Відстань між точками у тривимірній системі координат. Як обчислити відстань між координатами gps


Відстань від точки до точки- Це довжина відрізка, що з'єднує ці точки, у заданому масштабі. Таким чином, коли йдеться про вимірювання відстані, потрібно знати масштаб (одиницю довжини), в якому будуть проводитися вимірювання. Тому завдання знаходження відстані від точки до точки зазвичай розглядають або на координатній прямій, або в прямокутній декартовій системі координат на площині або в тривимірному просторі. Інакше кажучи, найчастіше доводиться обчислювати відстань між точками з їхньої координатам.

У цій статті ми, по-перше, нагадаємо, як визначається відстань від точки до точки на координатній прямій. Далі отримаємо формули для обчислення відстані між двома точками площини чи простору за заданими координатами. Наприкінці, докладно розглянемо рішення характерних прикладів і завдань.

Навігація на сторінці.

Відстань між двома точками на координатній прямій.

Давайте спочатку визначимося з позначеннями. Відстань від точки А до точки буде позначати як .

Звідси можна зробити висновок, що відстань від точки А з координатою до точки В з координатою дорівнює модулю різниці координат, тобто, при будь-якому розташуванні точок на координатній прямій.

Відстань від крапки до крапки на площині, формула.

Отримаємо формулу для обчислення відстані між точками і заданими в прямокутній декартовій системі координат на площині.

Залежно від розташування точок А та В можливі наступні варіанти.

Якщо точки А та В збігаються, то відстань між ними дорівнює нулю.

Якщо точки А і В лежать на прямій, перпендикулярній осі абсцис, то точки і збігаються, а відстань дорівнює відстані. У попередньому пункті ми з'ясували, що відстань між двома точками на координатній прямій дорівнює модулю різниці їх координат, тому, . Отже, .

Аналогічно, якщо точки А та В лежать на прямій, перпендикулярній осі ординат, то відстань від точки А до точки знаходиться як .

У цьому випадку трикутник АВС – прямокутний за побудовою, причому та . за теоремі Піфагорами можемо записати рівність, звідки.

Узагальним усі отримані результати: відстань від точки до точки на площині знаходиться через координати точок за формулою .

Отриману формулу для знаходження відстані між точками можна використовувати коли точки А і В збігаються або лежать на прямій, перпендикулярній одній з координатних осей. Справді, якщо і В збігаються, то . Якщо точки А і В лежать на прямій, перпендикулярній до осі Ох , то . Якщо А і В лежать на прямій, перпендикулярній до осі Оу , то .

Відстань між точками у просторі, формула.

Введемо прямокутну систему координат Оxyz у просторі. Отримаємо формулу для знаходження відстані від точки до точки .

У загальному випадку, точки А та В не лежать у площині, паралельній одній з координатних площин. Проведемо через точки А та В площині, перпендикулярні координатним осям Ох, Оу та Oz. Точки перетину цих площин з координатними осями дадуть нам проекції точок А і на ці осі. Позначимо проекції .


Шукана відстань між точками А і являє собою діагональ прямокутного паралелепіпеда, зображеного на малюнку. За побудовою, виміри цього паралелепіпеда рівні та . У курсі геометрії середньої школи було доведено, що квадрат діагоналі прямокутного паралелепіпеда дорівнює сумі квадратів трьох його вимірів, тому . Спираючись на інформацію першого розділу цієї статті, ми можемо записати наступні рівності , отже,

звідки отримуємо формулу для знаходження відстані між точками у просторі .

Ця формула також справедлива, якщо точки А та В

  • збігаються;
  • належать до однієї з координатних осей або прямої, паралельної до однієї з координатних осей;
  • належать до однієї з координатних площин або площини, паралельної одній з координатних площин.

Знаходження відстані від точки до точки, приклади та рішення.

Отже, ми отримали формули для знаходження відстані між двома точками координатної прямої, площини та тривимірного простору. Настав час розглянути рішення характерних прикладів.

