Задачи по гидравлике разные. Атмосферное давление на различных высотах

37.1. Домашний эксперимент.
1. Надуйте резиновый шарик.
2. Пронумеруйте фразы в таком порядке, чтобы получился связный рассказ о проделанном эксперименте.

37.2. В сосуде под поршнем заключен газ (рис. а), объем которого меняется при постоянной температуре. На рисунке б представлен график зависимости расстояния h, на котором относительно дна находится поршень, от времени t. Заполните пропуски в тексте, используя слова: увеличивается; не меняется; уменьшается.

37.3.На рисунке показана установка для изучения зависимости давления газа в закрытом сосуде от температуры. Цифрами обозначены: 1 – пробирка с воздухом; 2 – спиртовка; 3 – резиновая пробка; 4 – стеклянная трубка; 5 – цилиндр; 6 – резиновая мембрана. Поставьте знак «+» около верных утверждений и знак «» около неверных.


37.4. Рассмотрите графики зависимости давления p от времени t, соответствующие различным процессам в газах. Вставьте недостающие слова в предложение.

С течением времени давление
в процессе 1 увеличивается ;
в процессе 2 постоянное ;
в процессе 3 уменьшается .

38.1. Домашний эксперимент.
Возьмите полиэтиленовый пакет, сделайте в нем четыре дырочки одинакового размера в разных местах нижней части пакета, используя, например, толстую иглу. Над ванной налейте в пакет воды, зажмите его сверху рукой и выдавливайте воду через дырочки. Меняйте положение руки с пакетом, наблюдая, какие изменения происходят со струйками воды. Зарисуйте опыт и опишите свои наблюдения.

38.2. Отметьте галочкой утверждения, которые отражают суть закона Паскаля.
✓ Давление, производимое на газ или жидкость, передается в любую точку одинаково во всех направлениях.

38.3. Допишите текст.
Надувая резиновый шарик, мы придаем ему форму шара. При дальнейшем надувании шарик, увеличиваясь в объеме, по-прежнему сохраняет форму шара, что иллюстрирует справедливость закона Паскаля , а именно: газы передают производимое на них давление во все стороны без изменения.

38.4. На рисунке показана передача давления твердым и жидким телом, заключенным под диском в сосуде.

а) Отметьте верное утверждение.
После установки гири на диск возрастает давление … .
✓ на дно в обоих сосудах, на боковую стенку – только в сосуде 2

б) Ответьте на вопросы, записав необходимые формулы и проводя соответствующие расчеты.
С какой силой будет давить на диск площадью 100 см2 установленная на него гиря массой 200 г? F = m*g/S = 0,2*10/0,01 = 200 H
Как изменится при этом и на сколько давление:
на дно сосуда 1 200 Н ;
на дно сосуда 2 200 Н ;
на боковую стенку сосуда 1 0 Н ;
на боковую стенку сосуда 2 200 Н ?

39.1. Отметьте верное окончание фразы.

Нижнее и боковое отверстия трубки затянуты одинаковыми резиновыми мембранами. В трубку наливают воду и медленно опускают ее в широкий сосуд с водой до тех пор, пока уровень воды в трубке не совпадет с уровнем воды в сосуде. В этом положении мембраны … .
✓ обе плоские

39.2. На рисунке показан опыт с сосудом, дно которого может отпадать.

В ходе опыта были сделаны три наблюдения.
1. Дно пустой бутылки прижато, если трубка погружена в воду на некоторую глубину Н.
2. Дно по-прежнему прижато к трубке, когда в нее начинают наливать воду.
3. Дно начинает отходить от трубки в тот момент, когда уровень воды в трубке совпадет с уровнем воды в сосуде.
а) В левом столбце таблицы запишите номера наблюдений, которые позволяют прийти к выводам, обозначенным в правом столбце.

б) Запишите свои гипотезы о том, что может измениться в описанном выше опыте, если:
в сосуде будет находиться вода, а в трубку будут наливать подсолнечное масло дно трубки начнет отходить когда уровень масла будет выше уровня воды в сосуде;
в сосуде будет находиться подсолнечное масло, а в трубку будут наливать воду дно трубки начнет отходить раньше, чем совпадут уровни воды и масла.

