Який процес є причиною виникнення космічного пилу. Міжзоряний пил

Дослідження космічної (метеорної)пилу на поверхні Землі:огляд проблеми

А.П.Бояркіна, Л.М. Гінділіс

Космічний пил як астрономічний фактор

Під космічним пилом розуміють частинки твердої речовини розміром від часток мікрона до кількох мікрон. Пилова матерія – один із важливих компонентів космічного простору. Вона заповнює міжзоряний, міжпланетний та навколоземний простір, пронизує верхні шари земної атмосфери і випадає на поверхню Землі у вигляді так званого метеорного пилу, будучи однією з форм матеріального (речового та енергетичного) обміну в системі «Космос - Земля». При цьому вона впливає на низку процесів, що відбуваються на Землі.

Пилова матерія у міжзоряному просторі

Міжзоряне середовище складається з газу та пилу, перемішаних щодо 100:1 (за масою), тобто. маса пилу становить 1% маси газу. Середня густина газу становить 1 атом водню на кубічний сантиметр або 10 -24 г/см 3 . Щільність пилу відповідно у 100 разів менша. Незважаючи на настільки мізерну щільність, пилова матерія істотно впливає на процеси, що відбуваються в Космосі. Насамперед, міжзоряний пил поглинає світло, тому віддалені об'єкти, розташовані поблизу площини галактики (де концентрація пилу найбільша), в оптичній області не видно. Наприклад, центр нашої Галактики спостерігається тільки в інфрачервоній ділянці, радіодіапазоні та рентгені. А інші галактики можуть спостерігатися в оптичному діапазоні, якщо вони розташовані далеко від галактичної площини, на високих галактичних широтах. Поглинання світла пилом призводить до спотворення відстаней до зірок, які визначаються фотометричним способом. Облік поглинання становить одне з найважливіших завдань спостережної астрономії. При взаємодії з пилом змінюється спектральний склад та поляризація світла.

Газ і пил у галактичному диску розподілені нерівномірно, утворюючи окремі газопилові хмари, концентрація пилу в них приблизно в 100 разів вища, ніж у міжхмарному середовищі. Щільні газопилові хмари не пропускають світло зірок, що за ними. Тому вони виглядають як темні області на небі, які одержали назву темні туманності. Прикладом може бути область «Вугільного мішка» у Чумацькому Шляху або туманність «Кінська голова» у сузір'ї Оріона. Якщо поблизу газопилової хмари є яскраві зірки, то завдяки розсіянню світла на частинках пилу такі хмари світяться, вони отримали назву відбивних туманностей. Прикладом може бути відбивна туманність у скупченні Плеяди. Найбільш щільними є хмари молекулярного водню H 2 щільність їх в 10 4 -10 5 разів вище, ніж у хмарах атомарного водню. Відповідно і щільність пилу в стільки ж разів вища. Крім водню, молекулярні хмари містять десятки інших молекул. Пилові частки є ядрами конденсації молекул, з їхньої поверхні відбуваються хімічні реакції з утворенням нових, складніших молекул. Молекулярні хмари – область інтенсивного зіркоутворення.

За складом міжзоряні частинки складаються з тугоплавкого ядра (силікати, графіт, карбід кремнію, залізо) та оболонки з летких елементів (H, H 2 , O, OH, H 2 O). Є також дуже дрібні силікатні і графітові частинки (без оболонки) розміром близько сотих часток мікрона. Згідно з гіпотезою Ф.Хойла та Ч.Вікрамасінга значна частка міжзоряного пилу, до 80%, складається з бактерій.

Міжзоряне середовище безперервно поповнюється за рахунок припливу речовини при скиданні оболонок зірок на пізніх стадіях їх еволюції (особливо при спалахах наднових). З іншого боку, вона сама є джерелом утворення зірок та планетних систем.

Пилова матерія в міжпланетному та навколоземному просторі

Міжпланетна пил утворюється головним чином процесі розпаду періодичних комет, і навіть при дробленні астероїдів. Утворення пилу відбувається безперервно, і також безперервно йде процес випадання порошинок на Сонце під дією радіаційного гальмування. В результаті утворюється пилове середовище, що постійно оновлюється, заповнює міжпланетний простір і перебуває в стані динамічної рівноваги. Щільність її хоч і вище ніж у міжзоряному просторі, але все ж таки дуже мала: 10 -23 -10 -21 г/см 3 . Проте вона помітно розсіює сонячне світло. При його розсіюванні на частинках міжпланетного пилу виникають такі оптичні явища, як зодіакальне світло, фраунгоферова складова сонячної корони, зодіакальна смуга, протисвітлення. Розсіянням на порошинках обумовлена ​​і зодіакальна складова свічення нічного піднебіння.

Пилова матерія в Сонячній системі сильно концентрується до екліптики. У площині екліптики її щільність зменшується приблизно пропорційно відстані від Сонця. Поблизу Землі, а також поблизу інших великих планет, концентрація пилу під дією їх тяжіння збільшується. Частинки міжпланетного пилу рухаються навколо Сонця по еліптичних орбітах, що скорочуються (внаслідок радіаційного гальмування). Швидкість їхнього руху становить кілька десятків кілометрів на секунду. При зіткненні з твердими тілами, зокрема з космічними апаратами, вони викликають помітну ерозію поверхні.

Зіткнувшись із Землею і згоряючи в її атмосфері на висоті близько 100 км, космічні частинки викликають добре відоме явище метеорів (або «зірок, що падають»). На цій підставі вони отримали назву метеорних частинок, і весь комплекс міжпланетного пилу часто називають метеорною матерією або метеорним пилом. Більшість метеорних частинок є пухкими тілами кометного походження. Серед них виділяють дві групи частинок: пористі частинки щільністю від 0,1 г/см 3 і так звані пилові грудочки або пухнасті пластівці, що нагадують сніжинки з щільністю менше 0,1 г/см 3 . Крім того, рідше зустрічаються щільніші частинки астероїдального типу щільністю більше 1 г/см 3 . На висотах переважають пухкі метеори, на висоті нижче 70 км - астероїдальні частинки із середньою щільністю 3,5 г/см 3 .

Внаслідок дроблення пухких метеорних тіл кометного походження на висотах 100-400 км від поверхні Землі утворюється досить щільна пилова оболонка, концентрація пилу в якій у десятки тисяч разів вища, ніж у міжпланетному просторі. Розсіювання сонячного світла в цій оболонці обумовлює сутінкове свічення неба при зануренні сонця під горизонт нижче 100 º.

