Обчислити відношення меншого кореня квадратного рівняння. Квадратні рівняння

Початковий рівень

Квадратні рівняння. Вичерпний гід (2019)

У терміні "квадратне рівняння" ключовим є слово "квадратне". Це означає, що в рівнянні обов'язково має бути присутня змінна (той самий ікс) у квадраті, і при цьому не повинно бути іксів у третій (і більшій) мірі.

Вирішення багатьох рівнянь зводиться до розв'язання саме квадратних рівнянь.

Давай навчимося визначати, що перед нами квадратне рівняння, а не якесь інше.

приклад 1.

Позбавимося знаменника і домножимо кожен член рівняння на

Перенесемо все в ліву частину і розташуємо члени в порядку спаду ступенів ікса

Тепер можна з упевненістю сказати, що це рівняння є квадратним!

приклад 2.

Домножимо ліву та праву частину на:

Це рівняння, хоч у ньому спочатку був, не є квадратним!

приклад 3.

Домножимо все на:

Страшно? Четвертий і другий ступені... Однак, якщо зробити заміну, то ми побачимо, що перед нами просте квадратне рівняння:

приклад 4.

Начебто є, але давай подивимося уважніше. Перенесемо все до лівої частини:

Бачиш, скоротився – і тепер це просте лінійне рівняння!

Тепер спробуй сам визначити, які з наступних рівнянь є квадратними, а які:

Приклади:

Відповіді:

  1. квадратне;
  2. квадратне;
  3. не квадратне;
  4. не квадратне;
  5. не квадратне;
  6. квадратне;
  7. не квадратне;
  8. квадратне.

Математики умовно ділять усі квадратні рівняння на вигляд:

  • Повні квадратні рівняння- Рівняння, в яких коефіцієнти і, а також вільний член з не дорівнюють нулю (як у прикладі). Крім того, серед повних квадратних рівнянь виділяють наведені- це рівняння, у яких коефіцієнт (рівняння з прикладу один є не тільки повним, але ще й наведеним!)
  • Неповні квадратні рівняння- Рівняння, в яких коефіцієнт або вільний член з рівні нулю:

    Неповні вони, бо в них не вистачає якогось елемента. Але в рівнянні завжди повинен бути присутнім ікс у квадраті! Інакше це буде вже не квадратне, а якесь інше рівняння.

Навіщо вигадали такий поділ? Здавалося б, є ікс у квадраті, та гаразд. Такий поділ зумовлений методами рішення. Розглянемо кожен із них докладніше.

Розв'язання неповних квадратних рівнянь

Для початку зупинимося на розв'язанні неповних квадратних рівнянь – вони набагато простіші!

Неповні квадратні рівняння бувають типів:

  1. , у цьому рівнянні коефіцієнт дорівнює.
  2. , у цьому рівнянні вільний член дорівнює.
  3. , у цьому рівнянні коефіцієнт та вільний член рівні.

1. в. Оскільки ми знаємо, як видобувати квадратний корінь, то давайте висловимо з цього рівняння

Вираз може бути як негативним, і позитивним. Число, зведене у квадрат, може бути негативним, адже за перемноженні двох негативних чи двох позитивних чисел - результатом завжди буде позитивне число, отже: якщо, то рівняння немає рішень.

А якщо, то отримуємо два корені. Ці формули не слід запам'ятовувати. Головне, ти маєш знати і пам'ятати завжди, що не може бути менше.

Давайте спробуємо вирішити кілька прикладів.

Приклад 5:

Розв'яжіть рівняння

Тепер залишилося витягти корінь із лівої та правої частини. Адже ти пам'ятаєш, як добувати коріння?

Відповідь:

Ніколи не забувай про коріння з негативним знаком!

Приклад 6:

Розв'яжіть рівняння

Відповідь:

Приклад 7:

Розв'яжіть рівняння

Ой! Квадрат числа не може бути негативним, а отже, у рівняння

немає коріння!

Для таких рівнянь, в яких немає коріння, математики вигадали спеціальний значок - (порожня безліч). І відповідь можна записати так:

Відповідь:

Таким чином, це квадратне рівняння має два корені. Тут немає жодних обмежень, оскільки коріння ми не витягували.
Приклад 8:

Розв'яжіть рівняння

Винесемо загальний множник за дужки:

Таким чином,

У цього рівняння два корені.

Відповідь:

Найпростіший тип неповних квадратних рівнянь (хоча вони всі прості, чи не так?). Очевидно, що дане рівняння завжди має лише один корінь:

Тут обійдемося без прикладів.

Розв'язання повних квадратних рівнянь

Нагадуємо, що повне квадратне рівняння, це рівняння виду рівняння де

Вирішення повних квадратних рівнянь трохи складніше (зовсім трохи), ніж наведених.

Запам'ятай, будь-яке квадратне рівняння можна вирішити за допомогою дискримінанту! Навіть неповне.

Інші способи допоможуть зробити це швидше, але якщо у тебе виникають проблеми з квадратними рівняннями, спершу освойте рішення за допомогою дискримінанта.

1. Розв'язання квадратних рівнянь за допомогою дискримінанта.

Рішення квадратних рівнянь у цей спосіб дуже просте, головне запам'ятати послідовність дій і кілька формул.

Якщо, то рівняння має кореня Потрібно особливу увагу звернути на крок. Дискримінант () вказує на кількість коренів рівняння.

  • Якщо, то формула на кроці скоротиться до. Таким чином, рівняння матиме всього корінь.
  • Якщо, то ми не зможемо витягти коріння з дискримінанта на кроці. Це свідчить про те, що рівняння немає коренів.

Повернемося до наших рівнянь та розглянемо кілька прикладів.

Приклад 9:

Розв'яжіть рівняння

Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

А отже рівняння має два корені.

Крок 3

Відповідь:

Приклад 10:

Розв'яжіть рівняння

Рівняння представлене у стандартному вигляді, тому Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

Отже, рівняння має один корінь.

Відповідь:

Приклад 11:

Розв'яжіть рівняння

Рівняння представлене у стандартному вигляді, тому Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

Отже ми не зможемо витягти коріння з дискримінанта. Коренів рівняння немає.

Тепер знаємо, як правильно записувати такі відповіді.

Відповідь:Коренів немає

2. Розв'язання квадратних рівнянь за допомогою теореми Вієта.

Якщо ти пам'ятаєш, тобто такий тип рівнянь, які називаються наведеними (коли коефіцієнт дорівнює):

Такі рівняння дуже просто вирішувати, використовуючи теорему Вієта:

Сума коренів наведеногоквадратного рівняння дорівнює, а добуток коріння дорівнює.

Приклад 12:

Розв'яжіть рівняння

Це рівняння підходить рішення з використанням теореми Виета, т.к. .

Сума коренів рівняння дорівнює, тобто. отримуємо перше рівняння:

А твір одно:

Складемо і вирішимо систему:

  • в. Сума дорівнює;
  • в. Сума дорівнює;
  • в. Сума дорівнює.

і є рішенням системи:

Відповідь: ; .

Приклад 13:

Розв'яжіть рівняння

Відповідь:

Приклад 14:

Розв'яжіть рівняння

Наведене рівняння, а значить:

Відповідь:

КВАДРАТНІ РІВНЯННЯ. СЕРЕДНІЙ РІВЕНЬ

Що таке квадратне рівняння?

Іншими словами, квадратне рівняння – це рівняння виду, де – невідоме, – деякі числа, причому.

Число називають старшим або першим коефіцієнтомквадратного рівняння, - другим коефіцієнтом, а - вільним членом.

Чому? Тому що якщо рівняння відразу стане лінійним, т.к. пропаде.

При цьому і можуть дорівнювати нулю. У цьому стулче рівняння називають неповним. Якщо все складові дома, тобто, рівняння - повне.

Розв'язання різних типів квадратних рівнянь

Методи розв'язання неповних квадратних рівнянь:

Для початку розберемо методи розв'язків неповних квадратних рівнянь – вони простіші.

Можна виділити тип таких рівнянь:

I. , у цьому рівнянні коефіцієнт та вільний член рівні.

ІІ. , у цьому рівнянні коефіцієнт дорівнює.

ІІІ. , у цьому рівнянні вільний член дорівнює.

Тепер розглянемо рішення кожного із цих підтипів.

Очевидно, що дане рівняння завжди має лише один корінь:

Число, зведене у квадрат, може бути негативним, адже за перемноженні двох негативних чи двох позитивних чисел результатом завжди буде позитивне число. Тому:

якщо, то рівняння немає рішень;

якщо, маємо навчаємо два корені

Ці формули не слід запам'ятовувати. Головне пам'ятати, що не може бути менше.

Приклади:

Рішення:

Відповідь:

Ніколи не забувай про коріння із негативним знаком!

Квадрат числа не може бути негативним, а отже, у рівняння

немає коріння.

Щоб коротко записати, що завдання немає рішень, використовуємо значок порожньої множини.

Відповідь:

Отже, це рівняння має два корені: і.

Відповідь:

Винесемо загальним множник за дужки:

Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. А це означає, що рівняння має рішення, коли:

Отже, це квадратне рівняння має два корені: і.

