Теорема о собственных векторах линейного оператора. Собственные числа и собственные векторы линейного оператора

Самый простой линейный оператор - умножение вектора на число \(\lambda \). Этот оператор просто растягивает все вектора в \(\lambda \) раз. Его матричная форма в любом базисе - \(diag(\lambda ,\lambda ,...,\lambda)\). Фиксируем для определенности базис \(\{e\}\) в векторном пространстве \(\mathit{L}\) и рассмотрим линейный оператор с диагональной матричной формой в этом базисе, \(\alpha = diag(\lambda _1,\lambda _2,...,\lambda _n)\). Этот оператор, согласно определению матричной формы, растягивает \(e_k\) в \(\lambda _k\) раз, т.е. \(Ae_k=\lambda _ke_k\) для всех \(k=1,2,...,n\). С диагональными матрицами удобно работать, для них просто строится функциональное исчисление: для любой функции \(f(x)\) можно положить \(f(diag(\lambda _1,\lambda _2,...,\lambda _n))=diag(f(\lambda _1),f(\lambda _2),...,f(\lambda _n))\). Таким образом возникает естественный вопрос: пусть имеется линейный оператор \(A\), можно ли выбрать такой базис в векторном пространстве, чтобы матричная форма оператора \(A\) была диагональной в этом базисе? Этот вопрос приводит к определению собственных чисел и собственных векторов.

Определение. Пусть для линейного оператора \(A\) существует ненулевой вектор \(u\) и число \(\lambda \) такие, что \[ Au=\lambda \cdot u. \quad \quad(59) \] Тогда вектор \(u\) называют собственным вектором оператора \(A\), а число \(\lambda \) - соответствующим собственным числом оператора \(A\). Совокупность всех собственных чисел называют спектром линейного оператора \(A\).

Возникает естественная задача: найти для заданного линейного оператора его собственные числа и соответствующие собственные вектора. Эту задачу называют задачей о спектре линейного оператора.

Уравнение для собственных значений

Фиксируем для определенности базис в векторном пространстве, т.е. будем считать, что он раз и навсегда задан. Тогда, как обсуждалось выше, рассмотрение линейных операторов можно свести к рассмотрению матриц - матричных форм линейных операторов. Уравнение (59) перепишем в виде \[ (\alpha -\lambda E)u=0. \] Здесь \(E\) - единичная матрица, а \(\alpha\) - матричная форма нашего линейного оператора \(A\). Это соотношение можно трактовать как систему \(n\) линейных уравнений для \(n\) неизвестных - координат вектора \(u\). Причем это однородная система уравнений, и нам следует найти ее нетривиальное решение. Ранее было приведено условие существования такого решения - для этого необходимо и достаточно, чтобы ранг системы был меньше числа неизвестных. Отсюда следует уравнение для собственных чисел: \[ det(\alpha -\lambda E)=0. \quad \quad(60) \]

Определение. Уравнение (60) называется характеристическим уравнением для линейного оператора \(A\).

Опишем свойства этого уравнения и его решений. Если его выписывать в явном виде, получим уравнение вида \[ (-1)^n\lambda ^n+...+det(A)=0. \quad \quad(61) \] В левой части стоит полином по переменной \(\lambda \). Такие уравнения называются алгебраическими степени \(n\). Приведем необходимые сведения об этих уравнениях.

Справка об алгебраических уравнениях.

Теорема. Пусть все собственные числа линейного оператора \(A\) - простые. Тогда набор собственных векторов, соответствующих этим собственным числам, образует базис векторного пространства.

Из условий теоремы следует, что все собственные числа оператора \(A\) различны. Предположим, что набор собственных векторов линейно зависим, так что существуют константы \(c_1,c_2,...,c_n\), не все из которых нули, удовлетворяющие условию: \[ \sum_{k=1}^nc_ku_k=0. \quad \quad(62) \]

Рассмотрим среди таких формул такую, которая включает минимальное число слагаемых, и подействуем на нее оператором \(A\). В силу его линейности получаем: \[ A\left (\sum_{k=1}^nc_ku_k \right)=\sum_{k=1}^nc_kAu_k=\sum_{k=1}^nc_k\lambda _ku_k=0. \quad \quad(63) \]

Пусть, для определенности, \(c_1 \neq 0\). Умножая (62) на \(\lambda _1\) и вычитая из (63), получим соотношение вида (62), но содержащее на одно слагаемое меньше. Противоречие доказывает теорему.