39.3. В закрытом баллоне с площадью основания 0,03 м2 и высотой 1,2 м находится воздух плотностью 1,3 кг/м3. Определите «весовое» давление воздуха на дно баллона.

40.1. Запишите, какие из опытов, изображенных на рисунке, подтверждают, что давление в жидкости с глубиной увеличивается.

Поясните, что демонстрирует каждый из опытов.

40.2. Кубик помещен в жидкость плотностью p, налитую в открытый сосуд. Поставьте в соответствие указанным уровням жидкости формулы для вычисления давления, созданного столбом жидкости на этих уровни.

40.3. Отметьте знаком «+» верные утверждения.

Сосуды различной формы заполнили водой. При этом … .
+ давление воды на дно всех сосудов одинаково, поскольку давление жидкости на дно определяется только высотой столба жидкости.

40.4. Выберите пару слов, пропущенных в тексте. «Дном сосудов 1, 2 и 3 служит резиновая пленка, укрепленная в стойке прибора».

40.5. Чему равно давление воды на дно прямоугольного аквариума длиной 2 м, шириной 1 м и глубиной 50 см, доверху заполненного водой.

40.6. Используя рисунок, определите:

а) давление, созданное столбом керосина на поверхность воды:
pк = p*g*h = 800*10*0,5 = 4000 Па;
б) давление на дно сосуда, созданное только столбом воды:
pв = 1000*10*0,3 = 3000 Па;
в) давление на дно сосуда, созданное двумя жидкостями:
p = 4000 + 3000 = 7000 Па.

41.1. В одну из трубок сообщающихся сосудов налита вода. Что произойдет, если зажим с пластиковой трубки убрать?

Уровень воды в трубках станет одинаковым.
41.2. В одну из трубок сообщающихся сосудов налита вода, а в другую – бензин. Если зажим с пластиковой трубки убрать, то:

41.3. Впишите в текст подходящие по смыслу формулы и сделайте вывод.
Сообщающиеся сосуды заполнены одной и той же жидкостью. Давление столба жидкости

41.4. Какова высота столба воды в U-образном сосуде относительно уровня АВ, если высота столба керосина 50 см?

41.5. В сообщающиеся сосуды налиты машинное масло и вода. Рассчитайте, на сколько сантиметров уровень воды находится ниже уровня масла, если высота столба масла относительно границы раздела жидкостей Нм = 40 см.

42.1. На весах уравновесили стеклянный шар объемом 1 л. Шар закрыт пробкой, в которую вставлена резиновая трубка. Когда из шара при помощи насоса откачали воздух и зажали трубку зажимом, равновесие весов нарушилось.
а) Груз какой массы придется положить на левую чашу весов, чтобы их уравновесить? Плотность воздуха 1,3 кг/м3.

б) Каков вес воздуха, находившегося в колбе до откачивания?
Pвозд = m*g = 0,0013*10 = 0,013 H

42.2. Опишите, что произойдет, если конец резиновой трубки шара, из которого откачали воздух (см. задание 42.1), опустить в стакан с водой, а затем снять зажим. Объясните явление.
Шар заполнится водой, потому что давление внутри шара меньше атмосферного.

42.3. На асфальте начерчен квадрат со стороной 0,5 м. Рассчитайте массу и вес столба воздуха высотой 100 м, расположенного над квадратом, считая, что плотность воздуха не меняется с высотой и равна 1,3 кг/м3.

42.4. При движении поршня вверх внутри стеклянной трубки вода поднимается за ним. Отметьте правильное объяснение этого явления.

Вода поднимается за поршнем … .
✓ под давлением наружного воздуха, заполняя безвоздушное пространство, образовавшееся между поршнем и водой.

43.1. В кружках А, В, С схематично изображен воздух разной плотности. Отметьте на рисунке места, где следует расположить каждый кружок, чтобы в целом получилась картина, иллюстрирующая зависимость плотности воздуха от высоты над уровнем моря.

43.2. Выберите правильный ответ.
Для того чтобы покинуть Землю, любая молекула воздушной оболочки Земли должна обладать скоростью, большей чем … .
✓ 11,2 км/с

43.3. На Луне, масса которой примерно в 80 раз меньше массы Земли, отсутствует воздушная оболочка (атмосфера). Чем это можно объяснить? Запишите вашу гипотезу.
Молекулы воздуха слабо удерживаются Луной, в отличие от Земли. Поэтому Луна не имеет атмосферы.