Приклад:

Розв'яжіть рівняння.

Рішення:

Розкладемо ліву частину рівняння на множники і знайдемо коріння:

Відповідь:

Методи розв'язання повних квадратних рівнянь:

1. Дискримінант

Вирішувати квадратні рівняння цим способом легко, головне запам'ятати послідовність дій та пару формул. Запам'ятай будь-яке квадратне рівняння можна вирішити за допомогою дискримінанта! Навіть неповне.

Ти помітив корінь із дискримінанта у формулі для коріння? Але дискримінант може бути негативним. Що робити? Потрібно особливу увагу звернути на крок 2. Дискримінант вказує на кількість коренів рівняння.

  • Якщо, то рівняння має коріння:
  • Якщо, то рівняння має однакові корені, а по суті, один корінь:

    Таке коріння називається дворазовим.

  • Якщо, то корінь із дискримінанта не витягується. Це свідчить про те, що рівняння немає коренів.

Чому можлива різна кількість коренів? Звернемося до геометричного змісту квадратного рівняння. Графік функції є параболою:

У окремому випадку, яким є квадратне рівняння, . І це означає, що коріння квадратного рівняння, це точки перетину з віссю абсцис (вісь). Парабола може взагалі не перетинати вісь або перетинати її в одній (коли вершина параболи лежить на осі) або двох точках.

Крім того, за напрямок гілок параболи відповідає коефіцієнт. Якщо, то гілки параболи спрямовані вгору, а якщо – то вниз.

Приклади:

Рішення:

Відповідь:

Відповідь: .

Відповідь:

Отже, рішень немає.

Відповідь: .

2. Теорема Вієта

Використовувати теорему Вієта дуже легко: потрібно лише підібрати таку пару чисел, добуток яких дорівнює вільному члену рівняння, а сума - другому коефіцієнту, взятому зі зворотним знаком.

Важливо пам'ятати, що теорему Вієта можна застосовувати тільки в наведені квадратні рівняння ().

Розглянемо кілька прикладів:

Приклад №1:

Розв'яжіть рівняння.

Рішення:

Це рівняння підходить рішення з використанням теореми Виета, т.к. . Інші коефіцієнти: ; .

Сума коренів рівняння дорівнює:

А твір одно:

Підберемо такі пари чисел, добуток яких рівний, і перевіримо, чи дорівнює їх сума:

  • в. Сума дорівнює;
  • в. Сума дорівнює;
  • в. Сума дорівнює.

і є рішенням системи:

Таким чином, і – коріння нашого рівняння.

Відповідь: ; .

Приклад №2:

Рішення:

Підберемо такі пари чисел, які у творі дають, а потім перевіримо, чи дорівнює їхня сума:

та: у сумі дають.

та: у сумі дають. Щоб отримати, досить просто поміняти знаки передбачуваного коріння: і твір.

Відповідь:

Приклад №3:

Рішення:

Вільний член рівняння негативний, отже, і твір коренів - негативне число. Це можливо тільки якщо один із коренів негативний, а інший - позитивний. Тому сума коренів дорівнює різниці їх модулів.

Підберемо такі пари чисел, які у творі дають, і різниця яких дорівнює:

і: їхня різниця дорівнює - не підходить;

та: - не підходить;

та: - не підходить;

та: - підходить. Залишається лише згадати, що одне з коренів негативне. Так як їх сума повинна дорівнювати, то негативним має бути менший за модулем корінь: . Перевіряємо:

Відповідь:

Приклад №4:

Розв'яжіть рівняння.

Рішення:

Наведене рівняння, а значить:

Вільний член негативний, отже, і твір коренів негативно. А це можливо тільки тоді, коли один корінь рівняння негативний, а інший позитивний.

Підберемо такі пари чисел, добуток яких дорівнює, а потім визначимо, яке коріння має мати негативний знак:

Очевидно, що під першу умову підходять тільки коріння та:

Відповідь:

Приклад №5:

Розв'яжіть рівняння.

Рішення:

Наведене рівняння, а значить:

Сума коренів негативна, а це означає що, принаймні, один із коренів негативний. Але оскільки їхній твір позитивний, то значить обидва корені зі знаком мінус.

Підберемо такі пари чисел, добуток яких дорівнює:

Очевидно, що корінням є числа в.

Відповідь:

Погодься, це дуже зручно – вигадувати коріння усно, замість того, щоб вважати цей неприємний дискримінант. Намагайся використовувати теорему Вієта якнайчастіше.

Але теорема Вієта потрібна для того, щоб полегшити та прискорити знаходження коріння. Щоб тобі було вигідно її використати, ти маєш довести дії до автоматизму. А для цього вирішуй ще п'ять прикладів. Але не шахрай: дискримінант використовувати не можна! Тільки теорему Вієта:

Розв'язання завдань для самостійної роботи:

Завдання 1. ((x)^(2))-8x+12=0

За теоремою Вієта:

Як завжди, починаємо підбір з твору:

Не підходить, оскільки сума;

: сума - те що треба

Відповідь: ; .

Завдання 2.

І знову наша улюблена теорема Вієта: у сумі має вийти, а твір рівний.

Але оскільки має бути не, а, міняємо знаки коріння: і (у сумі).

Відповідь: ; .

Завдання 3.

Хм… А де тут що?

Потрібно перенести всі складові в одну частину:

Сума коренів дорівнює, твір.

Так стоп! Рівняння не наведене. Але теорема Вієта застосовна лише у наведених рівняннях. Тож спочатку потрібно рівняння навести. Якщо навести не виходить, кидай цю витівку і вирішуй іншим способом (наприклад, через дискримінант). Нагадаю, що навести квадратне рівняння - значить зробити старший коефіцієнт рівним:

Чудово. Тоді сума коренів дорівнює, а твір.

Тут підібрати простіше простого: адже - просте число (вибач за тавтологію).

Відповідь: ; .

Завдання 4.

Вільний член негативний. Що у цьому особливого? А те, що коріння буде різних знаків. І тепер під час підбору перевіряємо не суму коренів, а різницю їх модулів: ця різниця дорівнює, а твір.

Отже, коріння рівні і, але один із них з мінусом. Теорема Вієта говорить нам, що сума коренів дорівнює другому коефіцієнту зі зворотним знаком, тобто. Значить, мінус буде у меншого кореня: і оскільки.

Відповідь: ; .

Завдання 5.

Що потрібно зробити насамперед? Правильно, навести рівняння:

Знову: підбираємо множники числа, і їх різниця повинна дорівнювати:

Коріння рівні і, але одне з них з мінусом. Який? Їхня сума має дорівнювати, отже, з мінусом буде більший корінь.

Відповідь: ; .

Підіб'ю підсумок:
  1. Теорема Вієта використовується лише у наведених квадратних рівняннях.
  2. Використовуючи теорему Вієта, можна знайти коріння підбором, усно.
  3. Якщо рівняння не наводиться або не знайшлося жодної відповідної пари множників вільного члена, значить цілих коренів немає, і потрібно вирішувати іншим способом (наприклад, через дискримінант).

3. Метод виділення повного квадрата

Якщо всі доданки, що містять невідоме, подати у вигляді доданків із формул скороченого множення - квадрата суми або різниці - то після заміни змінних можна уявити рівняння у вигляді неповного квадратного рівняння типу.

Наприклад:

Приклад 1:

Розв'яжіть рівняння: .

Рішення:

Відповідь:

Приклад 2:

Розв'яжіть рівняння: .

Рішення:

Відповідь:

У загальному вигляді перетворення виглядатиме так:

Звідси випливає: .

Нічого не нагадує? Це ж дискримінант! Саме так, формулу дискримінанта так і отримали.

КВАДРАТНІ РІВНЯННЯ. КОРОТКО ПРО ГОЛОВНЕ

Квадратне рівняння- це рівняння виду, де невідоме, - коефіцієнти квадратного рівняння, - вільний член.

Повне квадратне рівняння- Рівняння, в якому коефіцієнти, не дорівнюють нулю.

Наведене квадратне рівняння- Рівняння, у якому коефіцієнт, тобто: .

Неповне квадратне рівняння- рівняння, в якому коефіцієнт або вільний член з рівні нулю:

  • якщо коефіцієнт, рівняння має вигляд: ,
  • якщо вільний член, рівняння має вигляд:
  • якщо і, рівняння має вигляд: .

1. Алгоритм розв'язання неповних квадратних рівнянь

1.1. Неповне квадратне рівняння виду, де:

1) Виразимо невідоме: ,

2) Перевіряємо знак виразу:

  • якщо, то рівняння немає рішень,
  • якщо, то рівняння має два корені.

1.2. Неповне квадратне рівняння виду, де:

1) Винесемо загальним множник за дужки: ,

2) Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. Отже, рівняння має два корені:

1.3. Неповне квадратне рівняння виду, де:

Дане рівняння має тільки один корінь: .

2. Алгоритм розв'язання повних квадратних рівнянь виду де

2.1. Рішення за допомогою дискримінанта

1) Наведемо рівняння до стандартного вигляду: ,

2) Обчислимо дискримінант за формулою: , який вказує на кількість коренів рівняння:

3) Знайдемо коріння рівняння:

  • якщо, то рівняння має корені, що знаходяться за формулою:
  • якщо, то рівняння має корінь, що знаходиться за формулою:
  • якщо, то рівняння не має коріння.