Найбільші та найдрібніші метеорні тіла астероїдального типу досягають поверхні Землі. Перші (метеорити) досягають поверхні через те, що вони не встигають повністю зруйнуватися і згоріти при польоті крізь атмосферу; другі - через те, що їхня взаємодія з атмосферою, завдяки незначній масі (при досить великій щільності), відбувається без помітного руйнування.

Випадання космічного пилу на поверхню Землі

Якщо метеорити вже давно були у полі зору науки, то космічний пил довгий час не привертав увагу вчених.

Поняття про космічний (метеорний) пил було введено в науку в другій половині XIX століття, коли відомий голландський полярний дослідник Норденшельд (A.E. Nordenskjöld) виявив на поверхні льоду пил імовірно космічного походження. Приблизно в той же час, у середині 70-х років XIX століття Муррей (I. Murray) описав округлі магнетитові частинки, виявлені у відкладах глибоководних опадів Тихого океану, походження яких також пов'язувалося з космічним пилом. Однак ці припущення тривалий час не знаходили підтвердження, залишаючись у межах гіпотези. Разом про те і наукове вивчення космічного пилу просувалося вкрай повільно, потім вказував академік В.І. Вернадський 1941 р .

Вперше він звернув увагу на проблему космічного пилу у 1908 р. і потім повертався до неї у 1932 та 1941 роках. Діяльність «Про вивчення космічного пилу» В.І. Вернадський писав: «… Земля пов'язана з космічними тілами та з космічним простором не лише обміном різних форм енергії. Вона тісно пов'язана з ними матеріально ... Серед матеріальних тіл, що падають на нашу планету з космічного простору, доступні нашому безпосередньому вивченню переважно метеорити і зазвичай космічний пил, що до них зараховується ... Метеорити - і принаймні в деякій своїй частині пов'язані з ними боліди - є для нас завжди несподіваними у своєму прояві ... Інша справа - космічний пил: все вказує на те, що він падає безперервно, і можливо, ця безперервність падіння існує в кожній точці біосфери, рівномірно розподілена на всю планету. Дивно, що це явище, можна сказати, зовсім не вивчене і цілком зникає з наукового обліку» .

Розглядаючи у зазначеній статті відомі найбільші метеорити, В.І. Вернадський особливу увагу приділяє Тунгуського метеорита, пошуками якого під його безпосереднім керівництвом займався Л.А. Кулик. Великі уламки метеорита були знайдені, й у з цим В.І. Вернадський припускає, що він «... є новим явищем у літописах науки - проникненням у область земного тяжіння не метеорита, а величезної хмари чи хмар космічного пилу, що йшли з космічною швидкістю» .

До цієї теми В.І. Вернадський повертається у лютому 1941 р. у своїй доповіді «Про необхідність організації наукової роботи з космічного пилу» на засіданні Комітету з метеоритів АН СРСР. У цьому документі, поряд з теоретичними роздумами про походження та роль космічного пилу в геології і особливо в геохімії Землі, він докладно обґрунтовує програму пошуків та збору речовини космічного пилу, що випав на поверхню Землі, за допомогою якої, вважає він, можна вирішити й низку завдань наукової космогонії про якісний склад та «панівне значення космічного пилу в будові Всесвіту». Необхідно вивчати космічний пил і врахувати його як джерело космічної енергії, що безперервно привносить нам з навколишнього простору. Маса космічного пилу, зазначав В.І.Вернадський, має атомну та іншу ядерну енергію, яка не байдужа у своєму бутті в Космосі і в її прояві на нашій планеті. Для розуміння ролі космічного пилу, наголошував він, необхідно мати достатній матеріал для її дослідження. Організація збору космічного пилу та наукове дослідження зібраного матеріалу – є перше завдання, яке стоїть перед ученими. Перспективними цієї мети В.І. Вернадський вважає снігові та льодовикові природні планшети високогірних та арктичних областей, віддалених від промислової діяльності людини.

Велика Вітчизняна війна та смерть В.І. Вернадського, завадили реалізації цієї програми. Однак вона стала актуальною у другій половині ХХ століття та сприяла активізації досліджень метеорного пилу в нашій країні.

1946 р. з ініціативи академіка В.Г. Фесенкова була організована експедиція в гори Заілійського Ала-Тау (Північний Тянь-Шань), завданням якої було вивчення твердих частинок з магнітними властивостями снігових відкладень. Місце відбору снігу було вибрано на лівій бічній морені льодовика Туюк-Су (висота 3500 м), більша частина хребтів, що оточували морену, була вкрита снігом, що знижувало можливість забруднення земним пилом. Воно було віддалено від джерел пилу, пов'язаних з діяльністю людини, і оточене з усіх боків горами.

Метод збирання космічного пилу у сніговому покриві полягав у наступному. Зі смужки шириною 0,5 м до глибини 0,75 м збирався сніг дерев'яною лопаткою, переносився і перетоплювався в алюмінієвому посуді, зливався в скляний посуд, де протягом 5 годин в осад випадала тверда фракція. Потім верхня частина води зливалася, додавалася нова партія снігу талого і т.д. В результаті було перетоплено 85 відер снігу із загальної площі 1,5 м 2 об'ємом 1,1 м 3 . Отриманий осад було передано до лабораторії Інституту астрономії та фізики АН Казахської РСР, де вода була випарована та зазнала подальшого аналізу. Однак, оскільки ці дослідження не дали певного результату, Н.Б. Діварі дійшов висновку, що для відбору проб снігу в даному випадку краще використовувати або дуже старі фірни, що злежалися, або відкриті льодовики.

Значний прогрес у вивченні космічного метеорного пилу настав у середині ХХ століття, коли у зв'язку із запусками штучних супутників Землі набули розвитку прямі методи вивчення метеорних частинок - безпосередня їх реєстрація за кількістю зіткнень з космічним апаратом або різного виду пастками (встановлених запускає на висоту кілька сотень кілометрів). Аналіз отриманих матеріалів дозволив, зокрема, виявити наявність пилової оболонки навколо Землі на висотах від 100 до 300 км над поверхнею (що говорилося вище).

Поряд із вивченням пилу за допомогою космічних апаратів проводилося вивчення частинок у нижній атмосфері та різних природних накопичувачах: у високогірних снігах, у льодовиковому покриві Антарктиди, у полярних льодах Арктики, у торф'яних відкладах та глибоководному морському мулі. Останні спостерігаються переважно у вигляді так званих «магнітних кульок», тобто щільних кульових частинок, що мають магнітні властивості. Розмір цих частинок від 1 до 300 мікрон, маса від 10 -11 до 10 -6 г .