Число завдань, при вирішенні яких кінцевим етапом є знаходження відстані між двома точками за їх координатами, воістину величезне. Повний огляд таких прикладів виходить за межі цієї статті. Тут ми обмежимося прикладами, у яких відомі координати двох точок і потрібно обчислити відстань з-поміж них.

Вирішення задач з математики у учнів часто супроводжується багатьма труднощами. Допомогти учневі впоратися з цими труднощами, а також навчити застосовувати теоретичні знання, що є у нього, при вирішенні конкретних завдань по всіх розділах курсу предмета «Математика» – основне призначення нашого сайту.

Приступаючи до вирішення завдань на тему , учні повинні вміти будувати крапку на площині за її координатами, а як і знаходити координати заданої точки.

Обчислення відстані між взятими на площині двома точками А(х А; у А) та В(х В; у В), виконується за формулою d = √((х А – х В) 2 + (у А – у В) 2), де d - Довжина відрізка, який з'єднує ці точки на площині.

Якщо один із кінців відрізка збігається з початком координат, а інший має координати М(х М; у М), то формула для обчислення d набуде вигляду ОМ = √(х М 2 + у М 2).

1. Обчислення відстані між двома точками за даними координатами цих точок

Приклад 1.

Знайти довжину відрізка, який з'єднує на координатній площині точки А(2; -5) та В(-4; 3) (рис. 1).

Рішення.

За умови завдання дано: х А = 2; х В = -4; у А = -5 та у В = 3. Знайти d.

Застосувавши формулу d = √((х А – х В) 2 + (у А – у В) 2), отримаємо:

d = АВ = √((2 – (-4)) 2 + (-5 – 3) 2) = 10.

2. Обчислення координат точки, яка рівновіддалена від трьох заданих точок

приклад 2.

Знайти координати точки О 1 , яка рівновіддалена від трьох точок А(7; -1) та В(-2; 2) і С(-1; -5).

Рішення.

З формулювання умови завдання випливає, що О 1 А = О 1 В = О 1 С. Нехай точка О 1, що шукається, має координати (а; b). За формулою d = √((х А – х В) 2 + (у А – у В) 2) знайдемо:

Про 1 А = √((а – 7) 2 + (b + 1) 2);

О 1 = √((а + 2) 2 + (b – 2) 2);

О 1 С = √ ((а + 1) 2 + (b + 5) 2).

Складемо систему з двох рівнянь:

(√((а – 7) 2 + (b + 1) 2) = √((а + 2) 2 + (b – 2) 2),
(√((а – 7) 2 + (b + 1) 2) = √((а + 1) 2 + (b + 5) 2).

Після зведення в квадрат лівої та правої частин рівнянь запишемо:

((а – 7) 2 + (b + 1) 2 = (а + 2) 2 + (b – 2) 2 ,
((а - 7) 2 + (b + 1) 2 = (а + 1) 2 + (b + 5) 2 .

Спростивши, запишемо

(-3а + b + 7 = 0,
(-2а - b + 3 = 0).

Вирішивши систему, отримаємо: а = 2; b = -1.

Точка О 1 (2; -1) рівновіддалена від трьох заданих за умови точок, які лежать однієї прямої. Ця точка - є центр кола, що проходить через три задані точки (Рис. 2).

3. Обчислення абсциси (ординати) точки, що лежить на осі абсцис (ординат) і знаходиться на заданій відстані від цієї точки

приклад 3.

Відстань від точки В(-5; 6) до точки А, що лежить на осі Ох дорівнює 10. Знайти точку А.

Рішення.

З формулювання умови завдання випливає, що ордината точки А дорівнює нулю та АВ = 10.

Позначивши абсцис точки А через а, запишемо А(а; 0).

АВ = √((а + 5) 2 + (0 – 6) 2) = √((а + 5) 2 + 36).

Отримуємо рівняння √((а + 5) 2 + 36) = 10. Спростивши його, маємо

а 2 + 10а - 39 = 0.

Коріння цього рівняння а1 = -13; а 2 = 3.