2.2. Рішення за допомогою теореми Вієта

Сума коренів наведеного квадратного рівняння (рівняння виду, де) дорівнює, а добуток коренів дорівнює, тобто. , а.

2.3. Рішення методом виділення повного квадрата

Якщо квадратне рівняння виду має коріння, його можна записати як: .

Ну ось, тема закінчена. Якщо ти читаєш ці рядки, значить ти дуже крутий.

Тому що лише 5% людей здатні освоїти щось самостійно. І якщо ти дочитав до кінця, то ти потрапив у ці 5%!

Тепер найголовніше.

Ти розібрався з теорією на цю тему. І, повторюся, це… це просто супер! Ти вже краще, ніж абсолютна більшість твоїх однолітків.

Проблема в тому, що цього не вистачить.

Для чого?

Для успішної здачі ЄДІ, для вступу до інституту на бюджет і, найголовніше, для життя.

Я не буду тебе ні в чому переконувати, просто скажу одну річ…

Люди, які здобули хорошу освіту, заробляють набагато більше, ніж ті, хто її не отримав. Це – статистика.

Але й це – не головне.

Головне те, що вони БІЛЬШЕ ЩАСЛИВІ (є такі дослідження). Можливо тому, що перед ними відкривається набагато більше можливостей і життя стає яскравішим? Не знаю...

Але, думай сам...

Що потрібно, щоб бути, напевно, кращим за інших на ЄДІ і бути зрештою… більш щасливим?

Набити руку, вирішуючи завдання за цією темою.

На іспиті в тебе не питатимуть теорію.

Тобі треба буде вирішувати завдання на якийсь час.

І, якщо ти не вирішував їх (Багато!), ти обов'язково десь безглуздо помилишся або просто не встигнеш.

Це як у спорті – потрібно багато разів повторити, щоби виграти напевно.

Знайди де хочеш збірку, обов'язково з рішеннями, докладним розборомі вирішуй, вирішуй, вирішуй!

Можна скористатися нашими завданнями (не обов'язково), і ми їх, звичайно, рекомендуємо.

Для того, щоб набити руку за допомогою наших завдань, потрібно допомогти продовжити життя підручнику YouClever, який ти зараз читаєш.

Як? Є два варіанта:

  1. Відкрий доступ до всіх прихованих завдань у цій статті 299 руб.
  2. Відкрий доступ до всіх прихованих завдань у всіх 99 статтях підручника. 499 руб.

Так, у нас у підручнику 99 таких статей та доступ для всіх завдань та всіх прихованих текстів у них можна відкрити одразу.

Доступ до всіх прихованих завдань надається на весь час існування сайту.

І на закінчення...

Якщо наші завдання тобі не подобаються, то знайди інші. Тільки не зупиняйся на теорії.

"Зрозумів" і "Вмію вирішувати" - це зовсім різні навички. Тобі потрібні обидва.

Знайди завдання та вирішуй!

Бібліографічний опис:Гасанов А. Р., Курамшин А. А., Єльков А. А., Шильненков Н. В., Уланов Д. Д., Шмельова О. В. Способи розв'язання квадратних рівнянь // Юний вчений. 2016. №6.1. С. 17-20..3.2019).





Наш проект присвячений способам розв'язання квадратних рівнянь. Мета проекту: навчитися вирішувати квадратні рівняння способами, які не входять до шкільної програми. Завдання: знайти всі можливі способи розв'язання квадратних рівнянь та навчитися їх використовувати самим та познайомити однокласників із цими способами.

Що таке «квадратні рівняння»?

Квадратне рівняння- Рівняння виду ax2 + bx + c = 0, де a, b, c- Деякі числа ( a ≠ 0), x- Невідоме.

Числа a, b, c називаються коефіцієнтами квадратного рівняння.

  • a називається першим коефіцієнтом;
  • b називається другим коефіцієнтом;
  • c – вільним членом.

А хто ж перший "винайшов" квадратні рівняння?

Деякі алгебраїчні прийоми розв'язання лінійних і квадратних рівнянь були відомі ще 4000 років тому у Стародавньому Вавилоні. Знайдені стародавні вавилонські глиняні таблички, датовані десь між 1800 і 1600 роками до н.е., є ранніми свідченнями про вивчення квадратних рівнянь. На цих табличках викладено методи розв'язання деяких типів квадратних рівнянь.

Необхідність вирішувати рівняння як першої, а й другого ступеня ще давнини була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок і із земляними роботами військового характеру, і навіть з недостатнім розвитком астрономії і самої математики.

Правило розв'язання цих рівнянь, викладене у вавилонських текстах, збігається по суті із сучасним, проте невідомо, яким чином дійшли вавилоняни до цього правила. Майже всі знайдені до цих пір клинописні тексти наводять лише завдання з рішеннями, викладеними у вигляді рецептів, без вказівок щодо того, як вони були знайдені. Незважаючи на високий рівень розвитку алгебри у Вавилоні, у клинописних текстах відсутні поняття негативного числа та загальні методи розв'язання квадратних рівнянь.

Вавилонські математики приблизно з IV століття до н. використовували метод доповнення квадрата для вирішення рівнянь з позитивним корінням. Близько 300 року до н. Евклід придумав загальніший геометричний метод рішення. Першим математиком, який знайшов рішення рівняння з негативним корінням у вигляді алгебраїчної формули, був індійський учений Брахмагупта(Індія, VII століття нашої ери).

Брахмагупта виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми:

ax2 + bх = с, а>0

У цьому рівнянні коефіцієнти можуть бути і негативними. Правило Брахмагупт по суті збігається з нашим.

В Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

В алгебраїчному трактаті Аль-Хорезмідається класифікація лінійних та квадратних рівнянь. Автор налічує 6 видів рівнянь, висловлюючи їх так:

1) «Квадрати дорівнюють корінням», тобто ах2 = bх.

2) «Квадрати дорівнюють числу», тобто ах2 = с.

3) «Коріння рівні числу», тобто ах2 = с.

4) «Квадрати та числа дорівнюють корінням», тобто ах2 + с = bх.

5) «Квадрати і коріння дорівнюють числу», тобто ах2 + bх = с.

6) «Коріння та числа дорівнюють квадратам», тобто bх + с == ах2.

Для Аль-Хорезмі, що уникав вживання негативних чисел, члени кожного з цих рівнянь доданки, а не віднімаються. При цьому свідомо не беруться до уваги рівняння, які не мають позитивних рішень. Автор викладає способи розв'язання зазначених рівнянь, користуючись прийомами ал-джабр та ал-мукабала. Його рішення, звісно, ​​не збігається повністю із нашим. Вже не кажучи про те, що воно чисто риторичне, слід зазначити, наприклад, що при розв'язанні неповного квадратного рівняння першого виду Аль-Хорезмі, як і всі математики до XVII ст., не враховує нульового рішення, ймовірно тому, що в конкретних практичних Завдання воно не має значення. При вирішенні повних квадратних рівнянь Аль-Хорезмі на окремих числових прикладах викладає правила розв'язання, а потім їх геометричні докази.

Форми розв'язання квадратних рівнянь на зразок Аль-Хорезмі у Європі було вперше викладено у «Книзі абака», написаної 1202г. італійським математиком Леонардом Фібоначчі. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел.

Ця книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із цієї книги переходили майже до всіх європейських підручників XIV-XVII ст. Загальне правило розв'язання квадратних рівнянь, наведених до єдиного канонічного виду x2 + bх = с при всіляких комбінаціях знаків та коефіцієнтів b, c, було сформульовано в Європі у 1544 р. М. Штіфелем.

Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллісеред перших у XVI ст. враховують, крім позитивних, і негативне коріння. Лише XVII в. завдяки працям Жірара, Декарта, Ньютоната інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

Розглянемо кілька способів розв'язання квадратних рівнянь.

Стандартні способи розв'язання квадратних рівнянь із шкільної програми:

  1. Розкладання лівої частини рівняння на множники.
  2. Метод виділення повного квадрата.
  3. Розв'язання квадратних рівнянь за формулою.
  4. Графічний розв'язок квадратного рівняння.
  5. Розв'язання рівнянь із використанням теореми Вієта.

Зупинимося докладніше на розв'язання наведених і не наведених квадратних рівнянь з теореми Вієта.

Нагадаємо, що для вирішення наведених квадратних рівнянь достатньо знайти два числа такі, добуток яких дорівнює вільному члену, а сума - другому коефіцієнту з протилежним знаком.

приклад.x 2 -5x+6=0

Потрібно знайти числа, добуток яких дорівнює 6, а сума 5. Такими числами будуть 3 та 2.

Відповідь: x 1 =2, x 2 =3.

Але можна використовувати цей спосіб і для рівнянь з першим коефіцієнтом не рівним одиниці.