Ще один напрямок пов'язаний з вивченням астрофізичних та геофізичних явищ, пов'язаних з космічним пилом; сюди відносяться різні оптичні явища: свічення нічного неба, сріблясті хмари, зодіакальне світло, протисяйво та ін. Їх вивчення також дозволяє отримати важливі дані про космічний пил. Дослідження метеорів були включені до програми Міжнародного геофізичного року 1957-1959 та 1964-1965 рр.

В результаті цих робіт було уточнено оцінки загального припливу космічного пилу на поверхню Землі. Згідно з оцінками Т.М. Назарової, І.С. Астаповича та В.В. Фединського, загальний приплив космічного пилу Землю сягає до 10 7 т/год . За оцінкою О.М. Симоненко та Б.Ю. Левіна (за даними на 1972 р.) приплив космічного пилу на поверхню Землі становить 10 2 -10 9 т/рік, за іншими, пізнішими дослідженнями - 10 7 -10 8 т/рік.

Продовжувалися дослідження зі збирання метеорного пилу. На пропозицію академіка А.П. Виноградова під час 14-ї антарктичної експедиції (1968-1969 рр.) проводилися роботи з виявлення закономірностей просторово-часових розподілів відкладення позаземної речовини у льодовиковому покриві Антарктиди. Вивчався поверхневий шар снігового покриву в районах станцій Молодіжна, Мирний, Схід та на ділянці довжиною близько 1400 км між станціями Мирний та Схід. Відбір проб снігу проводився із шурфів глибиною 2-5 м у точках, віддалених від полярних станцій. Зразки пакувалися в поліетиленові мішки або спеціальні пластикові контейнери. У стаціонарних умовах зразки розтоплювалися у скляному або алюмінієвому посуді. Отриману воду фільтрували за допомогою розбірної лійки через мембранні фільтри (розмір часу 0,7 мкм). Фільтри змочували гліцерином і в світлі, що проходить при збільшенні 350Х визначали кількість мікрочастинок.

Вивчалися також полярні льоди, донні відкладення Тихого океану, осадові породи, сольові відкладення. При цьому перспективним напрямом показали себе пошуки оплавлених мікроскопічних сферичних частинок, які досить легко ідентифікуються серед інших фракцій пилу.

У 1962 р. при Сибірському відділенні АН СРСР була створена Комісія з метеоритів та космічного пилу, очолювана академіком В.С. Соболєвим, яка проіснувала до 1990 р. та створення якої було ініційовано проблемою Тунгуського метеориту. Роботи з вивчення космічного пилу проводились під керівництвом академіка РАМН Н.В. Васильєва.

Оцінюючи випадань космічного пилу, поруч із іншими природними планшетами, використовувався торф, складений мохом сфагнум бурий за методикою томського вченого Ю.А. Львова. Цей мох досить широко поширений в середній смузі земної кулі, мінеральне харчування отримує тільки з атмосфери і має здатність консервувати його в шарі, що був поверхневим під час потрапляння на нього пилу. Пошарова стратифікація та датування торфу дозволяє давати ретроспективну оцінку її випадання. Вивчалися як сферичні частинки розміром 7-100 мкм, так і мікроелементний склад торф'яного субстрату - функції пилу, що містився в ньому.

Методика виділення космічного пилу з торфу полягає в наступному. На ділянці верхового сфагнового болота вибирається майданчик із рівною поверхнею та торф'яним покладом, складеним мохом сфагнум бурий (Sphagnum fuscum Klingr). З її поверхні на рівні мохової дернини зрізуються чагарники. Закладається шурф на глибину до 60 см, біля його борту розмічається майданчик потрібного розміру (наприклад, 10х10 см), потім з двох або трьох його сторін оголюється колонка торфу, розрізається на пласти по 3 см кожен, які упаковуються в поліетиленові пакети. Верхні 6 верств (очес) розглядаються разом і можуть бути визначення вікових показників за методикою Е.Я. Мульдіярова та О.Д. Лопшина. Кожен пласт у лабораторних умовах промивається крізь сито з діаметром вічка 250 мк протягом не менше 5 хв. Пройшов крізь сито гумус з мінеральними частинками відстоюється до випадання осаду, потім осад зливається в чашку Петрі, де висушується. Упакований у кальку, сухий зразок зручний для перевезення та подальшого вивчення. У відповідних умовах зразок озолюється в тиглі та муфельній печі протягом години при температурі 500-600 град. Зольний залишок зважується і піддається огляду під бінокулярним мікроскопом при збільшенні в 56 разів на предмет виявлення сферичних частинок розміром 7-100 і більше мкм, або піддається іншим видам аналізу. Т.к. мінеральне харчування цей мох отримує тільки з атмосфери, то його зольна складова може бути функцією космічного пилу, що входить до її складу.

Так дослідження в районі падіння Тунгуського метеорита, віддаленого від джерел техногенного забруднення на багато сотень кілометрів, дозволили оцінити приплив на поверхню Землі сферичних частинок розміром 7-100 мкм і більше. Верхні шари торфу дали змогу оцінити випадання глобального аерозолю на час дослідження; верстви, які стосуються 1908 р. - речовини Тунгуського метеорита; нижні (доіндустріальні) шари - космічного пилу. Приплив космічних мікросферул на поверхню Землі при цьому оцінюється величиною (2-4) 10 3 т/рік, а в цілому космічного пилу - 1,5 10 9 т/рік. Було використано аналітичні методи аналізу, зокрема нейтронно-активаційний, для визначення мікроелементного складу космічного пилу. За цими даними щорічно на поверхню Землі випадає з космічного простору (т/рік): заліза (2 10 6), кобальту (150), скандія (250).

Великий інтерес щодо зазначених вище досліджень представляють роботи Е.М. Колесникова із співавторами, які виявили ізотопні аномалії в торфі району падіння Тунгуського метеорита, що відносяться до 1908 р. і говорять, з одного боку, на користь кометної гіпотези цього явища, з іншого - проливають світло на кометну речовину, що випала на поверхню Землі.

Найбільш повним оглядом проблеми Тунгуського метеорита, зокрема його речовини, на 2000 р. слід визнати монографію В.А. Бронштена. Останні дані про речовину Тунгуського метеорита були доповіщені та обговорені на Міжнародній конференції «100 років Тунгуському феномену», Москва, 26-28 червня 2008 року. Незважаючи на досягнутий прогрес у вивченні космічного пилу, низка проблем все ще залишається не вирішеною.