Итак, в условиях теоремы появляется базис, связанный с данным линейным оператором - базис его собственных векторов. Рассмотрим матричную форму оператора в таком базисе. Как упоминалось выше, \(k\)-ый столбец этой матрицы - это разложение вектора \(Au_k\) по базису. Однако по определению \(Au_k=\lambda _ku_k\), так что это разложение (то, что выписано в правой части) содержит только одно слагаемое и построенная матрица оказывается диагональной. В итоге получаем, что в условиях теоремы матричная форма оператора в базисе его собственных векторов равна \(diag(\lambda _1,\lambda _2,...,\lambda _n)\). Поэтому если необходимо развивать функциональное исчисление для линейного оператора разумно работать в базисе его собственных векторов.

Если же среди собственных чисел линейного оператора есть кратные, описание ситуации становится сложнее и может включать так называемые жордановы клетки. Мы отошлем читателя к более продвинутым руководствам для изучения соответствующих ситуаций.

Вектор Х ≠ 0 называют собственным вектором линейного оператора с матрицей А, если найдется такое число, что АХ =Х.

При этом число называютсобственным значением оператора (матрицы А), соответствующим вектору х.

Иными словами, собственный вектор – это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - Е)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными . Если матрица такой системы – квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение – нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - Е| = = 0

Это уравнение с неизвестным называютхарактеристическим уравнением (характеристическим многочленом ) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - Е| = = (1 -) 2 – 36 = 1 – 2+ 2 - 36 = 2 – 2- 35; Д = 4 + 140 = 144; собственные значения 1 = (2 - 12)/2 = -5; 2 = (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х 2 = с, х 1 + (2/3)с = 0; х 1 = -(2/3)с, т.е. Х (1) = (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х 2 = с 1 , х 1 - (2/3)с 1 = 0; х 1 = (2/3)с 1 , т.е. Х (2) = ((2/3)с 1 ; с 1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с 1 ; с 1) с собственным значением 7.

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где  i – собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.

С матрицей А, если найдется такое число l, что АХ = lХ.

При этом число l называют собственным значением оператора (матрицы А), соответствующим вектору Х.

Иными словами, собственный вектор - это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - lЕ)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными . Если матрица такой системы - квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение - нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - lЕ| = = 0

Это уравнение с неизвестным l называют характеристическим уравнением (характеристическим многочленом ) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - lЕ| = = (1 - l) 2 - 36 = 1 - 2l + l 2 - 36 = l 2 - 2l - 35 = 0; Д = 4 + 140 = 144; собственные значения l 1 = (2 - 12)/2 = -5; l 2 = (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х 2 = с, х 1 + (2/3)с = 0; х 1 = -(2/3)с, т.е. Х (1) = (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х 2 = с 1 , х 1 - (2/3)с 1 = 0; х 1 = (2/3)с 1 , т.е. Х (2) = ((2/3)с 1 ; с 1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с 1 ; с 1) с собственным значением 7.

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где l i - собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.


Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с 1 , но такие, чтобы векторы Х (1) и Х (2) были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с 1 = 3, тогда Х (1) = (-2; 3), Х (2) = (2; 3).

Убедимся в линейной независимости этих векторов:

12 ≠ 0. В этом новом базисе матрица А примет вид А * = .

Чтобы убедиться в этом, воспользуемся формулой А * = С -1 АС. Вначале найдем С -1 .

С -1 = ;

Квадратичные формы

Квадратичной формой f(х 1 , х 2 , х n) от n переменных называют сумму, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятым с некоторым коэффициентом: f(х 1 , х 2 , х n) = (a ij = a ji).

Матрицу А, составленную из этих коэффициентов, называют матрицей квадратичной формы . Это всегда симметрическая матрица (т.е. матрица, симметричная относительно главной диагонали, a ij = a ji).

В матричной записи квадратичная форма имеет вид f(Х) = Х Т AX, где

В самом деле

Например, запишем в матричном виде квадратичную форму .

Для этого найдем матрицу квадратичной формы. Ее диагональные элементы равны коэффициентам при квадратах переменных, а остальные элементы - половинам соответствующих коэффициентов квадратичной формы. Поэтому

Пусть матрица-столбец переменных X получена невырожденным линейным преобразованием матрицы-столбца Y, т.е. X = CY, где С - невырожденная матрица n-го порядка. Тогда квадратичная форма f(X) = Х T АХ = (CY) T A(CY) = (Y T C T)A(CY) = Y T (C T AC)Y.

Таким образом, при невырожденном линейном преобразовании С матрица квадратичной формы принимает вид: А * = C T AC.

Например, найдем квадратичную форму f(y 1 , y 2), полученную из квадратичной формы f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 линейным преобразованием .

Квадратичная форма называется канонической (имеет канонический вид ), если все ее коэффициенты a ij = 0 при i ≠ j, т.е.
f(х 1 , х 2 , х n) = a 11 x 1 2 + a 22 x 2 2 + a nn x n 2 = .