Отримуємо дві точки А 1 (-13; 0) та А 2 (3; 0).

Перевірка:

А 1 = √((-13 + 5) 2 + (0 – 6) 2) = 10.

А 2 = √((3 + 5) 2 + (0 – 6) 2) = 10.

Обидві одержані точки підходять за умовою задачі (Рис. 3).

4. Обчислення абсциси (ординати) точки, що лежить на осі абсцис (ординат) і знаходиться на однаковій відстані від двох заданих точок

приклад 4.

Знайти на осі Оу точку, яка знаходиться на однаковій відстані від точок А(6; 12) та В(-8; 10).

Рішення.

Нехай координати потрібної за умовою задачі точки, що лежить на осі Оу, будуть О 1 (0; b) (у точки, що лежить на осі Оу, абсцис дорівнює нулю). З умови випливає, що О1А = О1В.

За формулою d = √((х А – х В) 2 + (у А – у В) 2) знаходимо:

О 1 А = √((0 – 6) 2 + (b – 12) 2) = √(36 + (b – 12) 2);

Про 1 В = √((а + 8) 2 + (b – 10) 2) = √(64 + (b – 10) 2).

Маємо рівняння √(36 + (b – 12) 2) = √(64 + (b – 10) 2) або 36 + (b – 12) 2 = 64 + (b – 10) 2 .

Після спрощення отримаємо: b - 4 = 0, b = 4.

Необхідна за умовою завдання точка О1 (0; 4) (Рис. 4).

5. Обчислення координат точки, яка знаходиться на однаковій відстані від осей координат та деякої заданої точки

Приклад 5.

Знайти точку М, розташовану на координатній площині на однаковій відстані від осей координат і точки А(-2; 1).

Рішення.

Необхідна точка М, як і точка А(-2; 1), розташовується у другому координатному кутку, оскільки вона рівновіддалена від точок А, Р 1 і Р 2 (рис. 5). Відстань точки М від осей координат однакові, отже, її координатами будуть (-a; a), де а > 0.

З умови завдання випливає, що МА = МР 1 = МР 2 МР 1 = а; МР 2 = |-a|,

тобто. |-a| = а.

За формулою d = √((х А – х В) 2 + (у А – у В) 2) знаходимо:

МА = √((-а + 2) 2 + (а – 1) 2).

Складемо рівняння:

√((-а + 2) 2 + (а – 1) 2) = а.

Після зведення квадрат і спрощення маємо: а 2 – 6а + 5 = 0. Розв'яжемо рівняння, знайдемо а 1 = 1; а 2 = 5.

Отримуємо дві точки М 1 (-1; 1) та М 2 (-5; 5), що задовольняють умові задачі.

6. Обчислення координат точки, яка знаходиться на однаковій заданій відстані від осі абсцис (ординат) та від даної точки

Приклад 6.

Знайти точку М таку, що відстань її від осі ординат і від точки А(8; 6) дорівнюватиме 5.

Рішення.

З умови завдання випливає, що МА = 5 і абсцис точки М дорівнює 5. Нехай ордината точки М дорівнює b, тоді М(5; b) (Рис. 6).

За формулою d = √((х А – х В) 2 + (у А – у В) 2) маємо:

МА = √((5 – 8) 2 + (b – 6) 2).

Складемо рівняння:

√((5 – 8) 2 + (b – 6) 2) = 5. Спростивши його, отримаємо: b 2 – 12b + 20 = 0. Коріння цього рівняння b 1 = 2; b 2 = 10. Отже, є дві точки, що задовольняють умову задачі: М 1 (5; 2) та М 2 (5; 10).

Відомо, що багато учнів при самостійному вирішенні завдань потребують постійних консультацій щодо прийомів та методів їх вирішення. Найчастіше знайти шлях до вирішення завдання без допомоги викладача учню не під силу. Необхідні консультації щодо вирішення завдань учень і може отримати на нашому сайті.

Залишились питання? Не знаєте як знайти відстань між двома точками на площині?
Щоб отримати допомогу репетитора – .
Перший урок – безкоштовно!