Джерела метанаукового знання про космічний пил

Поряд з даними, отриманими сучасними методами дослідження, великий інтерес становлять відомості, що містяться у позанаукових джерелах: «Листах Махатм», Вченні Живої Етики, листах та працях Є.І. Реріх (зокрема, у її роботі «Вивчення властивостей людини», де дається велика програма наукових досліджень про багато років наперед).

Так, у листі Кут Хумі 1882 р. редактору впливової англомовної газети «Піонер» А.П. Синнету (оригінал листа зберігається в Британському музеї) наводяться такі дані про космічний пил:

- «Високо над нашою земною поверхнею повітря просякнуте і простір наповнений магнітним та метеорним пилом, який навіть не належить нашій сонячній системі»;

- «Сніг, особливо у північних областях, повний метеорного заліза і магнітних частинок, відкладення останніх можна знайти навіть у дні океанів». «Мільйони подібних метеорів і найтонших частинок досягають нас щороку та щодня»;

- «кожна атмосферична зміна на Землі і всі пертурбації походять від з'єднаного магнетизму» двох великих «мас» - Землі та метеорного пилу;

Існує «земне магнетичне тяжіння метеорного пилу та прямий вплив останньої на раптові зміни температури, особливо щодо тепла та холоду»;

Т.к. «наша земля з усіма іншими планетами мчить у просторі, вона отримує більшу частину космічного пилу на свою північну півкулю, ніж на південну»; «... цим пояснюється кількісне переважання континентів у північній півкулі та більший достаток снігу та вогкості»;

- «Тепло, яке отримує земля від променів сонця, є, найбільшою мірою, лише третьою, якщо не менше, кількості одержуваної нею безпосередньо від метеорів»;

- «Потужні скупчення метеорної речовини» в міжзоряному просторі призводять до спотворення спостережуваної інтенсивності зоряного світла і, отже, спотворення відстаней до зірок, отриманих фотометричним шляхом.

Ряд цих положень випереджали науку на той час і були підтверджені подальшими дослідженнями. Так, дослідження сутінкового свічення атмосфери, виконані в 30-50-х роках. XX століття, показали, що, якщо на висотах менше 100 км світіння визначається розсіюванням сонячного світла в газовому (повітряному) середовищі, то на висотах понад 100 км переважну роль грає розсіювання на порошинках. Перші спостереження, виконані за допомогою штучних супутників, призвели до виявлення пилової оболонки Землі на висотах кілька сотень кілометрів, на що вказується у згаданому листі Кут Хумі. Особливий інтерес становлять дані про спотворення відстаней до зірок, одержаних фотометричним шляхом. Фактично це було вказівкою на наявність міжзоряного поглинання, відкритого 1930 р. Тремплером, яке по праву вважається однією з найважливіших астрономічних відкриттів 20 століття. Облік міжзоряного поглинання призвів до переоцінки шкали астрономічних відстаней і, як наслідок, до зміни масштабу видимого Всесвіту.

Деякі положення цього листа - про вплив космічного пилу на процеси в атмосфері, зокрема на погоду, - не знаходять поки що наукового підтвердження. Тут потрібне подальше вивчення.

Звернемося ще до одного джерела метанаукового знання - Вчення Живої Етики, створеного Є.І. Реріх та Н.К. Реріхом у співпраці з Гімалайськими Вчителями – Махатмами у 20-30 роки ХХ століття. Спочатку видані російською мовою книги Живої Етики в даний час перекладені та видані багатьма мовами світу. Вони приділяють велику увагу науковим проблемам. Нас у цьому випадку цікавитиме все, що пов'язане з космічним пилом.

Проблемі космічного пилу, зокрема його припливу на поверхню Землі, в Ученні Живої Етики приділяється чимало уваги.

«Звертайте увагу на високі місця, схильні до вітрів від снігових вершин. На рівні двадцяти чотирьох тисяч футів можна спостерігати особливі відкладення метеорного пилу» (1927-1929). «Недостатньо вивчають аероліти, ще менше приділяють уваги космічного пилу на вічних снігах та глетчерах. Тим часом, Космічний Океан малює свій ритм на вершинах» (1930-1931 рр.). «Пил метеорний недоступний оку, але дає дуже істотні опади» (1932-1933 рр.). «На чистому місці найчистіший сніг насичений пилом земної і космічної, - так наповнено простір навіть за грубому спостереженні» (1936 р.) .

Питанням космічного пилу багато уваги приділено й у «Космологічних записах» Є.І. Реріх (1940 р.). Слід пам'ятати, що Е.И.Рерих уважно стежила над розвитком астрономії і була у курсі останніх її досягнень; вона критично оцінювала деякі теорії на той час (20-30 роки минулого століття), наприклад у сфері космології, та її уявлення підтвердилися нашого часу. Вчення Живої Етики та Космологічні записи О.І. Реріх містять цілий ряд положень про ті процеси, які пов'язані з випаданням космічного пилу на поверхню Землі і які можна узагальнити таким чином:

На Землю постійно крім метеоритів випадають матеріальні частинки космічного пилу, які привносять космічну речовину, яка несе інформацію про Далекі Світи космічного простору;

Космічний пил змінює склад грунтів, снігу, природних вод та рослин;

Особливо це стосується місць залягання природних руд, які не тільки є своєрідними магнітами, що притягають космічний пил, а й слід очікувати деякої диференціації її залежно від виду руди: «Так залізо та інші метали притягують метеори, особливо коли руди перебувають у природному стані та не позбавлені космічного магнетизму»;

Велику увагу в Ученні Живої Етики приділяється гірським вершинам, які за твердженням Є.І. Реріх «…є найбільшими магнітними станціями» . «…Космічний Океан малює свій ритм на вершинах»;

Вивчення космічного пилу може призвести до відкриття нових, ще не виявлених сучасною наукою мінералів, зокрема металу, що володіє властивостями, що допомагають зберігати вібрації з далекими світами космічного простору;

При вивченні космічного пилу можуть бути виявлені нові види мікробів та бактерій;

Але що особливо важливо, Вчення Живої Етики відкриває нову сторінку наукового пізнання – впливу космічного пилу на живі організми, у тому числі – на людину та її енергетику. Вона може впливати на організм людини і деякі процеси на фізичному і, особливо, тонкому планах.

