Туманность определение. Большая ВселеннаяПланетарные туманности

Во Вселенной, кроме звезд, планет и галактик, имеются и диффузные туманности. Их роль в развитии космического пространства огромна: именно в недрах туманностей зарождаются звезды. Туманности состоят из двух компонентов – газа и пыли. Газ имеет доисторическое происхождение, т.е. он сформировался на заре возникновения Вселенной, именно в это время образовались водород и гелий – основные составляющие первых звезд. Более тяжелые элементы появились позже, когда начали происходить вспышки звезд и выбросы в межзвездную среду.

Пыль, входящая в состав туманностей, состоит из смеси углерода в разных стадиях сцепления и силикатов, также имеются следы и других органических веществ. Газ – это в основном водород.

В принципе, туманности представляют собой области с уплотненной под влиянием гравитации межзвездной средой, в которой сформировались облака. Увеличиваясь в размерах, они притянули к себе часть материи из окружающей среды. Иногда эти облака становятся видимыми из-за того, что относительно молодые звезды, входящие в их состав, возбуждают атомы. В результате туманность приобретает яркость.

Классификация туманностей

В небе много туманностей. Их делят на три типа: эмиссионные туманности, светлые (они светятся отраженным светом) и темные. За основу такого деления берется внешний вид туманностей и явления, характерные для них. Эмиссионные туманности – яркие, так как атомы возбуждаются под действием ультрафиолетового излучения близлежащих молодых звезд. Сами туманности также превращаются в источник радиации.

Светлые туманности не излучают радиацию, а отражают свет ближайших звезд. Классический пример светлой туманности – голубоватая туманность, окружающая рассеянное звездное скопление Плеяд. Темные туманности представляют собой плотную концентрацию пыли, активно поглощающую свет. Они становятся видимыми лишь при условии нахождения за ними источника блеска.

Многие туманности легко различимы, иногда даже невооруженным глазом. Вполне достаточно воспользоваться биноклем или небольшим любительским телескопом. Такие туманности зафиксированы в известном каталоге Мессье. Этот французский астроном составил его во второй половине XVIII в..

Самая яркая туманность нашего полушария – туманность Ориона, в каталоге она имеет обозначение М42. Пожалуй, это первый небесный объект, на который любители неба нацеливают свои астрономические инструменты длинными зимними ночами.

Есть и много других очень красивых туманностей. Вот несколько примеров.

Туманность в созвездии Стрельца

Туманность Лагуна, М8, расположена в созвездии Стрельца. В этой области небесного свода находится много туманностей. Это очень “заселенный” район Млечного Пути, здесь много газовых облаков.

М8 находится рядом с рассеянным звездным скоплением – такое сочетание встречается нередко. Как уже отмечалось, туманности являются зонами звездообразования и часто внутри них или рядом располагаются скопления молодых и ярких звезд. Уже при помощи небольшого бинокля можно рассмотреть некоторые детали М8, а используя более мощный бинокль, - увидеть характерные особенности, например темную полосу внутри облака.

В рассеянном звездном скоплении NGC 6530 видны примерно 40 звезд, звездная величина которых от 8 до 13. Их свет возбуждает атомы туманности, в результате она становится видимой.

В М8 имеются и глобулы Бока, темные зоны, диаметр которых равен десяткам тысяч а.е. Расстояние до М8 составляет 3000-4000 световых лет. В созвездии Стрельца находится и М20, типичная эмиссионная туманность. Имеется в виду туманность Трифида (“разделенная на три части”). Название отражает ее форму.

Эта туманность была открыта астрономом Ле Жантилем в 1750 г., но ее первое описание появилось только в 1764г. Это сделал Мессье. Уильям Гершель определил три линии, которые делят эту туманность на три треугольных сектора. С помощью бинокля можно увидеть самую блестящую часть туманности. Она смотрится как круглое пятно диаметром до 10’. Существование темных зон, которые делят облако на три части, связано с присутствием в его составе пыли и холодных газов.