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Вирішення задач з математики у учнів часто супроводжується багатьма труднощами. Допомогти учневі впоратися з цими труднощами, а також навчити застосовувати теоретичні знання, що є у нього, при вирішенні конкретних завдань по всіх розділах курсу предмета «Математика» – основне призначення нашого сайту.

Приступаючи до вирішення завдань на тему , учні повинні вміти будувати крапку на площині за її координатами, а як і знаходити координати заданої точки.

Обчислення відстані між взятими на площині двома точками А(х А; у А) та В(х В; у В), виконується за формулою d = √((х А – х В) 2 + (у А – у В) 2), де d - Довжина відрізка, який з'єднує ці точки на площині.

Якщо один із кінців відрізка збігається з початком координат, а інший має координати М(х М; у М), то формула для обчислення d набуде вигляду ОМ = √(х М 2 + у М 2).

1. Обчислення відстані між двома точками за даними координатами цих точок

Приклад 1.

Знайти довжину відрізка, який з'єднує на координатній площині точки А(2; -5) та В(-4; 3) (рис. 1).

Рішення.

За умови завдання дано: х А = 2; х В = -4; у А = -5 та у В = 3. Знайти d.

Застосувавши формулу d = √((х А – х В) 2 + (у А – у В) 2), отримаємо:

d = АВ = √((2 – (-4)) 2 + (-5 – 3) 2) = 10.

2. Обчислення координат точки, яка рівновіддалена від трьох заданих точок

приклад 2.

Знайти координати точки О 1 , яка рівновіддалена від трьох точок А(7; -1) та В(-2; 2) і С(-1; -5).

Рішення.

З формулювання умови завдання випливає, що О 1 А = О 1 В = О 1 С. Нехай точка О 1, що шукається, має координати (а; b). За формулою d = √((х А – х В) 2 + (у А – у В) 2) знайдемо:

Про 1 А = √((а – 7) 2 + (b + 1) 2);

О 1 = √((а + 2) 2 + (b – 2) 2);

О 1 С = √ ((а + 1) 2 + (b + 5) 2).

Складемо систему з двох рівнянь:

(√((а – 7) 2 + (b + 1) 2) = √((а + 2) 2 + (b – 2) 2),
(√((а – 7) 2 + (b + 1) 2) = √((а + 1) 2 + (b + 5) 2).

Після зведення в квадрат лівої та правої частин рівнянь запишемо:

((а – 7) 2 + (b + 1) 2 = (а + 2) 2 + (b – 2) 2 ,
((а - 7) 2 + (b + 1) 2 = (а + 1) 2 + (b + 5) 2 .

Спростивши, запишемо

(-3а + b + 7 = 0,
(-2а - b + 3 = 0).

Вирішивши систему, отримаємо: а = 2; b = -1.

Точка О 1 (2; -1) рівновіддалена від трьох заданих за умови точок, які лежать однієї прямої. Ця точка - є центр кола, що проходить через три задані точки (Рис. 2).

3. Обчислення абсциси (ординати) точки, що лежить на осі абсцис (ординат) і знаходиться на заданій відстані від цієї точки

приклад 3.

Відстань від точки В(-5; 6) до точки А, що лежить на осі Ох дорівнює 10. Знайти точку А.

Рішення.

З формулювання умови завдання випливає, що ордината точки А дорівнює нулю та АВ = 10.

Позначивши абсцис точки А через а, запишемо А(а; 0).

АВ = √((а + 5) 2 + (0 – 6) 2) = √((а + 5) 2 + 36).

Отримуємо рівняння √((а + 5) 2 + 36) = 10. Спростивши його, маємо

а 2 + 10а - 39 = 0.

Коріння цього рівняння а1 = -13; а 2 = 3.

Отримуємо дві точки А 1 (-13; 0) та А 2 (3; 0).

Перевірка:

А 1 = √((-13 + 5) 2 + (0 – 6) 2) = 10.

А 2 = √((3 + 5) 2 + (0 – 6) 2) = 10.