44.1. Выберите правильное утверждение.
В опыте Торричелли в стеклянной трубке над поверхностью ртути … .

✓ создается безвоздушное пространство

44.2. В трех отрытых сосудах находится ртуть: в сосуде А высота столба ртути 1 м, в сосуде В – 1 дм, в сосуде С – 1 мм. Вычислите, какое давление на дно сосуда оказывает столб ртути в каждом случае.

44.3. Запишите значения давления в указанных единицах по приведенному образцу, округлив результат до целых.

44.4. Найдите давление на дно цилиндра, заполненного подсолнечным маслом, если атмосферное давление равно 750 мм рт. ст.

44.5. Какое давление испытывает аквалангист на глубине 12 м под водой, если атмосферное давление 100 кПа? Во сколько раз это давление больше атмосферного?

45.1. На рисунке показана схема устройства барометра-анероида. Отдельные детали конструкции прибора обозначены цифрами. Заполните таблицу.

45.2. Заполните пропуски в тексте.


На рисунках изображен прибор, который называется __барометр-анероид_.
Этим прибором измеряют ___атмосферное давление __.
Запишите показание каждого прибора с учетом погрешности измерения.

45.3. Заполните пропуски в тексте. «Разница атмосферного давления в разных слоях атмосферы Земли вызывает движение воздушных масс».

45.4. Запишите значения давления в указанных единицах, округляя результат до целых.

46.1. На рисунке а изображена трубка Торричелли, расположенная на уровне моря. На рисунках б и в отметьте уровень ртути в трубке, помещенной соответственно на горе и в шахте.

46.2. Заполните пропуски в тексте, используя слова, приведенные в скобках.
Измерения показывают, что давление воздуха быстро уменьшается (уменьшается, увеличивается) с увеличением высоты. Причиной тому служит не только уменьшение (уменьшение, увеличение) плотности воздуха, но и понижение (понижение, повышение) его температуры при удалении от поверхности Земли на расстояние до 10 км.

46.3. Высота Останкинской телебашни достигает 562 м. Чему равно атмосферное давление около вершины телебашни, если у ее основания атмосферное давление равно 750 мм рт. ст.? Давление выразите в мм рт. ст. и в единицах СИ, округлив оба значения до целых.

46.4. Выберите на рисунке и обведите график, который наиболее правильно отражает зависимость атмосферного давления p от высоты h над уровнем моря.

46.5. У кинескопа телевизора размеры экрана составляют l = 40 см и h = 30 см. С какой силой давит атмосфера на экран с наружной стороны (или какова сила давления), если атмосферное давление pатм = 100 кПа?

47.1. Постройте график зависимости давления p, измеряемого под водой, от глубины погружения h, заполнив предварительно таблицу. Считайте g = 10 Н/кг, pатм = 100 кПа.


47.2. На рисунке изображен открытый жидкостный манометр. Цена деления и шкалы прибора 1 см.
а) Определите, на сколько давление воздуха в левом колене манометра отличается от атмосферного. 10 мм

б) Определите давление воздуха в левом колене манометра с учетом того, что атмосферное давление 100 кПа.
р (лев) + p*g*h = p(атм) + p*g*h

47.3. На рисунке показана U-образная трубка, заполненная ртутью, правый конец которой закрыт. Чему равно атмосферное давление, если разность уровней жидкости в коленах U-образной трубки равна 765 мм, а мембрана погружена в воду на глубину 20 см?

47.4. а) Определите цену деления и показание металлического манометра (рис. а).

б) Опишите принцип действия прибора, используя цифровые обозначения деталей (рис. б).
Основная часть – согнутая в дугу металл. трубка 1, с помощью крана 4 сообщается с сосудом, в котором измеряется давление. Движение закрытого конца трубки при помощи рычага 5 и зубчатки 3 передается стрелке 2.

48.1. а) Зачеркните ненужные из выделенных слов, чтобы получилось описание работы поршневого насоса, изображенного на рисунке.

При движении рукоятки насоса вниз поршень в сосуде А движется вверх, вниз, верхний клапан открыт, закрыт, нижний клапан открыт, закрыт, вода из сосуда В не перемещается в пространство под поршнем, вода из отводящей трубы не выливается.