Расстояние до М20 составляет примерно 3200 световых лет. В созвездии Стрельца, в середине Млечного Пути, находится и туманность М24, наблюдаемая невооруженным глазом. Она была открыта раньше, еще до того, как Мессье внес ее в свой каталог. Этот астроном полагал, что ее диаметр составляет около 1,5°.

Туманность Орел в созвездии Змеи

М16, туманность Орел, была открыта Де Шезо в 1746 г. Мессье зафиксировал ее через два года. Эта туманность располагается на границе созвездий Щита и Змеи. Внутри ее имеется темная область, которая вытягивается от северной к центральной части облака.

Звездное скопление насчитывает несколько десятков звезд, некоторые из них очень слабые, красного цвета. Звездная величина самых ярких звезд составляет от 8 до 11, они относятся к спектральным классам О и В, т.е. это классические горячие и молодые звезды. М16 – это эмиссионная туманность, но в ней присутствует и элемент отражательной туманности. Расстояние до нее составляет от 5000 до 11 000 световых лет, в среднем около 7500.

Планетарные туманности

Кроме диффузных, существуют и планетарные туманности. Их название связанно с тем, что в начале наблюдатели часто путали их с планетами, так как они имеют круглую форму.

Эти туманности образуются из эмиссий газовой оболочки звезд на более поздних стадиях их эволюции.

Наиболее известная планетарная туманность М57 расположена в созвездии Лиры. Ее сложно идентифицировать из-за слабой поверхностной освещенности. Есть и туманность М27 – Гантель, она находится в созвездии Лисицы. Эта туманность была открыта Мессье в 1764 г. Он, наблюдая за ней в телескоп, определил овальную форму образования. В небольших любительских телескопах эта туманность предстает в форме “песочных часов”. М27 расположена на расстоянии 500-1000 световых лет от Земли. Ее диаметр по максимуму составляет около 2,5 светового года

Наблюдая небо в телескоп, иногда можно наткнуться на любопытные туманности с округлыми очертаниями. Это планетарные туманности - объекты, соответствующие заключительной фазе существования звезд, подобных Солнцу. По сути дела, каждая из них представляет собой шарообразную оболочку из газа, внешний слой звезды, выброшенный ею после утраты собственной стабильности. Эти оболочки затем увеличиваются, расширяются и постепенно становятся все более слабыми. Наблюдать такие туманности непросто: большинство из них обладает низкой поверхностной яркостью и малым угловым размером. Как и в случаях с другими туманностями, для наблюдения необходимы темные безлунные ночи. Очень редко идентификации планетарной туманности может помочь маленькая звездочка, расположенная в ее центре и давшая ей начало.

Туманность Кольцо

Из всех планетарных туманностей, видимых на небосводе, самая известная среди любителей астрономии - безусловно, туманность М57, которая также имеет название Кольцо. Она расположена в летнем созвездии Лира на расстоянии около 2300 световых лет от Земли.

Открыл эту туманность в 1779 году французский астроном Антуан Даркье де Пельпуа. Он описал ее как идеальный диск размером приблизительно равный Юпитеру, но имеющий блеклое свечение и похожий на исчезающую планету. Впоследствии, в 1785 году, английский астроном Вильям Гершель определил ее как«небесную достопримечательность». Он думал, что эта туманность представляет собой звездное кольцо.

С дырой

В вашем телескопе М57 будет выглядеть маленьким туманным пятнышком округлой формы. Имеет смысл рассматривать ее при среднем увеличении, например, через 12,5-мм окуляр Плёссля, обеспечивающий 80-кратное увеличение. При первом взгляде вы обнаружите округлые очертания. После нескольких минут адаптации, если воздух будет прозрачным и неподвижным и со стороны Луны будут отсутствовать помехи, вы сможете разглядеть некоторые детали. Повышая увеличение, вы даже различите центральное «отверстие», особенно если будете смотреть «рассеянным зрением», то есть, концентрируя взгляд не на самом «отверстии», а на его периферии.