Обидві одержані точки підходять за умовою задачі (Рис. 3).

4. Обчислення абсциси (ординати) точки, що лежить на осі абсцис (ординат) і знаходиться на однаковій відстані від двох заданих точок

приклад 4.

Знайти на осі Оу точку, яка знаходиться на однаковій відстані від точок А(6; 12) та В(-8; 10).

Рішення.

Нехай координати потрібної за умовою задачі точки, що лежить на осі Оу, будуть О 1 (0; b) (у точки, що лежить на осі Оу, абсцис дорівнює нулю). З умови випливає, що О1А = О1В.

За формулою d = √((х А – х В) 2 + (у А – у В) 2) знаходимо:

О 1 А = √((0 – 6) 2 + (b – 12) 2) = √(36 + (b – 12) 2);

Про 1 В = √((а + 8) 2 + (b – 10) 2) = √(64 + (b – 10) 2).

Маємо рівняння √(36 + (b – 12) 2) = √(64 + (b – 10) 2) або 36 + (b – 12) 2 = 64 + (b – 10) 2 .

Після спрощення отримаємо: b - 4 = 0, b = 4.

Необхідна за умовою завдання точка О1 (0; 4) (Рис. 4).

5. Обчислення координат точки, яка знаходиться на однаковій відстані від осей координат та деякої заданої точки

Приклад 5.

Знайти точку М, розташовану на координатній площині на однаковій відстані від осей координат і точки А(-2; 1).

Рішення.

Необхідна точка М, як і точка А(-2; 1), розташовується у другому координатному кутку, оскільки вона рівновіддалена від точок А, Р 1 і Р 2 (рис. 5). Відстань точки М від осей координат однакові, отже, її координатами будуть (-a; a), де а > 0.

З умови завдання випливає, що МА = МР 1 = МР 2 МР 1 = а; МР 2 = |-a|,

тобто. |-a| = а.

За формулою d = √((х А – х В) 2 + (у А – у В) 2) знаходимо:

МА = √((-а + 2) 2 + (а – 1) 2).

Складемо рівняння:

√((-а + 2) 2 + (а – 1) 2) = а.

Після зведення квадрат і спрощення маємо: а 2 – 6а + 5 = 0. Розв'яжемо рівняння, знайдемо а 1 = 1; а 2 = 5.

Отримуємо дві точки М 1 (-1; 1) та М 2 (-5; 5), що задовольняють умові задачі.

6. Обчислення координат точки, яка знаходиться на однаковій заданій відстані від осі абсцис (ординат) та від даної точки

Приклад 6.

Знайти точку М таку, що відстань її від осі ординат і від точки А(8; 6) дорівнюватиме 5.

Рішення.

З умови завдання випливає, що МА = 5 і абсцис точки М дорівнює 5. Нехай ордината точки М дорівнює b, тоді М(5; b) (Рис. 6).

За формулою d = √((х А – х В) 2 + (у А – у В) 2) маємо:

МА = √((5 – 8) 2 + (b – 6) 2).

Складемо рівняння:

√((5 – 8) 2 + (b – 6) 2) = 5. Спростивши його, отримаємо: b 2 – 12b + 20 = 0. Коріння цього рівняння b 1 = 2; b 2 = 10. Отже, є дві точки, що задовольняють умову задачі: М 1 (5; 2) та М 2 (5; 10).

Відомо, що багато учнів при самостійному вирішенні завдань потребують постійних консультацій щодо прийомів та методів їх вирішення. Найчастіше знайти шлях до вирішення завдання без допомоги викладача учню не під силу. Необхідні консультації щодо вирішення завдань учень і може отримати на нашому сайті.

Залишились питання? Не знаєте як знайти відстань між двома точками на площині?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

У цій статті розглянемо способи визначити відстань від точки до точки теоретично та на прикладі конкретних завдань. І спочатку введемо деякі визначення.