б) Опишите, что происходит при движении рукоятки насоса вверх.
Поршень движется вверх, вместе с ним поднимается вода из сосуда В, открывается нижний клапан и вода движется за поршнем. Вода из отводящей трубы выливается.

48.2. Поршневым насосом, схема которого приведена в задании 48.1, при нормальном атмосферном давлении можно поднять воду на высоту не более 10 м. Объясните почему.

48.3. Вставьте в текст пропущенные слова, чтобы получилось описание работы поршневого насоса с воздушной камерой.

49.1. Допишите формулы, показывающие правильные соотношения между площадями покоящихся поршней гидравлической машины и массами грузов.

49.2. Площадь малого поршня гидравлической машины равна 0,04 м2, площадь большого – 0,2 м2. С какой силой следует действовать на малый поршень, чтобы равномерно поднять груз массой 100 кг, находящийся на большом поршне?

49.3. Заполните пропуски в тексте, описывающем принцип действия гидравлического пресса, схема устройства которого показана на рисунке.

49.4. Опишите принцип действия отбойного молотка, схема устройства которого показана на рисунке.

По шлангу 3 подается сжатый воздух. Устройство 2, называемое золотником, направляет его поочередно то в верхнюю, то в нижнюю часть цилиндра. Под действием этого воздуха боек 4 начинает быстро перемещаться то в одну, то в другую сторону, периодически (с частотой 1000 – 1500 ударов в минуту), воздействуя на пику 1.

49.5. На рисунке показана схема устройства пневматического тормоза железнодорожного вагона.


а) Вставьте в текст пропущенные цифры, обозначающие соответствующие им детали на рисунке. «Когда магистраль ____ и резервуар 3 заполнены сжатым воздухом, его давление на поршень ___ тормозного цилиндра с обеих сторон одинаково, тормозные колодки при этом не касаются колес».

б) Выберите правильный порядок пропущенных цифр, обозначающих детали в тексте.
1 – 4 – 7 – 4 – 5 – 6

Открытый прямоугольный резервуар заполнен жидкостью (рис.1) до глубины Н. Найти абсолютное и избыточное давление на дне резервуара. Данные для расчета приведены в табл.1.

Закрытый прямоугольный резервуар заполнен жидкостью до глубины Н (рис.2). Задаются плотность жидкости ρ, избыточное давление на поверхности p 0 (см. табл.2). Определить пьезометрическую высоту h p и построить эпюру избыточного давления на стенку, указанную в таблице 2.

Плотность, кг/м 3

Плотность, кг/м 3

Плотность, кг/м 3

Вариант 1

Вертикальноерасстояние между горизонтальными осями резервуаров, заполненных водой, а= 4 м, при этом манометрическое давление на оси правого. резервуара p 2 = 200 кПа. Разность уровней ртути h =100 см. Уровень ртути в левом колене рас­положен ниже оси левого резервуара на Н = 6 м.

Определить манометрическое гидростатическое давление p 1 на оси левого резервуара, а также уверхней образующейего, если диаметр резервуара d = 2 м.

Вариант 2

Ртутныйманометр присоединен к резервуару, заполненному водой.

I) Определить избыточное давление на поверх­ности воды в резервуаре p 0 , если h 1 = 15 см, h 2 = 35 см. 2) Определить величину вакуума над поверхностью воды, если уровни ртути в обоих коле­нах манометра выровняются? Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 3

К закрытому резервуару, наполненному водой на глубину Н = 10 м, присоединен ртутный мано­метр. Разность уровней ртути в манометре состав­ляет h =100 см, при этом свободная поверхность воды в резервуаре превышает уровень ртути в левом колене на величину Н = 12 м. Атмосферное давление p a = 100 кПа.

I. Определить абсолютное давление воздуха p 0 в пространстве над свобод­ной поверхностью воды в резервуаре. 2. Найти абсолютное гидростатическое давление в самой низ­кой точке дна резервуара.

Вариант 4

В закрытом резервуаре находится вода с глубиною Н = 5 м, на свободной поверхности которой манометрическое давление p 0 = 147,15 кПа.К ре­зервуару на глубине h = 3 мприсоединен пье­зометр, т.е. трубка, открытаясверху и сообщаю­щаяся с атмосферой.