Центральная звезда

Эта туманность родилась от звезды, находящейся в ее центре и сегодня превратившейся в белый карлик. Температура поверхности этой звезды превышает 100000 градусов. Ее звездная величина составляет 14,7 - таким образом, она недоступна вашему телескопу. В 1800 году ее открыл немецкий философ и астроном Фридрих фон Хан.

Туманность расширяется со скоростью приблизительно 20-30 км/с, и поэтому ее видимые размеры увеличиваются примерно на 1 секунду дуги в столетие.

Формирование туманностей

После того как были открыты первые планетарные туманности, их округлые очертания навели астрономов на мысль о том, что эти небесные объекты связаны с чем-то похожим на планеты, скорее всего - на газовые гиганты или же на формирующуюся планетную систему. По этой причине английский астроном Вильям Гершель (незадолго до этого открывший планету Уран) предложил для таких объектов термин «планетарная туманность». Их истинная природа была установлена лишь в середине XIX века благодаря спектроскопии (технике, позволяющей «расщепить» свет, поступающий от небесного тела, на его основные цвета). Тогда стало ясно, что перед нами - особый тип туманности.

Умирающая звезда

Все планетарные туманности происходят от звезд, находящихся на завершающей стадии своего существования. Как мы уже отмечали, звезда с массой, сравнимой с массой Солнца, после своего рождения проживает длительную стадию стабильности, в ходе которой растапливает водородные ядра, давая начало ядрам гелия. Когда содержащийся в центральной части звезды водород заканчивается, эта часть нагревается и достигает температуры в 100 млн градусов. Вследствие этого наружные слои расширяются, после чего охлаждаются: звезда превращается в красный гигант. В этот момент она утрачивает стабильность, и ее внешние слои могут-быть выброшены наружу. Именно они и образуют оболочку шарообразной формы вокруг того, что остается от звезды - вокруг белого карлика.

Расширение

Оболочка, окружающая звезду, расширяется со скоростью в несколько десятков километров в секунду и образует планетарную туманность с характерной шарообразной формой. Планетарные туманности, однако, ожидает довольно быстрый конец: по мере расширения в космосе они разреживаются и в результате становятся неразличимы на небесном своде. На это уходит около 25000 лет - совсем небольшой период в жизни любой звезды.

Планетарные туманности через телескоп

При наблюдении планетарных туманностей возникают несколько иные сложности, чем при наблюдении диффузных туманностей например, туманности Ориона. Планетарные туманности не отличаются большими угловыми размерами. За исключением туманности Улитка (по-английски Helix), они выглядят на небосклоне небольшими и сконцентрированными. Поэтому их бывает непросто отличить от звезд.

Туманность Улитка

Помимо М57, вы можете наблюдать в ваш телескоп еще примерно дюжину планетарных туманностей. Первой среди них будет именно туманность Улитка из созвездия Водолей.Она достигает внушительного размера - приблизительно 13 минут дуги (что соответствует реальному размеру примерно в 3 световых года).

Неслучайно эта туманность является также одной из самых близких к Солнечной системе. Несмотря на звездную величину 7,6, из-за своих размеров она распространяет свечение на весьма обширную зону ночного неба. В телескоп эта туманность кажется зеленоватой. Видна она довольно слабо. Внутри нее космический телескоп «Хаббл» разглядел тысячи газовых шариков, образовавшихся, видимо, в тот момент, когда умирающая звезда выбросила в космос свою внешнюю оболочку.

Туманность Сатурн

В том же зодиакальном созвездии Водолей интерес для наблюдения вызывает туманность NCG 7009, известная под именем «туманность Сатурн». Вильям Гершель открыл ее в 1782 году. Основная сложность при наблюдении этой туманности - ее размер, составляющий менее 2 минут дуги.