Yandex.RTB R-A-339285-1 Визначення 1

Відстань між точками- Це довжина відрізка, що їх з'єднує, в наявному масштабі. Задати масштаб необхідно, щоб мати для виміру одиницю довжини. Тому в основному завдання знаходження відстані між точками вирішується при використанні їх координат на координатній прямій, координатній площині або тривимірному просторі.

Вихідні дані: координатна пряма O x і лежача на ній довільна точка А. Будь-якій точці прямої притаманне одне дійсне число: нехай для точки А це буде якесь число х A ,воно ж - координата точки А.

У цілому нині можна говорити, що оцінка довжини деякого відрізка відбувається у порівнянні з відрізком, прийнятим за одиницю довжини в заданому масштабі.

Якщо точці А відповідає ціле дійсне число, відклавши послідовно від точки О до точки прямої О А відрізки – одиниці довжини, ми можемо визначити довжину відрізка O A за підсумковою кількістю відкладених одиничних відрізків.

Наприклад, точці А відповідає число 3 – щоб потрапити до неї з точки Про, потрібно буде відкласти три одиничних відрізка. Якщо точка А має координату - 4 - поодинокі відрізки відкладаються аналогічним чином, але в іншому негативному напрямку. Таким чином у першому випадку, відстань О А дорівнює 3; у другому випадку ПРО = 4 .

Якщо точка A має як координати раціональне число, то від початку відліку (точка О) ми відкладаємо ціле число одиничних відрізків, а потім його необхідну частину. Але геометрично який завжди можна зробити вимір. Наприклад, важко відкласти на координатній прямий дріб 4 111 .

Вищезазначеним способом відкласти на прямий ірраціональне число взагалі неможливо. Наприклад, коли координата точки А дорівнює 11. У такому разі можна звернутися до абстракції: якщо задана координата точки А більша за нуль, то O A = x A (число приймається за відстань); якщо координата менша за нуль, то O A = - x A . Загалом ці твердження справедливі для будь-якого дійсного числа x A .

Резюмуючи: відстань від початку відліку до точки, якій відповідає дійсне число на координатній прямій, дорівнює:

  • 0 якщо точка збігається з початком координат;
  • x A, якщо x A > 0;
  • - x A якщо x A< 0 .

При цьому очевидно, що сама довжина відрізка не може бути негативною, тому використовуючи знак модуля запишемо відстань від точки O до точки A з координатою x A: O A = x A

Вірним буде твердження: відстань від однієї точки до іншої дорівнюватиме модулю різниці координат.Тобто. для точок A і B , що лежать на одній координатній прямій за будь-якого їх розташування і мають відповідно координати x Aі x B: A B = x B - x A.

Вихідні дані: точки A і B , що лежать на площині прямокутної системи координат O x y із заданими координатами: A (x A , y A) і B (x B , y B) .

Проведемо через точки А і B перпендикуляри до осей координат O x і O y і отримаємо в результаті точки проекції: A x, A y, B x, B y. Виходячи з розташування точок А та B далі можливі наступні варіанти:

Якщо точки А та В збігаються, то відстань між ними дорівнює нулю;

Якщо точки А і В лежать на прямій, перпендикулярній до осі O x (осі абсцис), то точки і збігаються, а | А В | = | А y B y | . Оскільки відстань між точками дорівнює модулю різниці їх координат, то A y B y = y B - y A , а, отже A B = A y B y = y B - y A .

Якщо точки A і B лежать на прямій, перпендикулярній до осі O y (осі ординат) – за аналогією з попереднім пунктом: A B = A x B x = x B - x A

Якщо точки A і B не лежать на прямій, перпендикулярній до однієї з координатних осей, знайдемо відстань між ними, вивівши формулу розрахунку:

Ми бачимо, що трикутник АВС є прямокутним за побудовою. При цьому A C = A x B x і B C = A y B y. Використовуючи теорему Піфагора, складемо рівність: A B 2 = A C 2 + B C 2 ⇔ A B 2 = A x B x 2 + A y B y 2 а потім перетворимо його: A B = A x B x 2 + A y B y 2 = x B - x A 2 + y B - y A 2 = (x B - x A) 2 + (y B - y A) 2