приклад.3x 2 +2x-5=0

Беремо перший коефіцієнт та множимо його на вільний член: x 2 +2x-15=0

Корінням цього рівняння будуть числа, добуток яких дорівнює - 15, а сума дорівнює - 2. Ці числа - 5 і 3. Щоб знайти коріння вихідного рівняння, отримане коріння ділимо на перший коефіцієнт.

Відповідь: x 1 =-5/3, x 2 =1

6. Розв'язання рівнянь способом "перекидання".

Розглянемо квадратне рівняння ах 2 + bх + с = 0 де а≠0.

Помножуючи обидві його частини на а, отримуємо рівняння а 2 х 2 + abх + ас = 0.

Нехай ах = у, звідки х = у/а; тоді приходимо до рівняння у 2 + by + ас = 0, рівносильному даному. Його коріння у 1 та у 2 знайдемо за допомогою теореми Вієта.

Остаточно отримуємо х 1 = у 1/а та х 2 = у 2/а.

При цьому способі коефіцієнт a множиться на вільний член, як би "перекидається" до нього, тому його називають способом "перекидання". Цей спосіб застосовують, коли можна легко знайти коріння рівняння, використовуючи теорему Вієта і що найважливіше, коли дискримінант є точний квадрат.

приклад. 2 - 11х + 15 = 0.

"Перекинемо" коефіцієнт 2 до вільного члена і зробивши заміну отримаємо рівняння у 2 - 11у + 30 = 0.

Відповідно до зворотної теореми Вієта

у 1 = 5, х 1 = 5/2, х 1 = 2,5; у 2 = 6, x 2 = 6/2, x 2 = 3.

Відповідь: х 1 =2,5; х 2 = 3.

7. Властивості коефіцієнтів квадратного рівняння.

Нехай надано квадратне рівняння ах 2 + bх + с = 0, а ≠ 0.

1. Якщо a + b + с = 0 (тобто сума коефіцієнтів рівняння дорівнює нулю), то х 1 = 1.

2. Якщо а – b + с = 0, або b = а + с, то х 1 = – 1.

приклад.345х 2 - 137х - 208 = 0.

Так як а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = -208/345.

Відповідь: х 1 =1; х 2 = -208/345 .

приклад.132х 2 + 247х + 115 = 0

Т.к. a-b + с = 0 (132 - 247 +115 = 0), то х 1 = - 1, х 2 = - 115/132

Відповідь: х 1 = - 1; х 2 =- 115/132

Існують інші властивості коефіцієнтів квадратного рівняння. але їх використання складніше.

8. Розв'язання квадратних рівнянь за допомогою номограми.

Рис 1. Номограма

Це старий і нині забутий спосіб розв'язання квадратних рівнянь, вміщений с.83 збірки: Брадис В.М. Чотиризначні математичні таблиці. - М., Просвітництво, 1990.

Таблиця XXII. Номограма для вирішення рівняння z 2 + pz + q = 0. Ця номограма дозволяє, не вирішуючи квадратного рівняння, за його коефіцієнтами визначити коріння рівняння.

Криволинійна шкала номограми побудована за формулами (рис. 1):

Вважаючи ОС = р, ED = q, ОЕ = а(Все в см), з рис.1 подоби трикутників САНі CDFотримаємо пропорцію

звідки після підстановок та спрощень випливає рівняння z 2 + pz + q = 0,причому буква zозначає мітку будь-якої точки криволінійної шкали.

Рис. 2 Розв'язання квадратних рівнянь за допомогою номограми

приклади.

1) Для рівняння z 2 - 9z + 8 = 0номограма дає коріння z 1 = 8,0 та z 2 = 1,0

Відповідь: 8,0; 1.0.

2) Вирішимо за допомогою номограми рівняння

2z 2 - 9z + 2 = 0.

Розділимо коефіцієнти цього рівняння на 2 отримаємо рівняння z 2 - 4,5z + 1 = 0.

Номограма дає коріння z 1 = 4 та z 2 = 0,5.

Відповідь: 4; 0,5.

9. Геометричний спосіб розв'язання квадратних рівнянь.

приклад.х 2 + 10х = 39.

В оригіналі це завдання формулюється так: "Квадрат і десять коренів дорівнюють 39".

Розглянемо квадрат зі стороною х, на його сторонах будуються прямокутники так, що інша сторона кожного з них дорівнює 2,5, отже площа кожного дорівнює 2,5x. Отриману фігуру доповнюють потім до нового квадрата АВСD, добудовуючи в кутах чотири рівні квадрати, сторона кожного з них 2,5, а площа 6,25

Рис. 3 Графічний спосіб розв'язання рівняння х 2 + 10х = 39

Площа S квадрата ABCD можна як суму площ: початкового квадрата x 2 , чотирьох прямокутників (4∙2,5x = 10х) і чотирьох прибудованих квадратів (6,25∙ 4 = 25) , тобто. S = х 2 + 10х = 25. Замінюючи х 2 + 10х числом 39, отримаємо що S = 39 + 25 = 64, звідки випливає, що сторона квадрата АВСD, тобто. відрізок АВ = 8. Для шуканої сторони х початкового квадрата отримаємо

10. Розв'язання рівнянь із використанням теореми Безу.

Теорема Безу. Залишок від розподілу многочлена P(x) на двочлен x - α дорівнює P(α) (тобто значення P(x) при x = α).

Якщо число α є коренем многочлена P(x), цей многочлен ділиться на x -α без залишку.

приклад.х²-4х+3=0

Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Розділимо Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

х-1 = 0; х=1, або х-3=0, х=3; Відповідь: х1 =2, х2 =3.

Висновок:Вміння швидко і раціонально розв'язувати квадратні рівняння просто необхідне рішення більш складних рівнянь, наприклад, дробово-раціональних рівнянь, рівнянь вищих ступенів, біквадратних рівнянь, а старшій школі тригонометричних, показових і логарифмічних рівнянь. Вивчивши всі знайдені способи розв'язання квадратних рівнянь, ми можемо порадити однокласникам, крім стандартних способів, розв'язання способом перекидання (6) і розв'язання рівнянь за якістю коефіцієнтів (7), оскільки є більш доступними для розуміння.

Література:

  1. Брадіс В.М. Чотиризначні математичні таблиці. - М., Просвітництво, 1990.
  2. Алгебра 8 клас: підручник для 8 кл. загальноосвіт. установ Макарічев Ю. Н., Міндюк Н. Г., Нешков К. І., Суворова С. Б. за ред. С. А. Теляковського 15-те вид., Дораб. - М: Просвітництво, 2015
  3. https://ua.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0 %B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзер Г.І. Історія математики у школі. Посібник для вчителів. / За ред. В.М. Молодшого. - М: Просвітництво, 1964.

Дискримінант, як і квадратні рівняння, починають вивчати в курсі алгебри в 8 класі. Вирішити квадратне рівняння можна через дискримінант та за допомогою теореми Вієта. Методика вивчення квадратних рівнянь, як і формули дискримінанта, досить невдало прищеплюється школярам, ​​як і багато чого в цій освіті. Тому проходять шкільні роки, навчання у 9-11 класі замінює "вищу освіту" і всі знову шукають. "Як вирішити квадратне рівняння?", "Як знайти коріння рівняння?", "Як знайти дискримінант?" і...

Формула дискримінанта

Дискримінант D квадратного рівняння a*x^2+bx+c=0 дорівнює D=b^2–4*a*c.
Коріння (рішення) квадратного рівняння залежить від знака дискримінанта (D) :
D>0 – рівняння має 2 різних дійсних кореня;
D=0 - рівняння має 1 корінь (2 збігаються кореня):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Формула для обчислення дискримінанта досить проста, тому безліч сайтів пропонують онлайн калькулятор дискримінанта. Ми з такого роду скриптами ще не розібралися, тому хтозна, як це реалізувати просимо писати на пошту Ця електронна адреса захищена від спам-ботів. У вас має бути включений JavaScript для перегляду. .

Загальна формула для знаходження коріння квадратного рівняння:

Коріння рівняння знаходимо за формулою
Якщо коефіцієнт при змінній у квадраті парний, то доцільно обчислювати не дискримінант, а четверту його частину
У таких випадках коріння рівняння знаходять за формулою

Другий спосіб знаходження коріння - це Теорема Вієта.

Формулюється теорема як для квадратних рівнянь, але й многочленов. Це Ви можете прочитати у Вікіпедії або інших електронних ресурсах. Однак для спрощення розглянемо її частину, яка стосується наведених квадратних рівнянь, тобто рівнянь виду (a=1)
Суть формул Вієта полягає в тому, що сума коренів рівняння дорівнює коефіцієнту за змінної, взятого з протилежним знаком. Добуток коренів рівняння дорівнює вільному члену. Формулами теорема Вієта має запис.
Висновок формули Вієта досить простий. Розпишемо квадратне рівняння через прості множники
Як бачите, все геніальне одночасно є простим. Ефективно використовувати формулу Вієта коли різниця коренів за модулем або різниця модулів коренів дорівнює 1, 2. Наприклад, наступні рівняння з теореми Вієта мають корені




До 4 рівняння аналіз має виглядати так. Добуток коренів рівняння дорівнює 6, отже корінням може бути значення (1, 6) і (2, 3) чи пари з протилежним знаком. Сума коренів дорівнює 7 (коефіцієнт при змінній із протилежним знаком). Звідси робимо висновок, що рішення квадратного рівняння дорівнюють x=2; x=3.
Простіше підбирати корені рівняння серед дільників вільного члена, коригуючи їх знак з метою виконання формул Вієта. На початку це здається важко зробити, але з практикою на ряді квадратних рівнянь така методика виявиться ефективнішою за обчислення дискримінанта і знаходження коренів квадратного рівняння класичним способом.
Як бачите шкільна теорія вивчення дискримінанта та способів знаходження рішень рівняння позбавлена ​​практичного сенсу - "Навіщо школярам квадратне рівняння?", "Який фізичний зміст дискримінанта?".

