?

Элементы ответа.

1) 1. Ограничивает содержимое ядра от цитоплазмы

2) 2. Состоит из наружной и внутренней мембран, сходных по строению с плазматической мембраной. На внешней мембране - рибосомы, переходит в ЭПС.

3) 3. Имеет многочисленные поры, через которые происходит обмен веществами между ядром и цитоплазмой.

Домашнее задание. Параграф 46. Вопросы 2,4 стр. 215.

Основная литература.

  1. И.Н. Пономарёва, О.А. Корнилова, Л.В. Симонова, Москва Издательский центр “Вентана – Граф” 2013г.
  2. В.В. Захаров, С.Г. Мамонтов, И.И.Сонин Общая биология.10 класс. Изд. “Дрофа”, Москва 2007г.
  3. А.А. Каменский, Е.А. Криксунов, В.В.Пасечник Общая биология 10-11 класс Изд. “Дрофа” 2010г.
  4. Краснодембский Е.Г., 2008."Общая биология: Пособие для старшеклассников и поступающих в вузы"
  5. Ресурсы Интернета. Единая коллекция образовательных ресурсов. Материал из Википедии - свободной энциклопедии.

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические. Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки - гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Кариотип - совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма - графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида - одинаковые. Аутосомы - хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы - хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины - ХХ, мужчины - ХУ. Х-хромосома - средняя субметацентрическая, У-хромосома - мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими .

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты - одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...