Ці відомості починають знаходити підтвердження у сучасних наукових дослідженнях. Так в останні роки на космічних порошинках були виявлені складні органічні сполуки і деякі вчені заговорили про космічні мікроби. У цьому плані особливий інтерес становлять роботи з бактеріальної палеонтології, виконані Інституті палеонтології РАН. У цих роботах, окрім земних порід, досліджувалися метеорити. Показано, що знайдені в метеоритах мікрокам'янілості є слідами життєдіяльності мікроорганізмів, частина яких подібна до ціанобактерій. У низці досліджень вдалося експериментально показати позитивний вплив космічної речовини на зростання рослин та обґрунтувати можливість впливу його на організм людини.

Автори Вчення Живої Етики настійно рекомендують організувати постійне спостереження за випаданням космічного пилу. І як її природний накопичувач використовувати льодовикові та снігові відкладення в горах на висоті понад 7 тис. м. Реріхи, живучи довгі роки в Гімалаях, мріють про створення там наукової станції. У листі від 13 жовтня 1930 р. Є.І. Реріх пише: «Станція має розвинутися у Місто Знання. Ми бажаємо в цьому Місті дати синтез досягнень, тому всі галузі науки повинні бути згодом представлені в ньому. можливо лише на висотах, Бо все найтонше і найцінніше і найпотужніше лежить у чистіших шарах атмосфери. Також хіба не заслуговують на увагу всі метеоричні опади, що осідають на снігових вершинах і несомі в долини гірськими потоками?» .

Висновок

Вивчення космічного пилу нині перетворилося на самостійну галузь сучасної астрофізики та геофізики. Ця проблема особливо актуальна, оскільки метеорний пил є джерелом космічної речовини та енергії, які безперервно привносяться на Землю з космічного простору і активно впливають на геохімічні та геофізичні процеси, а також мають своєрідний вплив на біологічні об'єкти, у тому числі на людину. Ці процеси поки що майже не вивчені. У вивченні космічного пилу не знайшли належного застосування ряд положень, що містяться у джерелах метанаукового знання. Метеорний пил проявляється у земних умовах як як феномен фізичного світу, але як матерія, що несе енергетику космічного простору, зокрема - світів інших вимірів та інших станів матерії. Облік цих положень вимагає розробки нової методики вивчення метеорного пилу. Але найважливішим завданням, як і раніше, залишається збір та аналіз космічного пилу в різних природних накопичувачах.

Список літератури

1. Іванова Г.М., Львів В.Ю., Васильєв Н.В., Антонов І.В. Випадання космічної речовини на поверхню Землі - Томськ: вид Томськ. ун-ту, 1975. - 120 с.

2. Murray I. On distribution volcanic debris over floor of ocean //Proc. Roy. Soc. Едінбург. – 1876. – Vol. 9. - P. 247-261.

3. Вернадський В.І. Про необхідність організованої наукової роботи з космічного пилу // Проблеми Арктики. – 1941. – № 5. – С. 55-64.

4. Вернадський В.І. Про вивчення космічного пилу // Світознавство. – 1932. – № 5. – С. 32-41.

5. Астапович І.С. Метеорні явища у атмосфері Землі. - М: Держсуд. вид. фіз.-мат. літератури, 1958. – 640 с.

6. Флоренський К.П. Попередні результати тунгуської метеоритної комплексної експедиції 1961 //Метеоритика. - М: вид. АН СРСР, 1963. – Вип. XXIII. – С. 3-29.

7. Львів Ю.О. Про перебування космічної речовини в торфі // Проблема Тунгуського метеориту. - Томськ: вид. Томськ. ун-ту, 1967. - С. 140-144.

8. Віленський В.Д. Сферичні мікрочастинки в льодовиковому покриві Антарктиди//Метеоритика. - М.: "Наука", 1972. - Вип. 31. – С. 57-61.

9. Голенецький С.П., Степанок В.В. Кометна речовина на Землі // Метеорні та метеорні дослідження. - Новосибірськ: "Наука" Сибірське відділення, 1983. - С. 99-122.

10. Васильєв Н.В., Бояркіна О.П., Назаренко М.К. та ін Динаміка припливу сферичної фракції метеорного пилу лежить на поверхні Землі //Астроном. вісник. – 1975. – Т. IX. - №3. - С. 178-183.

11. Бояркіна А.П., Байковський В.В., Васильєв Н.В. та ін Аерозолі в природних планшетах Сибіру. - Томськ: вид. Томськ. ун-ту, 1993. - 157 с.

12. Діварі Н.Б. Про збирання космічного пилу на льодовику Туюк-Су // Метеоритика. - М: Вид. АН СРСР, 1948. – Вип. IV. – С. 120-122.

13. Гінділіс Л.М. Протисіяння як ефект розсіювання сонячного світла на частинках міжпланетного пилу // Астрон. ж. – 1962. – Т. 39. – Вип. 4. – С. 689-701.

14. Васильєв Н.В., Журавльов В.К., Журавльова Р.К. та ін Нічні хмари, що світяться, і оптичні аномалії, пов'язані з падінням Тунгуського метеорита. – М.: «Наука», 1965. – 112 с.

15. Бронштен В.А., Гришин Н.І. Сріблясті хмари. – М.: «Наука», 1970. – 360 с.

16. Діварі Н.Б. Зодіакальне світло та міжпланетний пил. – М.: «Знання», 1981. – 64 с.

17. Назарова Т.М. Дослідження метеорних частинок третьому радянському штучному супутнику Землі //Штучні супутники Землі. – 1960. – № 4. – С. 165-170.

18. Астапович І.С., Фединський В.В. Успіхи метеорної астрономії у 1958-1961 роках. //Метеоритика. - М: Вид. АН СРСР, 1963. – Вип. XXIII. – С. 91-100.

19. Симоненко О.М., Левін Б.Ю. Приплив космічної речовини Землю //Метеоритика. - М.: "Наука", 1972. - Вип. 31. – С. 3-17.

20. Hadge PW, Wright FW. Studies particles for extraterrestrial origin. A comparison of microscopic spherules of meteoritic and volcanic origin //J. Geophys. Res. – 1964. – Vol. 69. – № 12. – P. 2449-2454.

21. Parkin D.W., Tilles D. Influx вимірювання extraterrestrial material //Science. – 1968. – Vol. 159. - № 3818. - P. 936-946.

22. Ganapathy R. The Tunguska explosion of 1908: discovery of meteoritic debris near the explosion side and South pole. - Science. – 1983. – V. 220. – No. 4602. – P. 1158-1161.

23. Hunter W., Parkin D.W. Cosmic dust in recent deep-sea sediments // Proc. Roy. Soc. – 1960. – Vol. 255. – № 1282. – P. 382-398.