Тем не менее при 50-кратном увеличении можно понять, что это не звезда, а при 100-150-кратном - различить характерную вытянутую форму. Именно за эту форму туманность и получила свое название, совпадающее с названием планеты с кольцами.

Еще одной легко доступной для наблюдения туманностью является М27 из созвездия Лисичка. Ее называют также «туманностью Гантель». Ее видимый диаметр составляет примерно 8 минут дуги, а совокупная звездная величина равна 7,4. По оценкам астрономов, эта туманность образовалась 3000-4000 лет тому назад. При большом увеличении вы можете разглядеть ее вытянутую
форму, за которую она и получила свое имя.

Есть еще уменьшенная версия М27, по крайней мере, по мнению англосаксонских астрономов, которые называют Маленькой Гантелью планетарную туманность М76. Она была открыта Мешеном в 1780 году, однако ее принадлежность к планетарным туманностям была признана только в 1918-м. Звездочка в центре М76 величиной 16,6 является слишком слабой для вашего телескопа.

Призрак и Сова

Гораздо более сложной для наблюдения является туманность NGC3242, имеющая также любопытное название Призрак Юпитера. Оно объясняется тем, что в телескопе ее диаметр сопоставим с диаметром Юпитера. С помощью 25-мм окуляра Плёссля при 40-кратном увеличении можно разглядеть ее без особых трудностей, а при увеличении свыше 100 - даже различить ее округлую форму.

Забавное название носит и туманность М97, четвертая туманность, помещенная в каталог Мессье. Она расположена в созвездии Большая Медведица. Ирландский астроном Уильям варсонс в 1848 году назвал ее Совой, поскольку два темных пятна внутри нее напоминают совиные глаза.

При увеличении чуть больше 100 вы сможете различить не только округлую форму туманности, но и две темные области внутри нее. Считается, что возраст М97 примерно 8000 лет.

Снежок

Довольно сложно различить на небе туманность NGl 7662, или Голубой Снежок, в созвездии Андромеда. На самом деле, несмотря на название, в телескопе она имеет красноватый оттенок.

При увеличении свыше 100 тоже можно рассмотреть «отверстие» в ее центре. Преимущество наблюдения этой туманности в том, что она находится в созвездии, которое очень высоко поднимается на нашем небе в конце осени.

Белые карлики

Планетарная туманность NGC 1514, открытая Вильямом Гершелем в 1790 году в созвездии Телец, очень сложна для наблюдения, поскольку она слабо светится и едва заметна на небесном фоне. Гораздо проще различить белый карлик в ее центре, имеющий звездную величину 9,4 NGC 1514 можно найти примерно в 8 градусах на северо-восток от Плеяд. Другой планетарной туманностью с белым карликом, доступным вашему телескопу, является NGC6826, расположенная в созвездии Лебедь. Это небольшая и слабая туманность: в телескоп она будет казаться размытой звездой, и, только доведя увеличение до максимального, вы сможете рассмотреть ее круговую оболочку. Впрочем, если небо очень темное, то, возможно, вы заметите в ее центре звездочку величиной 10,4.

То же самое можно сказать о планетарной туманности NGC2392, известной также под названием Эскимос, в созвездии Близнецы. Внутри маленькой, слабой голубоватой туманности будет виден белый карлик величиной 10,5.

Планетарные туманности в объективе «Хаббла»

Многие планетарные туманности, к сожалению, остаются недоступными для наблюдений в любительский телескоп. Хотя часто речь идет о великолепных, очень зрелищных объектах, одних из самых красивых на небе. Космический телескоп «Хаббл» сфотографировал некоторые из этих туманностей, и теперь мы можем оценить их сверкающие цвета и любопытные формы.

Несмотря на то, что вы не сможете наблюдать их в ваш телескоп, стоит рассказать о наиболее эффектных и интересных планетарных туманностях.