Ее матрица является диагональной.

Теорема (доказательство здесь не приводится). Любая квадратичная форма может быть приведена к каноническому виду с помощью невырожденного линейного преобразования.

Например, приведем к каноническому виду квадратичную форму
f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 .

Для этого вначале выделим полный квадрат при переменной х 1:

f(х 1 , х 2 , х 3) = 2(x 1 2 + 2х 1 х 2 + х 2 2) - 2х 2 2 - 3х 2 2 - х 2 х 3 = 2(x 1 + х 2) 2 - 5х 2 2 - х 2 х 3 .

Теперь выделяем полный квадрат при переменной х 2:

f(х 1 , х 2 , х 3) = 2(x 1 + х 2) 2 - 5(х 2 2 + 2* х 2 *(1/10)х 3 + (1/100)х 3 2) + (5/100)х 3 2 =
= 2(x 1 + х 2) 2 - 5(х 2 - (1/10)х 3) 2 + (1/20)х 3 2 .

Тогда невырожденное линейное преобразование y 1 = x 1 + х 2 , y 2 = х 2 + (1/10)х 3 и y 3 = x 3 приводит данную квадратичную форму к каноническому виду f(y 1 , y 2 , y 3) = 2y 1 2 - 5y 2 2 + (1/20)y 3 2 .

Отметим, что канонический вид квадратичной формы определяется неоднозначно (одна и та же квадратичная форма может быть приведена к каноническому виду разными способами). Однако полученные различными способами канонические формы обладают рядом общих свойств. В частности, число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду (например, в рассмотренном примере всегда будет два отрицательных и один положительный коэффициент). Это свойство называют законом инерции квадратичных форм.

Убедимся в этом, по-другому приведя ту же квадратичную форму к каноническому виду. Начнем преобразование с переменной х 2:

f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 = -3х 2 2 - х 2 х 3 + 4х 1 х 2 + 2x 1 2 = -3(х 2 2 +
+ 2* х 2 ((1/6) х 3 - (2/3)х 1) + ((1/6) х 3 - (2/3)х 1) 2) + 3((1/6) х 3 - (2/3)х 1) 2 + 2x 1 2 =
= -3(х 2 + (1/6) х 3 - (2/3)х 1) 2 + 3((1/6) х 3 + (2/3)х 1) 2 + 2x 1 2 = f(y 1 , y 2 , y 3) = -3y 1 2 -
+3y 2 2 + 2y 3 2 , где y 1 = - (2/3)х 1 + х 2 + (1/6) х 3 , y 2 = (2/3)х 1 + (1/6) х 3 и y 3 = x 1 . Здесь отрицательный коэффициент -3 при y 1 и два положительных коэффициента 3 и 2 при y 2 и y 3 (а при использовании другого способа мы получили отрицательный коэффициент (-5) при y 2 и два положительных: 2 при y 1 и 1/20 при y 3).

Также следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы , равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.

Квадратичную форму f(X) называют положительно (отрицательно ) определенной , если при всех значениях переменных, не равных одновременно нулю, она положительна, т.е. f(X) > 0 (отрицательна, т.е.
f(X) < 0).

Например, квадратичная форма f 1 (X) = x 1 2 + х 2 2 - положительно определенная, т.к. представляет собой сумму квадратов, а квадратичная форма f 2 (X) = -x 1 2 + 2x 1 х 2 - х 2 2 - отрицательно определенная, т.к. представляет ее можно представить в виде f 2 (X) = -(x 1 - х 2) 2 .

В большинстве практических ситуации установить знакоопределенность квадратичной формы несколько сложнее, поэтому для этого используют одну из следующих теорем (сформулируем их без доказательств).

Теорема . Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все собственные значения ее матрицы положительны (отрицательны).

Теорема (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все главные миноры матрицы этой формы положительны.

Главным (угловым) минором k-го порядка матрицы А n-го порядка называют определитель матрицы, составленный из первых k строк и столбцов матрицы А ().

Отметим, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, причем минор первого порядка должен быть отрицательным.

Например, исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 + 3х 2 2 .

= (2 - l)*
*(3 - l) - 4 = (6 - 2l - 3l + l 2) - 4 = l 2 - 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - положительно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - положительно определенная.

Исследуем на знакоопределенность другую квадратичную форму, f(х 1 , х 2) = -2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (-2 - l)*
*(-3 - l) - 4 = (6 + 2l + 3l + l 2) - 4 = l 2 + 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - отрицательно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 =
= -2 < 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - отрицательно определенная (знаки главных миноров чередуются, начиная с минуса).

И в качестве еще одного примера исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (2 - l)*
*(-3 - l) - 4 = (-6 - 2l + 3l + l 2) - 4 = l 2 + l - 10 = 0; D = 1 + 40 = 41;
.