24. Sackett W. M. Measured deposition rates of marine sediments and implications for accumulations rates of extraterrestrial dust //Ann. N. Y. Acad. SCI. – 1964. – Vol. 119. – № 1. – P. 339-346.

25. Війдінг Х.А. Метеорний пил у низах кембрійських пісковиків Естонії // Метеоритика. - М.: "Наука", 1965. - Вип. 26. – С. 132-139.

26. Utech K. Kosmische Micropartical in unterkambrischen Ablagerungen // Neues Jahrb. Geol. und Palaontol. Monatscr. – 1967. – № 2. – S. 128-130.

27. Іванов А.В., Флоренський К.П. Дрібнодисперсна космічна речовина з нижньопермських солей // Астрон. вісник. – 1969. – Т. 3. – № 1. – С. 45-49.

28. Mutch T.A. Видимості з magnetic spherules в Silurian і Permian salt samples //Earth and Planet Sci. Letters. – 1966. – Vol. 1. – № 5. – P. 325-329.

29. Бояркіна А.П., Васильєв Н.В., Менявцева Т.А. та ін До оцінки речовини Тунгуського метеорита в районі епіцентру вибуху // Космічне речовина Землі. – Новосибірськ: «Наука» Сибірське відділення, 1976. – С. 8-15.

30. Мульдіяров Є.Я., Лапшина О.Д. Датування верхніх шарів торф'яного покладу, що використовується для вивчення космічних аерозолів // Метеорні та метеорні дослідження. - Новосибірськ: "Наука" Сибірське відділення, 1983. - С. 75-84.

31. Лапшина О.Д., Бляхорчук П.А. Визначення глибини шару 1908 р. у торфі у зв'язку з пошуками речовини Тунгуського метеорита // Космічна речовина та Земля. - Новосибірськ: "Наука" Сибірське відділення, 1986. - С. 80-86.

32. Бояркіна А.П., Васильєв Н.В., Глухів Г.Г. та ін До оцінки космогенного припливу важких металів на поверхню Землі // Космічна речовина та Земля. – Новосибірськ: «Наука» Сибірське відділення, 1986. – С. 203 – 206.

33. Колесников Є.М. Про деякі ймовірні особливості хімічного складу Тунгуського космічного вибуху 1908 // Взаємодія метеоритної речовини із Землею. - Новосибірськ: "Наука" Сибірське відділення, 1980. - С. 87-102.

34. Колесников Є.М., Беттгер Т., Колесникова Н.В., Юнге Ф. Аномалії в ізотопному складі вуглецю та азоту торфів району вибуху Тунгуського космічного тіла 1908 // Геохімія. – 1996. – Т. 347. – № 3. – С. 378-382.

35. Бронштен В.А. Тунгуський метеорит: історія дослідження. - М: А.Д. Сельянов, 2000. – 310 с.

36. Праці Міжнародної конференції «100 років Тунгуському феномену», Москва, 26-28 червня 2008 р.

37. Реріх Є.І. Космологічні записи // Біля порога нового світу. - М: МЦР. Майстер-Банк, 2000. – С. 235 – 290.

38. Чаша Сходу. Листи Махатми. Лист XXI 1882 р. - Новосибірськ: Сибірське отд. вид. "Дитяча література", 1992. - С. 99-105.

39. Гінділіс Л.М. Проблема наднаукового знання / / Нова Епоха. – 1999. – № 1. – С. 103; № 2. – С. 68.

40. Знаки Агні-Йоги. Вчення Живої Етики. - М: МЦР, 1994. - С. 345.

41. Ієрархія. Вчення Живої Етики. - М: МЦР, 1995. - С.45

42. Світ Вогняний. Вчення Живої Етики. - М: МЦР, 1995. - Ч. 1.

43. Аум. Вчення Живої Етики. - М: МЦР, 1996. - С. 79.

44. Гінділіс Л.М. Читаючи листи Є.І. Реріх: кінцевий чи нескінченний Всесвіт? //Культура та Час. – 2007. – № 2. – С. 49.

45. Реріх Є.І. Листи. – М.: МЛР, Благодійний фонд ім. Є.І. Реріх, Майстер-Банк, 1999. – Т. 1. – С. 119.

46. ​​Серце. Вчення Живої Етики. - М: МЦР. 1995. – С. 137, 138.

47. Осяяння. Вчення Живої Етики. Аркуші Саду Морії. Книжка друга. - М: МЦР. 2003. – С. 212, 213.

48. Божокін С.В. Властивості космічного пилу // Соросівський освітній журнал. – 2000. – Т. 6. – № 6. – С. 72-77.

49. Герасименко Л.М., Жегалло Є.А., Жмур С.І. та ін. Бактеріальна палеонтологія та дослідження кулистих хондритів // Палеонтологічний журнал. -1999. - №4. - C. 103-125.

50. Васильєв Н.В., Кухарська Л.К., Бояркіна А.П. та ін. Про механізм стимуляції росту рослин у районі падіння Тунгуського метеорита // Взаємодія метеорної речовини із Землею. - Новосибірськ: "Наука" Сибірське відділення, 1980. - С. 195-202.

Доброго дня!

Сьогодні ми поговоримо на дуже цікаву тему, пов'язану з такою наукою, як астрономія! Йтиметься про космічний пил. Припускаю, що багато хто вперше дізнався про неї. Значить, треба розповісти про неї все, що мені відомо! У школі – астрономія була моїм одним із улюблених предметів, скажу більше – найулюбленішим, тому, саме з астрономії я складала іспит. Хоча мені і випав 13 квиток, який був найскладнішим, але з іспитом я склала чудово і залишилася задоволена!

Якщо сказати цілком доступно, що таке космічний пил, то можна уявити всі осколки, які тільки є у Всесвіті від космічної речовини, наприклад, від астероїдів. А Всесвіт - це не тільки Космос! Не плутайте, дорогі мої та добрі! Всесвіт - це весь наш світ - вся наша величезна Земна куля!

Як утворюється космічний пил?

Наприклад, космічний пил може утворюватися від того, коли в Космосі стикаються два астероїди і при зіткненні відбувається процес їх руйнування на дрібні частинки. Багато вчених схиляються і до того, що її освіта пов'язана з тим, коли згущується міжзоряний газ.

Як виникає космічний пил?

Як вона утворюється, ми з вами тільки з'ясували, тепер дізнаємось про те, як вона виникає. Як правило, ці порошинки просто виникають в атмосферах червоних зірочок, якщо ви чули, такі червоні зірки називають ще - зірками карликами; виникають коли на зірках відбуваються різні вибухи; коли активно викидається газ із самих ядер галактик; протозіркова і планетарна туманність - також сприяє її виникненню, втім, як і сама зоряна атмосфера та міжзоряні хмари.