Давайте спробуємо розібратися, що описує дискримінант?

У курсі алгебри вивчають функції, схеми дослідження функції та побудови графіка функцій. З усіх функцій важливе місце займає парабола, рівняння якої можна записати як
Так ось фізичний сенс квадратного рівняння - це нулі параболи, тобто точки перетину графіка функції з віссю абсцис Ox
Властивості парабол які описані нижче попрошу Вас запам'ятати. Прийде час складати іспити, тести, або вступні іспити, і Ви будете вдячні за довідковий матеріал. Знак при змінній квадраті відповідає тому, чи будуть гілки параболи на графіку йти вгору (a>0) ,

або парабола гілками вниз (a<0) .

Вершина параболи лежить посередині між корінням

Фізичний зміст дискримінанта:

Якщо дискримінант більший за нуль (D>0) парабола має дві точки перетину з віссю Ox .
Якщо дискримінант дорівнює нулю (D=0), то парабола у вершині стосується осі абсцис.
І останній випадок, коли дискримінант менший за нуль (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Неповні квадратні рівняння


Продовжуємо вивчення теми « вирішення рівнянь». Ми вже познайомилися з лінійними рівняннями та переходимо до знайомства з квадратними рівняннями.

Спочатку ми розберемо, що таке квадратне рівняння, як воно записується у загальному вигляді, і дамо пов'язані визначення. Після цього на прикладах докладно розберемо, як вирішуються неповні квадратні рівняння. Далі перейдемо до розв'язання повних рівнянь, отримаємо формулу коренів, познайомимося з дискримінантом квадратного рівняння та розглянемо розв'язання характерних прикладів. Нарешті, простежимо зв'язок між корінням і коефіцієнтами.

Навігація на сторінці.

Що таке квадратне рівняння? Їхні види

Спочатку треба чітко розуміти, що таке квадратне рівняння. Тому розмову про квадратні рівняння логічно розпочати з визначення квадратного рівняння, а також пов'язаних із ним визначень. Після цього можна розглянути основні види квадратних рівнянь: наведені та ненаведені, а також повні та неповні рівняння.

Визначення та приклади квадратних рівнянь

Визначення.

Квадратне рівняння– це рівняння виду a x 2 + b x + c = 0, де x - змінна, a, b і c - деякі числа, причому a відмінно від нуля.

Відразу скажемо, що квадратні рівняння часто називають рівняннями другого ступеня. Це пов'язано з тим, що квадратне рівняння є алгебраїчним рівняннямдругого ступеня.

Озвучене визначення дозволяє навести приклади квадратних рівнянь. Так 2 x 2 +6 x 1 = 0, 0,2 x 2 +2,5 x +0,03 = 0 і т.п. - Це квадратні рівняння.

Визначення.

Числа a, b і c називають коефіцієнтами квадратного рівняння a x 2 +b x + c = 0 , причому коефіцієнт a називають першим, або старшим, або коефіцієнтом при x 2 b - другим коефіцієнтом, або коефіцієнтом при x , а c - вільним членом.

Наприклад візьмемо квадратне рівняння виду 5·x 2 −2·x−3=0 тут старший коефіцієнт є 5 , другий коефіцієнт дорівнює −2 , а вільний член дорівнює −3 . Зверніть увагу, коли коефіцієнти b та/або c негативні, як у щойно наведеному прикладі, використовується коротка форма запису квадратного рівняння виду 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2 ) · x + (-3) = 0 .

Варто зазначити, що коли коефіцієнти a та/або b дорівнюють 1 або −1 , то вони в записі квадратного рівняння зазвичай не присутні явно, що пов'язано з особливостями запису таких . Наприклад, у квадратному рівнянні y 2 −y+3=0 старший коефіцієнт є одиниця, а коефіцієнт при y дорівнює −1 .

Наведені та ненаведені квадратні рівняння

Залежно від значення старшого коефіцієнта розрізняють наведені та ненаведені квадратні рівняння. Дамо відповідні визначення.

Визначення.

Квадратне рівняння, в якому старший коефіцієнт дорівнює 1 називають наведеним квадратним рівнянням. В іншому випадку квадратне рівняння є ненаведеним.

Згідно з цим визначенням, квадратні рівняння x 2 −3·x+1=0 , x 2 −x−2/3=0 тощо. – наведені, у кожному їх перший коефіцієнт дорівнює одиниці. А 5·x 2 −x−1=0 і т.п. - Ненаведені квадратні рівняння, їх старші коефіцієнти відмінні від 1 .

Від будь-якого ненаведеного квадратного рівняння за допомогою поділу обох частин на старший коефіцієнт можна перейти до наведеного. Ця дія є рівносильним перетворенням , тобто отримане таким способом наведене квадратне рівняння має те ж коріння, що і вихідне ненаведене квадратне рівняння, або так само як воно, не має коренів.

Розберемо з прикладу, як виконується перехід від ненаведеного квадратного рівняння до наведеного.

приклад.

Від рівняння 3 x 2 +12 x 7 = 0 перейдіть до відповідного наведеного квадратного рівняння.

Рішення.

Нам достатньо виконати розподіл обох частин вихідного рівняння на старший коефіцієнт 3 він відрізняється від нуля, тому ми можемо виконати цю дію. Маємо (3·x 2 +12·x−7):3=0:3 , що те саме, (3·x 2):3+(12·x):3−7:3=0 , і далі (3:3) · x 2 + (12:3) · x-7: 3 = 0, звідки. Так ми отримали наведене квадратне рівняння, рівносильне вихідному.

Відповідь:

Повні та неповні квадратні рівняння

У визначенні квадратного рівняння є умова a≠0 . Ця умова потрібна для того, щоб рівняння a x 2 + b x + c = 0 було саме квадратним, так як при a = 0 воно фактично стає лінійним рівнянням виду b x + c = 0 .

Що стосується коефіцієнтів b і c, то вони можуть дорівнювати нулю, причому як окремо, так і разом. У таких випадках квадратне рівняння називають неповним.

Визначення.

Квадратне рівняння a x 2 + b x + c = 0 називають неповнимякщо хоча б один з коефіцієнтів b , c дорівнює нулю.

В свою чергу

Визначення.

Повне квадратне рівняння- Це рівняння, у якого всі коефіцієнти відмінні від нуля.

Такі назви дано не випадково. З наступних міркувань це стане зрозумілим.

Якщо коефіцієнт b дорівнює нулю, то квадратне рівняння набуває вигляду a x 2 +0 x + c = 0 і воно рівносильне рівнянню a x 2 + c = 0 . Якщо c = 0, тобто, квадратне рівняння має вигляд a x 2 + b x + 0 = 0, то його можна переписати як a x 2 + b x = 0 . А при b = 0 і c = 0 ми отримаємо квадратне рівняння a x 2 = 0 . Отримані рівняння відрізняються від повного квадратного рівняння тим, що їх ліві частини не містять або доданку зі змінною x, або вільного члена, або того й іншого. Звідси та його назва – неповні квадратні рівняння.

Так рівняння x 2 +x+1=0 і −2·x 2 −5·x+0,2=0 – це приклади повних квадратних рівнянь, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – це неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

З інформації попереднього пункту випливає, що існує три види неповних квадратних рівнянь:

  • a x 2 = 0, йому відповідають коефіцієнти b = 0 і c = 0;
  • a x 2 + c = 0, коли b = 0;
  • і a x 2 + b x = 0 , коли c = 0 .

Розберемо по порядку, як вирішуються неповні квадратні рівняння кожного з цих видів.

a x 2 = 0

Почнемо з розв'язання неповних квадратних рівнянь, у яких коефіцієнти b і c дорівнюють нулю, тобто з рівнянь виду a x 2 =0 . Рівнянню a x 2 = 0 рівносильне рівняння x 2 = 0, яке виходить з вихідного розподілом його обох частин на відмінне від нуля число a. Вочевидь, коренем рівняння x 2 =0 є нуль, оскільки 0 2 =0 . Іншого коріння це рівняння немає, що пояснюється , дійсно, для будь-якого відмінного від нуля числа p має місце нерівність p 2 >0 , звідки випливає, що при p≠0 рівність p 2 =0 ніколи не досягається.

Отже, неповне квадратне рівняння a x 2 = 0 має єдиний корінь x = 0 .