Одно из этих чисел отрицательно, а другое - положительно. Знаки собственных значений разные. Следовательно, квадратичная форма не может быть ни отрицательно, ни положительно определенной, т.е. эта квадратичная форма не является знакоопределенной (может принимать значения любого знака).

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = -6 - 4 = -10 < 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них - положителен).

Определение: ПустьL– заданноеn - мерное линейное пространство. Ненулевой векторLназываетсясобственным вектором линейного преобразования А, если существует такое число, что выполняется равенство:

A
(7.1)

При этом число называетсясобственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору.

Перенеся правую часть (7.1) в левую и принимая во внимание соотношение
, перепишем (7.1) в виде

(7.2)

Уравнение (7.2) эквивалентно системе линейных однородных уравнений:

(7.3)

Для существования ненулевого решения системы линейных однородных уравнений (7.3) необходимо и достаточно, чтобы определитель коэффициентов этой системы равнялся нулю, т.е.

|A-λE|=
(7.4)

Этот определитель является многочленом n-ой степени относительно λ и называется характеристическим многочленом линейного преобразования А, а уравнение (7.4) -характеристическим уравнением матрицы А.

Определение: Если линейное преобразование А в некотором базисе,,…,имеет матрицу А =
, то собственные значения линейного преобразования А можно найти как корни 1 , 2 , … , n характеристического уравнения:

Рассмотрим частный случай . Пусть А – некоторое линейное преобразование плоскости, матрица которого равна
. Тогда преобразование А может быть задано формулами:


;

в некотором базисе
.

Если преобразование А имеет собственный вектор с собственным значением , то А
.

или

Т.к. собственный вектор ненулевой, то х 1 и х 2 не равны нулю одновременно. Т.к. данная система однородна, то для того, чтобы она имела нетривиальное решение, определитель системы должен быть равен нулю. В противном случае по правилу Крамера система имеет единственное решение – нулевое, что невозможно.

Полученное уравнение является характеристическим уравнением линейного преобразования А .

Таким образом, можно найти собственный вектор (х 1 , х 2) линейного преобразования А с собственным значением, где- корень характеристического уравнения, а х 1 и х 2 – корни системы уравнений при подстановке в нее значения.

Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов.

Следует отметить, что если - собственный вектор преобразования А, то и любой вектор ему коллинеарный – тоже собственный с тем же самым собственным значением.

Действительно,. Если учесть, что векторы имеют одно начало, то эти векторы образуют так называемоесобственное направление илисобственную прямую .

Т.к. характеристическое уравнение может иметь два различных действительных корня  1 и 2 , то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений. (Т.к. уравнения линейно зависимы). Это множество решений определяет двесобственные прямые .

Если характеристическое уравнение имеет два равных корня 1 = 2 =, то либо имеется лишь одна собственная прямая, либо, если при подстановке в систему она превращается в систему вида:
. Эта система удовлетворяет любым значениям х 1 и х 2 . Тогда все векторы будут собственными, и такое преобразование называетсяпреобразованием подобия .

Пример.
.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А =
.

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

 2 - 4+ 4 = 0;

Корни характеристического уравнения:  1 = 2 = 2;

Получаем:

Из системы получается зависимость: x 1 x 2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты:( t ; t ) гдеt - параметр.

Собственный вектор можно записать:
.

Рассмотрим другой частный случай . Если- собственный вектор линейного преобразования А, заданного в трехмерном линейном пространстве, а х 1 , х 2 , х 3 – компоненты этого вектора в некотором базисе
, то

где - собственное значение (характеристическое число) преобразования А.

Если матрица линейного преобразования А имеет вид:

, то

Характеристическое уравнение:

Раскрыв определитель, получим кубическое уравнение относительно . Любое кубическое уравнение с действительными коэффициентами имеет либо один, либо три действительных корня.

Тогда любое линейное преобразование в трехмерном пространстве имеет собственные векторы.

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А =.

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А =
.

Составим характеристическое уравнение:

-(3 + )((1 -)(2 -) – 2) + 2(4 - 2- 2) - 4(2 - 1 +) = 0

-(3 + )(2 -- 2+ 2 - 2) + 2(2 - 2) - 4(1 +) = 0

-(3 + )( 2 - 3) + 4 - 4- 4 - 4= 0

3 2 + 9- 3 + 3 2 - 8= 0

 1 = 0; 2 = 1; 3 = -1;

Для  1 = 0:

Если принять х 3 = 1, получаем х 1 = 0, х 2 = -2

Собственные векторы
t, гдеt– параметр.

Аналогично можно найти идля 2 и 3 .



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...