Кошачий Глаз

Можно начатьстуманности Кошачий Глаз (NGC 6543) в созвездии Дракон. В 1864 году Уильям Хёггинс исследовал спектроскопом ее свет (такому анализу планетарная туманность тогда подверглась впервые). Хотя она была открыта еще в 1786-м, лишь недавно телескоп «Хаббл» раскрыл ее сложную и тонкую структуру, состоящую из концентрических газовых оболочек, струек и узелков. Астрономы пришли к выводу, что примерно каждые 1500 лет центральная звезда испускает новую оболочку. Изображения, снятые с промежутком приблизительно в 10 лет, показали, что эта туманность расширяется.

Туманность NGC 6369 находится в созвездии Змееносец на расстоянии от 2000 до 5000 световых лет. Ее сине-зеленое кольцо, достигающее реального диаметра примерно в 1 световой год, обозначает границу района, в котором ультрафиолетовый свет звезды ионизировал газ, то есть вырвал электроны из их атомов. Внешняя часть туманности имеет более выраженный красный оттенок, поскольку на большем расстоянии от звезды процесс ионизации менее интенсивен. Облако расширяется со скоростью примерно 20 км/с. За счет этого оно рассеется в межзвездном пространстве и затем примерно через 10000 лет исчезнет.

С тех пор, как Хаббл дал человечеству возможность увидеть своими глазами великолепные снимки далёкого космоса, перед нами открылась настоящая фантасмагория. Сквозь ультрафиолетовые и инфракрасные фильтры аппарата Вселенная засверкала самоцветами - и начала приотркрывать перед астрономами свои загадки. Учёные словно обрели, наконец, машину времени – ведь свет далёких звёзд добирается до Земли миллионы лет, и глядя в ночное небо, мы видим древние иные миры, давно погасшие звёзды и сверхновые, в действительности уже догстигшие «совершеннолетия». Звёздные туманности – это, пожалуй, самые красивые и волнующие воображение космические объекты, суть которых долго оставалась людям непонятной. Но сегодня существует более или менее чёткая класификация этих «вечных» субстанций – подобно людям, звёзды рождаются из этой пыли и вновь ею становятся в конце своей эволюции.

История открытий

Андромеда

Что же такое туманность? Раньше, когда возможность присматриваться к глубинам космоса была ограниченной, «туманностями» называли практически всё, что не имело чётких очертаний, светилось и было относительно неподвижным. Поэтому ближайшая к нам колоссальная спиральная галактика M31 (NGC 224) ошибочно было названа Туманностью Андромеды (на фото). В ту же категорию было записано Скопление Геркулеса, на деле являющееся шаровым звёздным скоплением. Впрочем, эти ошибки действительно стоит извинить – ведь исследования проводились ещё в 1787 году Шарлем Месье, занимавшимся поиском комет. Именно тогда его внимание приковали неподвижные небесные тела.

С появлением аппарата «Лундмарк» удалось сделать более точный анализ их природы: отделили галактики от туманностей, обнаружили несветящиеся звёздные облака и выделили несколько причин, по которым все остальные скопления светятся. Однако не все заблуждения были исправлены: в начале 20 века считалось, что туманности бывают либо пылевыми, либо газовыми – поэтому известный исследователь Б.А.Воронцов-Вельяминов помещал их в разные разделы своих книг. Современные учёные уже не сомневаются, что любое подобное скопление межзвёздного вещества содержит как пыль, так и газ – отличия могут быть только в процентном соотношении. А теперь подробнее о «драгоценностях» космоса.

Тёмные туманности


Конская голова

Не удивительно, что долгое время о их существовании не подозревали – как и в случае с чёрными дырами, это всё равно, что искать чёрную кошку в тёмной комнате. Однако рассмотреть такие объекты можно, если они находятся в хорошо засвеченной области – среди звёздных скоплений. Хорошие примеры таких объектов - туманности «Угольный Мешок» или «Конская голова» (на фото).