Сформуємо висновок з отриманого результату: відстань від точки А до точки на площині визначається розрахунком за формулою з використанням координат цих точок

A B = (x B - x A) 2 + (y B - y A) 2

Отримана формула також підтверджує раніше сформовані твердження для випадків збігу точок або ситуацій, коли лежать точки на прямих, перпендикулярних осях. Так, для випадку збігу точок A і B буде правильна рівність: A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + 0 2 = 0

Для ситуації, коли точки A та B лежать на прямій, перпендикулярній осі абсцис:

A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + (y B - y A) 2 = y B - y A

Для випадку коли точки A і B лежать на прямій, перпендикулярній осі ординат:

A B = (x B - x A) 2 + (y B - y A) 2 = (x B - x A) 2 + 0 2 = x B - x A

Вихідні дані: прямокутна система координат O x y z з довільними точками з заданими координатами A (x A , y A , z A) і B (x B , y B , z B) . Необхідно визначити відстань між цими точками.

Розглянемо загальний випадок, коли точки A та B не лежать у площині, паралельній одній з координатних площин. Проведемо через точки A і B площини, перпендикулярні координатним осям, і отримаємо відповідні точки проекцій: A x , A y , A z , B x , B y , B z

Відстань між точками A і B є діагональ отриманого в результаті побудови паралелепіпеда. Відповідно до побудови вимірювання цього паралелепіпеда: A x B x , A y B y та A z B z

З курсу геометрії відомо, що квадрат діагоналі паралелепіпеда дорівнює сумі квадратів його вимірів. Виходячи з цього твердження отримаємо рівність: A B 2 = A x B x 2 + A y B y 2 + A z B z 2

Використовуючи отримані висновки, запишемо наступне:

A x B x = x B - x A , A y B y = y B - y A , A z B z = z B - z A

Перетворимо вираз:

A B 2 = A x B x 2 + A y B y 2 + A z B z 2 = x B - x A 2 + y B - y A 2 + z B - z A 2 = = (x B - x A) 2 + (y B - y A) 2 + z B - z A 2

Підсумкова формула для визначення відстані між точками у просторібуде виглядати так:

A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Отримана формула дійсна також для випадків, коли:

Крапки збігаються;

Лежать на одній координатній осі або прямій паралельній одній з координатних осей.

Приклади розв'язання задач на знаходження відстані між точками

Приклад 1

Вихідні дані: задана координатна пряма та точки, що лежать на ній із заданими координатами A (1 - 2) та B (11 + 2) . Необхідно знайти відстань від точки початку відліку O до точки A між точками A і B .

Рішення

  1. Відстань від точки початку відліку до точки дорівнює модулю координати цієї точки відповідно O A = 1 - 2 = 2 - 1
  2. Відстань між точками A і B визначимо як модуль різниці координат цих точок: A B = 11 + 2 - (1 - 2) = 10 + 2 2

Відповідь: O A = 2 - 1, A B = 10 + 2 2

Приклад 2

Вихідні дані: задана прямокутна система координат і дві точки, що на ній лежать A (1 , - 1) і B (λ + 1 , 3) ​​. λ – деяке дійсне число. Необхідно знайти всі значення цього числа, при яких відстань АВ дорівнює 5 .

Рішення

Щоб знайти відстань між точками A і B необхідно використовувати формулу A B = (x B - x A) 2 + y B - y A 2

Підставивши реальні значення координат, отримаємо: A B = (λ + 1 - 1) 2 + (3 - (- 1)) 2 = λ 2 + 16

А також використовуємо наявну умову, що АВ = 5 і тоді буде вірною рівність:

λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3

Відповідь: АВ = 5 , якщо λ = ± 3 .

Приклад 3

Вихідні дані: задано тривимірне простір у прямокутній системі координат O x y z і точки A (1 , 2 , 3) ​​і B - 7 , - 2 , 4 , що лежать у ньому.