1. Определить пьезометрическую высоту h p .

2. Найти величину манометрического гидростатического давления на дне сосуда.

Вариант 5

В дифференциальном манометре, присоединен­ном к закрытомурезервуару, разность уровнейртути составляет h = 30 см.Открытое правое колено манометра сообщается с атмосферой, дав­ление которой равно p a =100 кПа. Уровень рту­ти в левом колене манометра находится в горизон­тальной плоскости, совпадающей с дном резервуа­ра.

1) Найтиабсолютное давление воздуха и ва­куум в пространстве над свободной поверхностью воды в резервуаре.

2) Определить абсолютное гид­ростатическое давление на дне резервуара. Глуби­на воды в резервуаре Н = 3,5 м.

Вариант 6

К закрытому резервуару с горизонтальным дном присоединен пьезометр. Атмосферное давление на поверхности воды в пьезометре р а =100 кПа. Глубина воды в резервуаре h =2 м, высота воды в пьезометре Н = 18 м. Определить абсолютное давление на поверхности воды в резервуаре и аб­солютное и избыточное давление на дне.

Вариант 7

Точка А заглублена под горизонтомводы в сосуде на величину h = 2,5 м, пьезометрическая высота для этой точки равна h Р = 1,4 м.

Определить для точки А величину абсолютного давления, а такжевеличинувакуума на поверхности воды в сосуде, если атмосферное давление p a = 100 кПа.

Вариант 8

К закрытому сосуду подведены две трубки, как показано на чертеже. Левая трубка опущена в банку с водой, правая заполнена ртутью.

Определить абсолютное давление воздуха p 0 на поверхности жидкости в сосуде и высоту, стол­ба ртути h 2 , если высота столба воды h 1 =3,4 м, а атмосферное давление р a = 100 кПа. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 9

Два закрытых резервуара, горизонтальные днища которых расположены в одной плоскости, соединены дифференциальным манометром, разность уровней ртути в нём h =100 см, при этом уровень ртути в левом колене совпадает с плос­костью дна резервуара. В левом резервуаре нахо­дится вода с глубиной H 1 = 10 м. В правом содер­жится масло с глубиной H 2 = 8 м. Плотность мас­ла ρ м = 800 кг/м 3 , плотность ртути ρ рт = 13600 кг/м 3 .На поверхностиводы манометрическое давление p 1 = 196 кН/м 2 . Найти манометрическое давление на поверхности масла p 0 . Определить манометрическое давление на дне каждого резервуара.

Вариант 10

Горизонтально расположенные круглые резервуары заполнены водой. Диаметркаждого резервуа­ра Д =2 м. Разность уровней ртути в манометре h = 80 см. Манометрическое гидростатическое давление p 1 на оси левого резервуара равно 98,1 кПа. Ось правого резервуара находится ниже оси левого на z = 3 м/

Определить манометрическое гидростатическое давление p 2 , на оси правого резервуара, а так­же на нижней его образующей – в точке А.

Вариант 11

Определить разность давлений в точках, на­ходящихся на осях цилиндров Аи В, заполненных водой, если разность уровнейртути в дифферен­циальномманометре Δh = 25 см, разность уровней осей цилиндров Н = 1 м.

Вариант 12

Закрытая сверху трубка опущена открытым концом в сосуд с водой. На свободной поверхности воды в трубке абсолютное давление р 0 =20 кПа. Атмосферное давлениер а =100 кПа.Определить высоту поднятия воды в трубке h.

Вариант 13

В закрытом резервуаре с горизонтальным дномсодержится нефть. Глубина нефти Н=8 м. Найтиманометрическое и абсолютное давление на дне ре­зервуара, если манометрическоедавление над сво­бодно л поверхностью нефти равно p 0 = 40 кПа, Плотность нефтиρ н = 0,8 г/см 3 . Атмосферноедавление р а = 100 кПа.

Вариант 14

Абсолютное давление наповерхности водыв сосуде р 0 = 147 кПа.

Определить абсолютное давление и манометри­ческое давление в точке А, находящейся из глу­бине h = 4,8 м, найти такжепьезометрическую; высоту h p для этой точки. Атмосферное давлениер а = 100 кПа.