Когда разрешающая способность телескопов позволила вглядеться в Млечный путь, астрономы поначалу решили, что тёмные пятна – это своего рода просветы, сквозь которые видны более дальние районы галактики. Но, как выяснилось, теория «решета» оказалось ошибочной: чёрные пятна являют собой сконцентрированные пылевые облака, поглощающие излучение и заслоняющие от наших взоров центр Галактики. Находясь на самой её окраине, из-за тёмных туманностей мы лишены возможности видеть калейдоскоп в ночном небе, который мог бы затмить даже свет Луны. Но не спешите печалиться: именно в сердце Млечного пути пылают сильно радиоактивные звёзды, делающие жизнь на них невозможной. А нашему озоновому шару хватает работы и с солнечной гиперактивностью – так что для всей биосферы в целом подобный расклад как нельзя кстати.

Отражательные туманности


Плеяды

Чтобы светиться, как это делают звёзды, необходим термоядерный процесс – к туманностям это, понятное дело, никак не относится. Зато некоторые из пылевых скоплений могут отражать свет, как, например, спутники планет. Источником света становятся крупные звёзды, - и понять, что перед вами туманность именно такого типа, можно по голубому или синему сиянию вокруг колоссальных солнц (например, около звезд Плеяд). Однако есть и исключение из этого правила – красного сверхгиганта Антарес окружает туманность того же цвета.

Ионизованные туманности


Орион

Причина свечения газа та же, что и при свечении «хвоста» кометы: получая определённый «заряд» от более мощных источников, туманности затем отдают его в окружающее пространство. Такие звёздные облака ещё называют эмиссионными. Сравниться с крупными звёздами туманностям не под силу - их фотоны имеют гораздо меньший заряд, и им труднее добраться до Земли – поэтому мы видим их в красном спектре, как последние лучи заката. Однако и здесь бывают исключения – в случае очень мощного источника излучения эмиссионные туманнсти бывают ещё зелёными и синими. К ионизованным облакам относятся, например, туманность Ориона (на фото), «Северная Америка», «Тарантул», «Пеликан» и другие.

Планетарные туманности


Кошачий глаз

Это разновидность эмиссионных туманностей: обычно такие объекты сравнительно небольшие и имеют четкую форму, иногда напоминающую застывшие круги на воде, образовавшиеся от подения капли. На самом деле так роскошно (по крайней мере, издалека) выглядит «пенсия» звезды-гиганта: расходуя остатки водорода, она расширяется за счёт сброса своей оболочки. Окутывая огромные пространства вокруг, эти вещества находятся под влиянием излучения ядра звезды. Самый невероятный снимок такого процесса удалось получить в созвездии Дракона – это туманность «Кошачий Глаз». Его волокнистая структура, подобная всем прочим туманностям, связана с действием мощных магнитных полей звезд, которые имееют определённые силовые линии и затрудняют поперечное движение электрически заряженных цастиц пыли и газа.

Туманности от ударных волн


Крабовидная туманность

Источниками таких волн, способных приводить к сверхзвуковому движению веществ в межзвёздной среде, являются звёздный ветер или взрывы сверхновых звёзд. Температура образовывающихся в результате туманностей может достигать миллиардов градусов, поэтому нагретый газ имеет излучение большей частью в рентгеновском диапазоне. Однако кинетическая энергия движущейся материи вскоре исчерпывает себя, поэтому недолговечные туманности через небольшой (по космическим меркам) промежуток времени исчезают. Самая знаменитая туманность такого типа – «Крабовидная» в созвездии Тельца, которая появилась на небосклоне в 1054 году.

В основу слова «туманность» легло латинское слово «облако». Действительно, она представляет собой космические облака, сотканные из пыли и газа, которые плавают в пространстве. Если есть больше одной, значит, речь идет о туманностях.
Это основной строительный блок во , в котором содержатся элементы, используемые для создания звезд и целых звездных систем. Кроме этого, их по праву считают красивейшими объектами, светящимися богатством цветовых оттенков и световыми завихрениями.