Які види космічного пилу можна розрізняти з огляду на його походження?

Що стосується саме видів щодо походження, то виділимо такі види:

міжзоряний вид пилу, коли на зірках відбувається вибух, відбувається величезний викид газу і потужний викид енергії

міжгалактичний,

міжпланетний,

навколопланетний: з'явилася, як "сміття", залишки, після утворення інших планет.

Чи є види, які класифікуються не за походженням, а за зовнішніми ознаками?

    кружечки чорного кольору, невеликі, блискучі

    кружечки чорного кольору, але більші за розміром, що мають шорстку поверхню

    кружечки кульки чорно-білого кольору, які у своєму складі мають силікатну основу

    кружечки, які складаються зі скла та металу, вони різнорідні, та невеликі (20 нм)

    кружечки схожі на порошок магнетиту, вони чорні і схожі на чорний пісок

    пеплоподібні та шлакоподібні кружальця

    вид, що утворився від зіткнення астероїдів, комет, метеоритів

Вдале питання! Звісно, ​​може. І від зіткнення метеоритів також. Від зіткнення будь-яких небесних тіл можливе її утворення.

Питання про утворення і виникнення космічного пилу досі є спірним, і різні вчені висувають свої точки зору, але ви можете дотримуватися однієї або двох близьких точок зору в цьому питанні. Наприклад, тій, що зрозуміліша.

Адже навіть щодо її видів немає абсолютно точної класифікації!

кульки, основа яких є однорідною; їхня оболонка є окисленою;

кульки, основа яких є силікатною; оскільки вони мають вкраплення газу, то їхній вид часто схожий на шлаки чи піну;

кульки, основа яких є металевою з ядром з нікелю та кобальту; оболонка також окислена;

кружечки наповнення яких є порожнім.

вони можуть бути крижаними, а їх оболонка складається з легких елементів; у великих крижаних частинках є навіть атоми, що мають магнітні властивості,

кружечки з силікатними та графітними вкрапленнями,

кружечки, що складаються з оксидів, в основі яких є двоатомні оксиди:

Космічний пил до кінця не вивчений! Дуже багато відкритих питань, бо вони є спірними, але, гадаю, основні уявлення все-таки ми тепер маємо!

КОСМІЧНИЙ ПИЛ, тверді частинки з характерними розмірами від близько 0,001 мкм до близько 1 мкм (і, можливо, до 100 мкм і більше у міжпланетному середовищі та протопланетних дисках), виявлені майже у всіх астрономічних об'єктах: від Сонячна системадо дуже далеких галактик та квазарів. Характеристики пилу (концентрація частинок, хімічний склад, розмір часток тощо) значно змінюються від одного об'єкта до іншого, навіть для об'єктів одного типу. Космічний пил розсіює та поглинає падаюче випромінювання. Розсіяне випромінювання з тією ж довжиною хвилі, що і падаюче, поширюється на всі боки. Випромінювання, поглинене порошинкою, трансформується в теплову енергію, і частка випромінює зазвичай у більш довгохвильовій ділянці спектра в порівнянні з падаючим випромінюванням. Обидва процеси дають вклад в екстинкцію - ослаблення випромінювання небесних тіл пилом, що знаходиться на промені зору між об'єктом і спостерігачем.

Пилові об'єкти досліджують майже у всьому діапазоні електромагнітних хвиль – від рентгенівського до міліметрового. Електричне дипольне випромінювання ультрадрібних частинок, що швидко обертаються, мабуть, дає деякий внесок у мікрохвильове випромінювання на частотах 10-60 ГГц. Важливу роль відіграють лабораторні експерименти, в яких вимірюють показники заломлення, а також спектри поглинання та матриці розсіювання частинок - аналогів космічних порошинок, моделюють процеси утворення та зростання тугоплавких порошинок в атмосферах зірок і протопланетних дисках, вивчають утворення молекул та еволюцію льоту. схожих на існуючі у темних міжзоряних хмарах.

Космічний пил, що знаходиться в різних фізичних умовах, безпосередньо вивчають у складі метеоритів, що впали на поверхню Землі, у верхніх шарах земної атмосфери (міжпланетний пил і залишки невеликих комет), при польотах КА до планет, астероїдів і комет (околопланетна і кометна) межі геліосфери (міжзоряний пил). Наземні та космічні дистанційні спостереження космічного пилу охоплюють Сонячну систему (міжпланетний, навколопланетний та кометний пил, пил біля Сонця), міжзоряне середовище нашої Галактики (міжзоряний, навколозоряний та небулярний пил) та інших галактик (позагалактичний пил) пил).

Частинки космічного пилу в основному складаються з вуглецевих речовин (аморфний вуглець, графіт) та магнієво-залізистих силікатів (оливини, піроксени). Вони конденсуються і ростуть в атмосферах зірок пізніх спектральних класів і протопланетарних туманностях, а потім викидаються в міжзоряне середовище тиском випромінювання. У міжзоряних хмарах, особливо щільних, тугоплавкі частинки продовжують зростати внаслідок акреції атомів газу, а також при зіткненні та злипанні частинок один з одним (коагуляції). Це веде до появи оболонок з летких речовин (в основному льодів) та утворення пористих агрегатних частинок. Руйнування порошинок відбувається в результаті розпилення в ударних хвилях, що виникають після спалахів наднових зірок, або випаровування в процесі зіркоутворення, що почалося в хмарі. Пил, що залишився, продовжує еволюціонувати поблизу сформованої зірки і пізніше проявляється у формі міжпланетної пилової хмари або кометних ядер. Парадоксально, але навколо зір, що проеволюціонували (старих), пил є «свіжим» (що нещодавно утворився в їх атмосфері), а навколо молодих зірок - старим (що проеволюціонував у складі міжзоряного середовища). Передбачається, що космологічний пил, можливо існуючий у віддалених галактиках, сконденсувався у викидах речовини після вибухів масивних наднових зірок.

Літ. дивись за ст. Міжзоряний пил.

Звідки ж береться космічний пил? Наша планета оточена щільною повітряною оболонкою – атмосферою. До складу атмосфери, окрім відомих усім газів, входять ще й тверді частинки – пил.

В основному вона складається з частинок ґрунту, що піднімаються вгору під дією вітру. При виверженні вулканів часто спостерігаються сильні пилові хмари. Над великими містами висять цілі «пилові шапки», що досягають висоти 2-3 км. Число порошинок в одному куб. см повітря у містах сягає 100 тисяч штук, тоді як у чистому гірському повітрі їх утримується лише кілька сотень. Проте пил земного походження піднімається порівняно невеликі висоти – до 10 км. Вулканічний пил може досягати висоти 40-50 км.