Вариант 15

Определить избыточное поверхностное давле­ние р 0 в закрытом сосуде с водой, если в трубке открытого манометре ртуть поднялась на в высоту h = 50 см. Поверхность воды находится на вы­соте h 1 = 100 см от нижнего уровня ртути. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 16

Два закрытых резервуара, оси которых нахо­дятся в одной горизонтальной плоскости, запол­нены водой и соединены П-образной трубкой.

Уровни воды в левом и правом коленах соот­ветственно равны, z л = 1,5 м, z п = 0,5 м.

Верхняя часть трубки заполнена маслом, плотность которого ρ м = 800 кг/м 3 . Манометри­ческое давление на оси левого резервуара р л = 78,5 кПа. Определить манометрическое дав­ление на оси правого резервуара и на линии раз­дела воды и масла в левой трубке.

Вариант 17

В закрытом резервуаре находится вода с глу­биной Н = 2м, на свободной поверхности которой давление равно р 0 . В присоединенном к резервуару дифференциальном манометре разность уровней сос­тавляет h = 46 см. Уровень ртути в левом колене совпадает с дном резервуара. Определить абсолютное давление р 0 и абсолютное гидростатическое давление на дне резервуара, если атмосферное давление р а = 100 кПа.

Вариант 18

Водосливное отверстие плотины, удерживающей воду в водохранилище, закрыто сегментным затвором АЕ кругового очертания радиусом r = 2 м. Определить абсолютное гидростатическое давление в нижней точке затвора Е Е,абс ) и найти высоту плотины h , если избыточное давление на дне водохранилища р д,и = 75 кПа. Атмосферное давление р а =101 кПа.

Вариант 19

Определить разность уровней ртути h в соединительной трубке сообщающихся сосудов, если давление на поверхности воды в левом сосуде р 1 = 157 кПа. Возвышение уровня воды над нижним уровнем ртути Н = 5 м. Разность уровней воды и масла Δh = 0,8 м. р 2 = 117 кПа. Плотность масла ρ м = 800 кг/м 3 . Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 20

Два резервуара круглого сечения, расположен­ные на одном уровне, заполнены водой. Диаметр каждого резервуара D = 3 м. Разность уровней ртути h = 40 см. Гидростатическое давление на оси первого резервуара р 1 = 117 кПа. Опреде­лить гидростатическое давление на оси второго резервуара р 2 , а также в нижнейего точке. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 21

В резервуаре находится вода. Горизонтальная часть внутренней стенки резервуара ВС расположена на глубине h = 5 м. Глубина воды в резервуаре Н = 10 м. Атмосферное давление р а = 100 кПа.

Найти манометрическое гидростатическое давление в точках В и С, построить эпюру этого давления на стенку АВСД и определить абсолютное гидростатическое давление на дно резервуара.

Вариант 22

Разность уровней воды в закрытых резервуарах, сообщающихся между собой, составляет h = 4 м. В левом резервуаре глубина воды H = 10 м и абсолютное давление на свободной поверхности воды p 1 = 300 кПа.

Найти абсолютное давление воздуха р 2 на свободной поверхности воды в правом резервуаре и на дне резервуаров.

Вариант 23

В закрытом резервуаре содержится минеральное масло, имеющее плотность ρ = 800 кг/м 3 . Над свободной поверхностью масла избыточное давление воздуха р ои = 200 кПа. К боковой стенке резервуара присоединен манометр, показанный на чертеже. Вычислить:

1. Избыточное давление на дно резервуара и

2. Показание манометра

Вариант 24

Вакуумметр В, присоединенный к резервуару выше уровня воды, показывает вакуумметрическое давление р вак = 40 кПа. Глубина воды в резервуаре Н = 4 м. С правой стороны к резервуару выше уровня воды присоединен жидкостный ртутный вакуумметр.

Вычислить:

    абсолютное давление воздуха в резервуаре р абс,

    высоту поднятия воды в жидкостном вакуумметре h,

    абсолютное давление на дно резервуара р дабс,

Атмосферное давлении р а = 98,06 кПа. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 25

Разность уровней воды в резервуарах h= 15 м. Глубина воды в левом резервуаре Н = 8 н.

Вычислить

    манометрическое давление воздуха над поверхностью воды в закрытом левом резервуаре р о,

    избыточное давление на дно левого резервуара р ди,

    построить эпюру избыточного давления на левую вертикальную стенку закрытого резервуара.