Як приклад наведемо розв'язок неповного квадратного рівняння −4·x 2 =0 . Йому рівносильне рівняння x 2 =0 його єдиним коренем є x=0 , отже, і вихідне рівняння має єдиний корінь нуль.

Коротке рішення в цьому випадку можна оформити так:
−4·x 2 =0 ,
x 2 = 0,
x=0.

a x 2 +c=0

Тепер розглянемо, як розв'язуються неповні квадратні рівняння, в яких коефіцієнт b дорівнює нулю, а c 0 , тобто рівняння виду a x 2 + c = 0 . Ми знаємо, що перенесення доданку з однієї частини рівняння в іншу з протилежним знаком, а також розподіл обох частин рівняння на відмінне від нуля число дають рівносильне рівняння. Тому можна провести наступні рівносильні перетворення неповного квадратного рівняння a x 2 + c = 0 :

  • перенести c у праву частину, що дає рівняння a x 2 = -c ,
  • і розділити обидві його частини на a, отримуємо.

Отримане рівняння дозволяє зробити висновки про його коріння. Залежно від значень a і c значення виразу може бути негативним (наприклад, якщо a=1 і c=2 , то ) або позитивним, (наприклад, якщо a=−2 і c=6 , то ), воно не дорівнює нулю , оскільки за умовою c≠0. Окремо розберемо випадки та .

Якщо , то рівняння немає коріння. Це твердження випливає з того, що квадрат будь-якого числа є невід'ємним числом. З цього випливає, що коли , то ні для якого числа p рівність не може бути вірною.

Якщо , то справа з корінням рівняння йде інакше. У цьому випадку, якщо згадати про , то відразу стає очевидним корінь рівняння , ним є число , оскільки . Неважко здогадатися, як і число теж є коренем рівняння , дійсно, . Іншого коріння це рівняння не має, що можна показати, наприклад, методом від протилежного. Зробимо це.

Позначимо щойно озвучені коріння рівняння як x 1 і −x 1 . Припустимо, що рівняння має ще один корінь x 2 відмінний від зазначених коренів x 1 і −x 1 . Відомо, що підстановка рівняння замість x його коренів звертає рівняння вірну числову рівність . Для x 1 і −x 1 маємо, а для x 2 маємо. Властивості числових рівностей нам дозволяють виконувати почленное віднімання вірних числових рівностей, так віднімання відповідних частин рівностей і дає x 1 2 −x 2 2 =0 . Властивості дій з числами дозволяють переписати отриману рівність як (x 1 -x 2) · (x 1 + x 2) = 0 . Ми знаємо, що добуток двох чисел дорівнює нулю тоді і тільки тоді, коли хоча б одне з них дорівнює нулю. Отже, з отриманої рівності випливає, що x 1 −x 2 =0 та/або x 1 +x 2 =0 , що те саме, x 2 =x 1 та/або x 2 =−x 1 . Так ми дійшли протиріччя, оскільки спочатку сказали, що корінь рівняння x 2 відмінний від x 1 і −x 1 . Цим доведено, що рівняння не має іншого коріння, окрім і .

Узагальним інформацію цього пункту. Неповне квадратне рівняння a x 2 +c=0 рівносильне рівнянню , яке

  • не має коріння, якщо ,
  • має два корені і, якщо.

Розглянемо приклади розв'язання неповних квадратних рівнянь виду a x 2 + c = 0 .

Почнемо з квадратного рівняння 9 x 2 +7 = 0 . Після перенесення вільного члена в праву частину рівняння, воно набуде вигляду 9·x 2 =−7 . Розділивши обидві частини отриманого рівняння на 9, прийдемо до. Так як у правій частині вийшло негативне число, то це рівняння не має коріння, отже, і вихідне неповне квадратне рівняння 9 x 2 +7 = 0 не має коренів.

Розв'яжемо ще одне неповне квадратне рівняння −x 2 +9=0 . Переносимо дев'ятку до правої частини: −x 2 =−9 . Тепер ділимо обидві частини на −1, отримуємо х 2 =9. У правій частині є позитивне число, звідки укладаємо, що або . Після цього записуємо остаточну відповідь: неповне квадратне рівняння −x 2 +9=0 має два корені x=3 або x=−3 .

a x 2 + b x = 0

Залишилося розібратися з рішенням останнього виду неповних квадратних рівнянь при c=0. Неповні квадратні рівняння виду a x 2 + b x = 0 дозволяє вирішити метод розкладання на множники. Очевидно, ми можемо , що знаходиться в лівій частині рівняння, для чого достатньо винести за дужки загальний множник x . Це дозволяє перейти від вихідного неповного квадратного рівняння до рівносильного рівняння виду x · (a x + b) = 0 . І це рівняння рівносильно сукупності двох рівнянь x=0 і a·x+b=0 , останнє є лінійним і має корінь x=−b/a .

Отже, неповне квадратне рівняння a x 2 + b x = 0 має два корені x = 0 і x = - b / a .

Для закріплення матеріалу розберемо рішення конкретного прикладу.

приклад.

Розв'яжіть рівняння.

Рішення.

Виносимо x за дужки, це дає рівняння. Воно рівносильне двом рівнянням x = 0 і . Вирішуємо отримане лінійне рівняння: , Виконавши поділ змішаного числа на звичайну дріб, знаходимо . Отже, корінням вихідного рівняння є x = 0 і .

Після отримання необхідної практики рішення таких рівнянь можна записувати коротко:

Відповідь:

x = 0 .

Дискримінант, формула коренів квадратного рівняння

Для розв'язання квадратних рівнянь існує формула коренів. Запишемо формулу коренів квадратного рівняння: , де D=b 2 −4·a·c- так званий дискримінант квадратного рівняння. Запис по суті означає, що .

Корисно знати, як було отримано формула коренів, і як вона застосовується під час знаходження коренів квадратних рівнянь. Розберемося із цим.

Висновок формули коріння квадратного рівняння

Нехай нам потрібно вирішити квадратне рівняння a x 2 + b x + c = 0 . Виконаємо деякі рівносильні перетворення:

  • Обидві частини цього рівняння ми можемо розділити на відмінне від нуля число a, в результаті отримаємо квадратне рівняння.
  • Тепер виділимо повний квадрату його лівій частині: . Після цього рівняння набуде вигляду.
  • На цьому етапі можна здійснити перенесення двох останніх доданків у праву частину із протилежним знаком, маємо .
  • І ще перетворимо вираз, що опинилося у правій частині: .

У результаті ми приходимо до рівняння, яке рівносильне вихідному квадратному рівнянню a x 2 + b x + c = 0 .

Аналогічні за формою рівняння ми вирішували в попередніх пунктах, коли розбирали . Це дозволяє зробити такі висновки, що стосуються коренів рівняння:

  • якщо , то рівняння немає дійсних рішень;
  • якщо , то рівняння має вигляд , отже , звідки видно його єдиний корінь ;
  • якщо , те чи , що те саме чи , тобто, рівняння має два корені.

Отже, наявність чи відсутність коренів рівняння , отже, і вихідного квадратного рівняння, залежить від знака виразу , що стоїть правої частини. У свою чергу знак цього виразу визначається знаком чисельника, оскільки знаменник 4·a 2 завжди позитивний, тобто, знаком виразу b 2 −4·a·c . Цей вираз b 2 −4·a·c назвали дискримінантом квадратного рівнянняі позначили буквою D. Звідси зрозуміла суть дискримінанта - за його значенням і знаком роблять висновок, чи має квадратне рівняння дійсне коріння, і якщо має, то яке їх кількість - один або два.

Повертаємося до рівняння , перепишемо з використанням позначення дискримінанта: . І робимо висновки:

  • якщо D<0 , то это уравнение не имеет действительных корней;
  • якщо D=0 , це рівняння має єдиний корінь ;
  • нарешті, якщо D>0 , то рівняння має два корені або , які можна переписати у вигляді або , а після розкриття і приведення дробів до спільного знаменника отримуємо .

Так ми вивели формули коренів квадратного рівняння, вони мають вигляд де дискримінант D обчислюється за формулою D=b 2 −4·a·c .

З їх допомогою при позитивному дискримінанті можна обчислити обидва дійсні корені квадратного рівняння. При рівному нулю дискримінанті обидві формули дають те саме значення кореня, що відповідає єдиному рішенню квадратного рівняння. А при негативному дискримінанті при спробі скористатися формулою коренів квадратного рівняння ми стикаємося із вилученням квадратного кореня з негативного числа, що виводить нас за рамки та шкільні програми. При негативному дискримінанті квадратне рівняння не має дійсних коренів, але має пару комплексно пов'язанихкоренів, які можна знайти за тими самими отриманими нами формулами коренів .

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Насправді при розв'язанні квадратних рівняння можна одночасно використовувати формулу коренів, з допомогою якої обчислити їх значення. Але це більше ставиться до знаходження комплексного коріння.

Однак у шкільному курсі алгебри зазвичай йдеться не про комплексне, а про дійсне коріння квадратного рівняння. У цьому випадку доцільно перед використанням формул коренів квадратного рівняння попередньо знайти дискримінант, переконатися, що він невід'ємний (інакше можна робити висновок, що рівняння не має дійсних коренів), і вже після цього обчислювати значення коренів.