Знаете ли вы самую яркую среди туманностей?

Это туманность Ориона, располагается в одноименном созвездии. Она относится к самым ярким и известным.
Именно звезды, расположенные внутри такого газового облака, расцвечивают его прекрасными оттенками цвета – красного, синего, зеленого. Все зависит от комбинации самых разных элементов, находящихся внутри такой туманности. Подавляющее их большинство состоит из:
- водорода 90%;
- гелия 10%;
- на 0,1% приходятся такие тяжелые элементы, как азот, углерод, калий, магний, кальций, железо. Подобные облака с материей достаточно крупные. Собственно говоря, это крупнейшие галактические объекты. Большинство из них в поперечнике имеют десятки, а в ряде случаев и сотни световых лет.
Туманности разделили на 5 категорий, выступающих основными:
эмиссионные;
отражательные;
темные;
планетарные;
остатки сверхновых.
Первые две категории по своему внешнему виду очень нечеткие, не обладают какой-либо заметной формой, либо структурой. Их еще называют диффузными.

Основные типы туманностей

Эмиссионная туманность

Это газовое облако высокой температуры. Звезды дают подсветку атомов облака УФ-излучением. Так как они попадают затем на более низкий энергетический уровень, то происходит излучение, напоминающее процесс появления неонового света – туманность начинает светиться. Обилие водорода наполняет их красным цветом, дополнительные оттенки (синего и зеленого цветов) могут производить атомы других элементов. Хотя самым распространенным практически всегда остается водород. В качестве примера такой туманности следует привести туманность Ориона (M42).

Отражательная туманность

Её отличие от эмиссионной в следующем – от неё не исходит собственная радиация. Данное пыле-газовое облако способствует лишь отражению световой энергии соседних туманностей или группы из нескольких звезд. Чаще всего располагается в местах образования звезд. Наличие синеватого оттенка достигается рассеянным светом, ведь именно синий может рассеиваться максимально эффективно. Отличным примером служит М20 - трехраздельная туманность, расположенная в Стрельца.

Темная туманность

Облако пыли, блокирующее прохождение света от расположенных за ним объектов. Напоминает отражательную, согласно своего состава. Отличием служит расположение источника света. Обычно темную туманность наблюдают совместно с отражательными и эмиссионными.
Пожалуй, наиболее известным примером служит туманность Конская Голова, расположенная в созвездии Орион. Представляет собой темную пылевую область, имеющую форму лошадиной головы, блокирующей свет от гораздо большей по размерам эмиссионной, располагающейся за ней.

Планетарная туманность

Это оболочка из газа, который «рожден» звездой, приближающейся к завершению цикла своей жизни. Подобное название слегка вводит в заблуждение, ведь в действительности у них нет ничего общего с какими-либо планетами. Своим названием обязаны округлой форме, напоминающей очертания планет. Внешнюю газовую оболочку чаще всего освещают остатки звезд, сохранившиеся в центре.
Лучшим примером считается М57 туманность Кольцо в созвездии Лира.

Остаток сверхновой звезды

Создаются они после завершения жизни звезд в результате массивного взрыва, больше известном как сверхновая звезда, в результате которого большая часть звездного вещества уносится в космос. Облака материи начинают пылать вместе с остатками породившей их звезды.
Лучше всего демонстрирует подобный остаток сверхновых звезд М1 - Крабовидная туманность, находящаяся в созвездии Тельца.

Спектральный анализ. Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько - по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.
В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных.
Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет. В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. «забросить» его электроны на более высокие орбиты. В туманности происходит «фотоионизация» атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в «свободный полет». В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.
Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют «запрещенными». Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень «неохотно», оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается «запрещенный» переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать «небулий», но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами.
На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это - эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20-40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.
Важная особенность некоторых планетарных туманностей - стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.
По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других - нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.

Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...