Вариант 26

В закрытом резервуаре находятся три разные жидкости: минеральное масло с плотностью ρ м = 800 кг/м 3 вода и ртуть с плотностью ρ рт = 13600 кг/м 3 . Уровень ртути в пьезометре на 0,15 м выше, чем в резервуаре (h 3 = 0,15 м). Атмосферное давление р а = 101 кПа. Вычислить:

1. Абсолютное давление воздуха под крышкой резервуара;

2. Вакуумметрическое давление под крышкой резервуара если h 1 = 2 м, h 2 = 3 м.

Вариант 27

В герметично закрытом резервуаре находится минеральное масло с плотностью ρ м = 800 кг/м 3 . Глубина масла h 1 = 4 м. К стенке резервуара выше уровня масла присоединен ртутный манометр, в котором разность уровней ртути h 2 = 20 см. Атмосферное давление р а = 101 кПа. Уровень ртути в левом колене манометра и уровень масла в резервуаре находятся на одной отметке.

Определить абсолютное давление воздуха под крышкой резервуара о,абс ) и манометрическое давление масла на дне резервуара д, м )

Вариант 28

В герметично закрытом баке находится вода. К боковой стенке бака на глубине h = 1,2 м подсоединен механический манометр, который показывает гидростатическое давление р м = 4 атм. Определить абсолютное давление на свободной поверхности воды в баке р о,абс и величину давления, которую показывает манометр, установленный на крышке бака. Атмосферное давление равно 101 кПа.

Вариант 29

Два бака с водой разделены вертикальной стенкой, в нижней части которой имеется отверстие. Левый бак открытый. Правый бак закрыт герметичной крышкой. Глубина воды в левом баке h 1 = 8 м. Глубина воды в правом баке h 2 = 1 м.

Атмосферное давление р а =101 кПа.

Определить избыточное гидростатическое давление воздуха под крышкой правого бака и абсолютное давление на дне правого бака.

Вариант 30

Два герметично закрытых резервуара с водой соединены ртутным манометром. Манометрическое давление воздуха над поверхностью воды в левом резервуара р л, м = 42 кПа. Абсолютное давление воздуха над поверхностью воды в правом резервуара р п, абс =116 кПа. Глубина воды над уровнем ртути в левом резервуара h 1 = 4 м. Глубина воды над уровнем ртути в правом резервуара h 3 = 2,5 м. Атмосферное давление р а =101 кПа. Определить разность уровней ртути в манометре h 2 .

ВОЗДЕЙСТВИЕ ДАВЛЕНИЯ НА ОСНОВНЫЕ АСПЕКТЫ ДАЙВИНГА

Как меняется давление под водой и каким образом его изменение влияет на плавучесть, уравнивание давления в пазухах, действительное время на дне и вероятность развития декомпрессионной болезни?

Давайте еще раз рассмотрим основные аспекты, связанные с давлением, и вспомним об особенности: ближе к поверхности давление меняется быстрее, чем на глубине .

Воздух имеет вес
Да, воздух на самом деле тоже имеет вес. Вес воздуха создает давление на тело человека, равное примерно 760 мм рт. ст. Именно этот показатель называется нормальным атмосферным давлением, поскольку именно такое давление атмосфера оказывает на земную поверхность и все находящиеся на ней предметы. Большинство расчётов давления в дайвинге указывается в атмосферных единицах (atm).

С увеличением глубины увеличивается давление
Чем больше толща воды над дайвером, тем большее давление оказывается на его организм. Чем глубже он погружается, тем больше воды над ним и тем большее давление создает эта вода. Давление, оказываемое на дайвера на определенной глубине, – это сумма давлений и воздуха, и воды.

Каждые 10 м соленой воды = 1 atm
Испытываемое дайвером давление = давление воды + 1
atm атмосферного давления

Из-за давления воды воздух сжимается
Согласно закону Бойля-Мариотта, с увеличением давления наличествующий в воздушных полостях в теле человека и в дайвоборудовании воздух сжимается (и, соответственно, расширяется по мере уменьшения давления).

Закон Бойля-Мариотта : Объем воздуха = 1/ Давление

Не дружите с математикой? Тогда я поясню: это означает, что чем глубже вы погружаетесь, тем больше сжимается воздух. Если, скажем, давление равно 2 atm, что соответствует глубине 10 метров соленой воды, то объем сжатого воздуха составит ½ от изначального объема воздуха на поверхности.