Наведені міркування дозволяють записати алгоритм розв'язання квадратного рівняння. Щоб розв'язати квадратне рівняння a x 2 + b x + c = 0, треба:

  • за формулою дискримінанта D=b 2 −4·a·c обчислити його значення;
  • зробити висновок, що квадратне рівняння не має дійсних коренів, якщо дискримінант негативний;
  • обчислити єдиний корінь рівняння за такою формулою , якщо D=0 ;
  • знайти два дійсних кореня квадратного рівняння за формулою коренів, якщо дискримінант позитивний.

Тут лише зауважимо, що з рівному нулю дискримінанту можна використовувати формулу , вона дасть те значення, як і .

Можна переходити до прикладів застосування алгоритму розв'язання квадратних рівнянь.

Приклади розв'язання квадратних рівнянь

Розглянемо розв'язки трьох квадратних рівнянь із позитивним, негативним та рівним нулю дискримінантом. Розібравшись з їх розв'язанням, за аналогією можна буде вирішити будь-яке інше квадратне рівняння. Почнемо.

приклад.

Знайдіть корені рівняння x 2 +2·x−6=0.

Рішення.

І тут маємо такі коефіцієнти квадратного рівняння: a=1 , b=2 і c=−6 . Відповідно до алгоритму, спочатку треба обчислити дискримінант, для цього підставляємо зазначені a, b і c у формулу дискримінанта, маємо D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Так як 28>0, тобто, дискримінант більше нуля, то квадратне рівняння має два дійсні корені. Знайдемо їх за формулою коренів, отримуємо, тут можна спростити отримані вирази, виконавши винесення множника за знак кореняз подальшим скороченням дробу:

Відповідь:

Переходимо до такого характерного прикладу.

приклад.

Розв'яжіть квадратне рівняння −4·x 2 +28·x−49=0 .

Рішення.

Починаємо з знаходження дискримінанта: D=28 2 −4·(−4)·(−49)=784−784=0. Отже, це квадратне рівняння має єдиний корінь, який знаходимо як , тобто,

Відповідь:

x = 3,5.

Залишається розглянути розв'язання квадратних рівнянь із негативним дискримінантом.

приклад.

Розв'яжіть рівняння 5·y 2 +6·y+2=0 .

Рішення.

Тут такі коефіцієнти квадратного рівняння: a = 5, b = 6 і c = 2. Підставляємо ці значення у формулу дискримінанта, маємо D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Дискримінант негативний, отже, дане квадратне рівняння немає дійсних коренів.

Якщо ж потрібно вказати комплексне коріння, то застосовуємо відому формулу коренів квадратного рівняння і виконуємо дії з комплексними числами:

Відповідь:

дійсних коренів немає, комплексні коріння такі: .

Ще раз відзначимо, що якщо дискримінант квадратного рівняння негативний, то в школі зазвичай відразу записують відповідь, в якій вказують, що дійсних коренів немає, і не знаходять комплексного коріння.

Формула коренів для парних других коефіцієнтів

Формула коренів квадратного рівняння , де D=b 2 −4·a·c дозволяє отримати формулу більш компактного виду, що дозволяє вирішувати квадратні рівняння з парним коефіцієнтом при x (або просто з коефіцієнтом, що має вигляд 2·n , наприклад , або 14· ln5 = 2 · 7 · ln5). Виведемо її.

Допустимо нам потрібно вирішити квадратне рівняння виду a x 2 +2 x x c = 0 . Знайдемо його коріння з використанням відомої формули. Для цього обчислюємо дискримінант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c), і далі використовуємо формулу коренів:

Позначимо вираз n 2 −a·c як D 1 (іноді його позначають D" ). Тоді формула коренів аналізованого квадратного рівняння з другим коефіцієнтом 2·n набуде вигляду де D 1 =n 2 −a·c .

Нескладно помітити, що D=4·D 1 або D 1 =D/4 . Іншими словами, D1 – це четверта частина дискримінанта. Зрозуміло, що знак D 1 такий самий, як знак D . Тобто знак D 1 також є індикатором наявності або відсутності коренів квадратного рівняння.

Отже, щоб розв'язати квадратне рівняння з другим коефіцієнтом 2n, треба

  • Обчислити D 1 =n 2 −a·c;
  • Якщо D 1<0 , то сделать вывод, что действительных корней нет;
  • Якщо D 1 =0, то обчислити єдиний корінь рівняння за формулою;
  • Якщо ж D 1 >0, то знайти два дійсних кореня за формулою.

Розглянемо рішення прикладу з використанням отриманої у цьому пункті формули коренів.

приклад.

Розв'яжіть квадратне рівняння 5·x 2 −6·x−32=0 .

Рішення.

Другий коефіцієнт цього рівняння можна як 2·(−3) . Тобто, можна переписати вихідне квадратне рівняння у вигляді 5·x 2 +2·(−3)·x−32=0 , тут a=5 , n=−3 та c=−32 і обчислити четверту частину дискримінанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Так як його значення позитивне, то рівняння має два дійсні корені. Знайдемо їх, використовуючи відповідну формулу коренів:

Зауважимо, що можна було використовувати звичайну формулу коренів квадратного рівняння, але в цьому випадку довелося б виконати більший обсяг обчислювальної роботи.

Відповідь:

Спрощення виду квадратних рівнянь

Деколи, перш ніж пускатися в обчислення коренів квадратного рівняння за формулами, не завадить запитати себе: «А чи не можна спростити вигляд цього рівняння»? Погодьтеся, що в плані обчислень простіше буде вирішити квадратне рівняння 11 x 2 −4 x 6 = 0, ніж 1100 x 2 −400 x 600 = 0 .

Зазвичай спрощення виду квадратного рівняння досягається шляхом множення або розподілу обох частин на деяке число. Наприклад, у попередньому абзаці вдалося досягти спрощення рівняння 1100 x 2 −400 x 600=0 розділивши обидві його частини на 100 .

Подібне перетворення проводять із квадратними рівняннями, коефіцієнти якого не є . При цьому зазвичай ділять обидві частини рівняння абсолютних величин його коефіцієнтів. Наприклад візьмемо квадратне рівняння 12 x 2 −42 x 48 = 0 . абсолютних величин його коефіцієнтів: НОД (12, 42, 48) = НОД (НОД (12, 42), 48) = НОД (6, 48) = 6 . Розділивши обидві частини вихідного квадратного рівняння на 6, ми прийдемо до рівносильного йому квадратного рівняння 2 x 2 -7 x + 8 = 0 .

А множення обох частин квадратного рівняння зазвичай провадиться для позбавлення від дробових коефіцієнтів. У цьому множення проводять на знаменників його коефіцієнтів. Наприклад, якщо обидві частини квадратного рівняння помножити на НОК(6, 3, 1)=6 , воно набуде простіший вигляд x 2 +4·x−18=0 .

На закінчення цього пункту зауважимо, що майже завжди позбавляються мінуса при старшому коефіцієнті квадратного рівняння, змінюючи знаки всіх членів, що відповідає множенню (або поділу) обох частин на −1 . Наприклад, зазвичай від квадратного рівняння −2·x 2 −3·x+7=0 переходять до рішення 2·x 2 +3·x−7=0 .

Зв'язок між корінням та коефіцієнтами квадратного рівняння

Формула коріння квадратного рівняння виражає коріння рівняння через його коефіцієнти. Відштовхуючись від формули коренів, можна отримати інші залежності між корінням та коефіцієнтами.

Найбільш відомі та застосовні формули з теореми Вієта виду та . Зокрема, для наведеного квадратного рівняння сума коренів дорівнює другому коефіцієнту з протилежним знаком, а добуток коріння – вільному члену. Наприклад, у вигляді квадратного рівняння 3·x 2 −7·x+22=0 можна відразу сказати, що його коренів дорівнює 7/3 , а добуток коренів дорівнює 22/3 .

Використовуючи вже записані формули можна отримати і ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, можна виразити суму квадратів коренів квадратного рівняння через його коефіцієнти: .

Список літератури.

  • Алгебра:навч. для 8 кл. загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2008. – 271 с. : іл. - ISBN 978-5-09-019243-9.
  • Мордковіч А. Г.Алгебра. 8 клас. У 2 ч. ч. 1. Підручник для учнів загальноосвітніх установ / А. Г. Мордкович. - 11-те вид., стер. – К.: Мнемозіна, 2009. – 215 с.: іл. ISBN 978-5-346-01155-2.

Копіївська сільська середня загальноосвітня школа

10 способів розв'язання квадратних рівнянь

Керівник: Патрікеєва Галина Анатоліївна,

учитель математики

с.Коп'єво, 2007

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

1.2 Як становив та вирішував Діофант квадратні рівняння

1.3 Квадратні рівняння в Індії

1.4 Квадратні рівняння у ал- Хорезмі

1.5 Квадратні рівняння у Європі XIII - XVII ст.

1.6 Про теорему Вієта

2. Способи розв'язання квадратних рівнянь

Висновок

Література

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

Необхідність вирішувати рівняння як першої, а й другого ступеня ще давнини була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок і із земляними роботами військового характеру, і навіть з недостатнім розвитком астрономії і самої математики. Квадратні рівняння вміли розв'язувати близько 2000 років до зв. е. вавилоняни.