Рішення

Для розв'язання задачі використовуємо формулу A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Підставивши реальні значення, отримаємо: A B = (- 7 - 1) 2 + (- 2 - 2) 2 + (4 - 3) 2 = 81 = 9

Відповідь: | А В | = 9

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Відстань між двома точками площини.
Системи координат

Кожна точка площини А характеризується своїми координатами (х, у). Вони збігаються з координатами вектора 0А, що виходить із точки 0 - початку координат.

Нехай А і В - довільні точки площини з координатами (х 1 y 1) та (х 2, у 2) відповідно.

Тоді вектор AB має, очевидно, координати (х 2 - х 1, у 2 - у 1). Відомо, що квадрат довжини вектора дорівнює сумі квадратів координат. Тому відстань d між точками А і В, або, що те саме, довжина вектора АВ, визначається з умови

d 2 = (х 2 – х 1) 2 + (y 2 – y 1) 2 .

d = \/ (х 2 - х 1) 2 + (y 2 - y 1) 2

Отримана формула дозволяє знаходити відстань між будь-якими двома точками площини, якщо відомі координати цих точок

Щоразу, говорячи про координати тієї чи іншої точки плоскосі, ми маємо на увазі цілком певну систему координат х0у. А взагалі систему координат на площині можна вибирати по-різному. Так, замість системи координат х0у можна розглянути систему координат х"0у", яка виходить в результаті повороту старих осей координат навколо початкової точки 0 проти годинниковоїстрілки на кут α .

Якщо деяка точка площини в системі координат х0у мала координати (х, у), то в новій системі координат х "0у" вона матиме вже інші координати (х", у").

Як приклад розглянемо точку М, розташовану на осі 0х" і віддалену від точки 0 на відстані, що дорівнює 1.

Очевидно, що в системі координат x0у ця точка має координати (cos α , sin α ), а в системі координат х "0у" координати (1,0).

Координати будь-яких двох точок площини А та В залежать від того, як у цій площині задана система координат. А ось відстань між цими точками залежить від способу завдання системи координат. Ця важлива обставина буде суттєво використана нами у наступному параграфі.

Вправи

I. Знайти відстані між точками площини з координатами:

1) (3,5) та (3,4); 3) (0,5) та (5, 0); 5) (-3,4) та (9, -17);

2) (2, 1) та (- 5, 1); 4) (0, 7) та (3,3); 6) (8, 21) та (1, -3).

ІІ. Знайти периметр трикутника, сторони якого задані рівняннями:

x + у - 1 = 0, 2x - у - 2 = 0 та у = 1.

ІІІ. У системі координат х0у точки М і N мають координати (1, 0) та (0,1) відповідно. Знайти координати цих точок у новій системі координат, яка виходить і в результаті повороту старих осей навколо початкової точки на кут 30° проти годинникової стрілки.

IV. У системі координат х0у точки М і N мають координати (2, 0) і (\ / 3/2, - 1/2) відповідно. Знайти координати цих точок у новій системі координат, яка виходить в результаті повороту старих осей навколо початкової точки на кут 30° за годинниковою стрілкою.



Останні матеріали розділу:

Нащадок убивці Михайла Лермонтова впевнений, що у предка не було іншого виходу
Нащадок убивці Михайла Лермонтова впевнений, що у предка не було іншого виходу

«Сподівалися повернутися на Батьківщину» Кирило Гіацинтов - нащадок Миколи Мартинова по материнській лінії, у ньому тече кров двох старовинних дворянських...

Ковалентні зв'язки у сполуках вуглецю
Ковалентні зв'язки у сполуках вуглецю

Продовження. Початок див. № 15, 16/2004 Урок 5. Гібридизація атомних орбіталей вуглецю Ковалентний хімічний зв'язок утворюється за допомогою...

Зірки – це, як і Сонце, величезні розжарені газові кулі
Зірки – це, як і Сонце, величезні розжарені газові кулі

Зірки - це гігантські розжарені газові кулі, що витрачають величезну кількість енергії. На поверхні зірок панують температури у тисячі...