Походження космічного пилу

Встановлено присутність пилових хмар на висоті значно перевищує 100 км. Це так звані сріблясті хмари, що складаються з космічного пилу.

Походження космічного пилу надзвичайно різноманітне: до нього входять і залишки комет, що розпалися, і частинки речовини, викинутої Сонцем і принесеного до нас силою світлового тиску.

Природно, що під дією земного тяжіння значна частина цих космічних порошинок повільно осідає на землю. Присутність такого космічного пилу виявили на високих снігових вершинах.

Метеорити

Крім такого, що повільно осідає космічного пилу, в межі нашої атмосфери щодня вриваються сотні мільйонів метеорів – те, що ми називаємо «зірками, що падають». Летячи з космічною швидкістю в сотні кілометрів за секунду, вони згоряють від тертя про частинки повітря, не встигнувши долетіти до землі. Продукти їхнього згоряння теж осідають на землю.

Втім, серед метеорів є і винятково великі екземпляри, що долітають до землі. Так, відомо падіння великого Тунгуського метеорита о 5 годині ранку 30 червня 1908 року, що супроводжувалося рядом сейсмічних явищ, зазначених навіть у Вашингтоні (в 9 тисячах км від місця падіння) і свідчать про потужність вибуху при падінні метеориту. Професор Кулик, який з винятковою сміливістю обстежив місце падіння метеорита, знайшов гущавину бурелому, що оточує місце падіння в радіусі сотень кілометрів. Метеорита, на жаль, йому знайти не вдалося. Співробітник Британського музею Кірпатрік у 1932 році здійснив спеціальну поїздку до СРСР, але до місця падіння метеорита навіть не дістався. Втім, він підтвердив припущення професора Кулика, який оцінив масу метеориту, що впав, в 100-120 тонн.

Хмара космічного пилу

Цікава гіпотеза академіка В. І. Вернадського, який вважав за можливе падіння не метеорита, а величезної хмари космічного пилу, що йшов з колосальною швидкістю.

Свою гіпотезу академік Вернадський підтверджував появою в ці дні великої кількості хмар, що світилися, що рухалися на великій висоті зі швидкістю 300-350 км на годину. Цією гіпотезою можна було б пояснити і те, що дерева, що оточують метеоритний кратер, залишилися стояти, тоді як розташовані далі були повалені вибуховою хвилею.

Крім Тунгуського метеорита відома ще ціла низка кратерів метеоритного походження. Першим із таких обстежених кратерів можна назвати Аризонський кратер у «Каньйоні Диявола». Цікаво, що поблизу нього було знайдено не тільки уламки залізного метеориту, а й маленькі алмази, що утворилися з вуглецю від великої температури та тиску при падінні та вибуху метеориту.
Крім зазначених кратерів, що свідчать про падіння величезних метеоритів вагою в десятки тонн, існують ще й дрібніші кратери: в Австралії, на острові Езель та інших.

Крім великих метеоритів, щорічно випадає чимало дрібніших – вагою від 10-12 грам до 2-3 кілограм.

Якби Земля не була захищена щільною атмосферою, ми щомиті зазнавали б бомбардування найдрібніших космічних частинок, що неслися зі швидкістю, що перевершує швидкість кулі.

Наднова SN2010jl Фото: NASA/STScI

Астрономи вперше спостерігали в реальному часі утворення космічного пилу в найближчих околицях наднового, що дозволило їм пояснити це загадкове явище, що відбувається в два етапи. Процес починається невдовзі після вибуху, але продовжується ще багато років, пишуть дослідники в журналі "Nature".

Ми всі складаємося з зоряного пилу, з елементів, які є будівельним матеріалом для нових небесних тіл. Астрономи давно припускали, що цей пил утворюється під час вибуху зірок. Але як саме це відбувається і як пилові частинки не руйнуються на околицях галактик, де йде активне залишалося досі загадкою.

Це питання вперше прояснили спостереження, зроблені за допомогою Very Large Telescope в обсерваторії Параналу на півночі Чилі. Міжнародна дослідницька група під керівництвом Крісти Гал (Christa Gall) з датського університету Орхуса досліджували наднову, що виникла в 2010 році в галактиці, віддаленій від нас на 160 млн. світлових років. Дослідники протягом місяців та перших років спостерігали з каталожним номером SN2010jl у видимому та інфрачервоному світловому діапазоні за допомогою спектрографа X-Shooter.

„Коли ми комбінували дані спостережень, ми змогли зробити перший вимір поглинання різних довжин хвиль у пилу навколо наднової, - пояснює Гал. - Це дозволило нам дізнатися про цей пил більше, ніж відомо було раніше". Таким чином стало можливим докладніше вивчити різні розміри порошин та їх утворення.

Пил у безпосередній близькості від наднової виникає у два етапи Фото: © ESO/M. Kornmesser

Як виявилося, пилові частки величиною понад тисячну частку міліметра утворюються у щільному матеріалі навколо зірки відносно швидко. Розміри цих частинок напрочуд великі для космічних порошинок, що робить їх стійкими до руйнування галактичними процесами. „Наш доказ виникнення великих частинок пилу незабаром після вибуху наднового означає, що має бути швидкий та ефективний спосіб їх утворення”, - додає співавтор Йєнс Хйорт (Jens Hjorth) з Університету Копенгагена. "Але ми поки не розуміємо, як саме це відбувається."

Проте, астрономи вже мають теорію, що базується на їх спостереженнях. Виходячи з неї, утворення пилу протікає у 2 етапи:

  1. Зірка виштовхує матеріал у свій навколишній простір незадовго до вибуху. Потім йде і поширюється ударна хвиля наднової, за якою створюється прохолодна і щільна оболонка газу - навколишнє середовище, в які можуть конденсуватися і рости пилові частинки раніше виштовхнутого матеріалу.
  2. На другій стадії, через кілька сотень днів після вибуху наднової, додається матеріал, який був викинутий самим вибухом і відбувається прискорений процес утворення пилу.

«В Останнім часомастрономи виявили багато пилу в залишках наднових, які виникли після вибуху. Тим не менш, вони також знайшли докази невеликої кількості пилу, який фактично виник у самій надновій. Нові спостереження пояснюють, як може вирішуватися ця протиріччя, що здається", - пише на закінчення Кріста Гал.



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...