Застосовуючи сучасний запис алгебри, можна сказати, що в їх клинописних текстах зустрічаються, крім неповних, і такі, наприклад, повні квадратні рівняння:

X 2 + X = ¾; X 2 - X = 14,5

Правило розв'язання цих рівнянь, викладене у вавилонських текстах, збігається по суті із сучасним, проте невідомо, яким чином дійшли вавилоняни до цього правила. Майже всі знайдені до цих пір клинописні тексти наводять лише завдання з рішеннями, викладеними у вигляді рецептів, без вказівок щодо того, як вони були знайдені.

Незважаючи на високий рівень розвитку алгебри у Вавилоні, у клинописних текстах відсутні поняття негативного числа та загальні методи розв'язання квадратних рівнянь.

1.2 Як становив та вирішував Діофант квадратні рівняння.

В «Арифметиці» Діофанта немає систематичного викладу алгебри, однак у ній міститься систематизований ряд завдань, що супроводжуються поясненнями та вирішуються за допомогою складання рівнянь різних ступенів.

При складанні рівнянь Діофант спрощення рішення вміло вибирає невідомі.

Ось, наприклад, одне з його завдань.

Завдання 11.«Знайти два числа, знаючи, що їх сума дорівнює 20, а твір – 96»

Діофант розмірковує так: з умови завдання випливає, що шукані числа не рівні, оскільки якби вони були рівні, то їх добуток дорівнював би не 96, а 100. Таким чином, одне з них буде більше половини їх суми, тобто . 10 + х, Інше менше, тобто. 10 - х. Різниця між ними .

Звідси рівняння:

(10 + х) (10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Звідси х = 2. Одне з шуканих чисел одно 12 , інше 8 . Рішення х = -2для Діофанта немає, оскільки грецька математика знала лише позитивні числа.

Якщо ми вирішимо це завдання, вибираючи як невідоме одне з шуканих чисел, то ми прийдемо до вирішення рівняння

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)


Зрозуміло, що, вибираючи як невідомий напіврізність шуканих чисел, Діофант спрощує рішення; йому вдається звести завдання розв'язання неповного квадратного рівняння (1).

1.3 Квадратні рівняння в Індії

Завдання на квадратні рівняння зустрічаються вже в астрономічному тракті «Аріабхаттіам», складеному 499 р. індійським математиком та астрономом Аріабхаттою. Інший індійський вчений, Брахмагупта (VII ст.), виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми:

ах 2+ b х = с, а > 0. (1)

У рівнянні (1) коефіцієнти, крім аможуть бути і негативними. Правило Брахмагупт по суті збігається з нашим.

У Стародавній Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу іншого в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

Ось одне із завдань знаменитого індійського математика XII ст. Бхаскар.

Завдання 13.

«Мавп швидких зграя А дванадцять по ліанах ...

Влада поївши, розважалася. Стали стрибати, повисаючи.

Їх у квадраті частина восьма Скільки ж було мавпочок,

На галявині бавилася. Ти скажи мені, у цій зграї?

Рішення Бхаскари свідчить про те, що він знав про двозначність коренів квадратних рівнянь (рис. 3).

Відповідне завдання 13 рівняння:

( x /8) 2 + 12 = x

Бхаскар пише під виглядом:

х 2 - 64х = -768

і, щоб доповнити ліву частину цього рівняння до квадрата, додає до обох частин 32 2 , отримуючи потім:

х 2 - 64х + 32 2 = -768 + 1024

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратні рівняння у ал – Хорезмі

В алгебраїчному трактаті ал - Хорезмі дається класифікація лінійних та квадратних рівнянь. Автор налічує 6 видів рівнянь, висловлюючи їх так:

1) «Квадрати рівні корінням», тобто. ах 2 + с = b х.

2) «Квадрати дорівнюють числу», тобто. ах 2 = с.

3) «Коріння рівні числу», тобто. ах = с.

4) «Квадрати та числа рівні коріння», тобто. ах 2 + с = b х.

5) «Квадрати і коріння дорівнюють числу», тобто. ах 2+ bx = с.

6) «Коріння і числа дорівнюють квадратам», тобто. bx + с = ах 2 .

Для ал - Хорезмі, що уникав вживання негативних чисел, члени кожного з цих рівнянь доданки, а чи не віднімаються. При цьому свідомо не беруться до уваги рівняння, які не мають позитивних рішень. Автор викладає способи вирішення зазначених рівнянь, користуючись прийомами ал - джабр та ал - мукабала. Його рішення, звісно, ​​не збігається повністю із нашим. Вже не кажучи про те, що воно чисто риторичне, слід зазначити, наприклад, що при розв'язанні неповного квадратного рівняння першого виду

ал - Хорезмі, як і всі математики до XVII ст., не враховує нульового рішення, ймовірно, тому, що в конкретних практичних завданнях воно не має значення. При розв'язанні повних квадратних рівнянь ал - Хорезмі на окремих числових прикладах викладає правила розв'язання, а потім і геометричні докази.

Завдання 14.«Квадрат і число 21 дорівнюють 10 корінням. Знайти корінь» (мається на увазі корінь рівняння х 2 + 21 = 10х).

Рішення автора говорить приблизно так: розділи навпіл число коренів, отримаєш 5, помножиш 5 саме на себе, від твору забери 21, залишиться 4. Витягни корінь з 4, отримаєш 2. Забери 2 від 5, отримаєш 3, це і буде шуканий корінь. Або додай 2 до 5, що дасть 7, це теж є корінь.

Трактат ал - Хорезмі є першою книгою, що дійшла до нас, в якій систематично викладено класифікацію квадратних рівнянь і дано формули їх вирішення.

1.5 Квадратні рівняння у Європі XIII - XVII вв

Формули розв'язання квадратних рівнянь за зразком ал - Хорезмі в Європі були вперше викладені в «Книзі абака», написаної в 1202 р. італійським математиком Леонардо Фібоначчі. Ця об'ємна праця, в якій відображено вплив математики як країн ісламу, так і Стародавньої Греції, відрізняється і повнотою, і ясністю викладу. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел. Його книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із «Книги абака» переходили майже у всі європейські підручники XVI – XVII ст. та частково XVIII.

Загальне правило розв'язання квадратних рівнянь, наведених до єдиного канонічного виду:

х 2 + bx = с,

при всіляких комбінаціях знаків коефіцієнтів b , збуло сформульовано у Європі лише 1544 р. М. Штифелем.

Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллі серед перших у XVI ст. Враховують, крім позитивних, і негативне коріння. Лише XVII в. Завдяки праці Жірара, Декарта, Ньютона та інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

1.6 Про теорему Вієта

Теорема, що виражає зв'язок між коефіцієнтами квадратного рівняння та його корінням, що носить ім'я Вієта, була ним сформульована вперше в 1591 наступним чином: «Якщо B + D, помножене на A - A 2 , одно BD, то Aодно Уі одно D ».

Щоб зрозуміти Вієта, слід згадати, що А, як і будь-яка голосна буква, означало в нього невідоме (наше х), голосні ж В, D- Коефіцієнти при невідомому. На мові сучасної алгебри вищенаведене формулювання Вієта означає: якщо має місце

(а + b ) х - х 2 = ab ,

х 2 - (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Виражаючи залежність між корінням та коефіцієнтами рівнянь загальними формулами, записаними за допомогою символів, Вієт встановив однаковість у прийомах розв'язання рівнянь. Проте символіка Вієта ще далека від сучасного вигляду. Він не визнавав негативних чисел і тому при вирішенні рівнянь розглядав лише випадки, коли все коріння позитивне.

2. Способи розв'язання квадратних рівнянь

Квадратні рівняння - це фундамент, на якому лежить велична будівля алгебри. Квадратні рівняння знаходять широке застосування при розв'язанні тригонометричних, показових, логарифмічних, ірраціональних та трансцендентних рівнянь та нерівностей. Усі ми вміємо розв'язувати квадратні рівняння зі шкільної лави (8 клас), до закінчення вишу.



Останні матеріали розділу:

Основний план дій та способи виживання Вночі тихо, вдень вітер посилюється, а надвечір затихає
Основний план дій та способи виживання Вночі тихо, вдень вітер посилюється, а надвечір затихає

5.1. Поняття про місце існування людини. Нормальні та екстремальні умови життєпроживання. Виживання 5.1.1. Поняття про довкілля людини...

Англійські звуки для дітей: читаємо транскрипцію правильно
Англійські звуки для дітей: читаємо транскрипцію правильно

А ви знали, що англійський алфавіт складається з 26 літер та 46 різних звуків? Одна й та сама буква може передавати кілька звуків одночасно.

Контрольний тест з історії на тему Раннє Середньовіччя (6 клас)
Контрольний тест з історії на тему Раннє Середньовіччя (6 клас)

М.: 2019. – 128 с. М.: 2013. – 160 с. Посібник включає тести з історії Середніх віків для поточного та підсумкового контролю та відповідає змісту...