Давление влияет на многие аспекты дайвинга

Теперь, когда мы повторили физику, давайте рассмотрим, как давление влияет на главные аспекты дайвинга.

1. Уравнивание давления

По мере погружения, давление заставляет сжиматься имеющийся в теле дайвера воздух. Пространства, где есть воздух (ушные раковины, маска, легкие), становятся «вакуумными», потому что сжатый воздух создаёт отрицательное давление. Это вызывает болевые ощущения и приводит к баротравме.

При поднятии на поверхность происходит обратное. Уменьшающееся давление заставляет воздух, находящийся в воздушных полостях дайвера, расширяться. Возникает положительное давление, поскольку теперь каждая полость переполняется расширившимся воздухом. При самом худшем развитии событий это может привести к разрыву барабанной перепонки или легких. Вот почему дайвер ни в коем случае не должен задерживать дыхание будучи под водой. Приблизившись к поверхности даже на немного при задержанном дыхании, он может травмировать легкие.

Чтобы избежать травм, связанных с давлением (например, баротравмы ушной раковины), дайвер должен уравнивать давление в своем организме с внешним давлением.

Чтобы уравнять давление при погружении, дайвер добавляет воздуха в воздушные полости в противовес эффекту «вакуума»:

  • осуществляя нормальное дыхание, что обеспечивает доступ воздуха в легкие при каждом вдохе
  • добавляя воздух в пространство между лицом и маской, выдыхая через нос
  • добавляя воздух в ушные раковины и пазухи, используя одну из техник выравнивания давления в ушах
  • чтобы уравнять давление при поднятии на поверхность, дайвер выпускает воздух из всех воздушных пазух, чтобы они не распирали жизненно важные органы:
  • осуществляя нормальное дыхание, благодаря которому лишний воздух выходит из легких при каждом выдохе
  • осуществляя медленное поднятие на поверхность, давая возможность самостоятельно выйти лишнему воздуху из ушей, синусов и пространства между лицом и маской

2. Плавучесть

Дайверы контролируют свою плавучесть путем регулирования объема своих легких и компенсатора плавучести.

По мере погружения, увеличившееся давление заставляет сжиматься воздух в компенсаторе плавучести и мокром костюме (в неопрене есть маленькие пузырьки). Таким образом, дайвер создает отрицательную плавучесть и опускается на глубину. По мере погружения воздух в оборудовании еще больше сжимается и дайвер погружается еще быстрее. Если он не подкачает воздух в свой BCD, чтобы компенсировать отрицательную плавучесть, то может очень быстро оказаться в ситуации полной потери контроля над процессом погружения.

При поднятии на поверхность, напротив, воздух в оборудовании для дайвинга начинает расширяться. Расширившийся воздух дает положительную плавучесть и поднимает дайвера наверх. По мере его движения к поверхности внешнее давление уменьшается, а воздух в оборудовании продолжает расширяться. Дайвер должен постоянно стравливать воздух с BCD во время всплытия, иначе он рискует совершить неконтролируемое быстрое всплытие (одна из самых опасных ситуаций).

Дайвер должен подкачивать воздух в свой компенсатор при погружении и стравливать его при поднятии на поверхность. Это правило может казаться нелогичным до тех пор, пока дайвер не поймет сам принцип воздействия давления на плавучесть.

3. Действительное время на дне

Действительное время на дне – это период, который дайвер может оставаться на дне (запланированной глубине) до того, как начнет подниматься на поверхность. Внешнее давление влияет на этот период в двух важных аспектах.

Увеличившееся потребление воздуха сокращает действительное время на дне

Воздух, которым дышит дайвер, сжимается из-за внешнего давления. Если дайвер погружается на 10 м, что соответствует давлению 2 atm, воздух, которым он дышит, сжимается вполовину от изначального объема, т.к. мы можем дышать под давление окружающей среды и именно под этим давлением регулятор подает нам воздух. Соответственно при равных условиях (темп и глубина дыхания) на глубине 10 метров каждый раз, когда дайвер делает вдох, он потребляет вдвое больше воздуха, чем на поверхности. Соответственно, запас его воздуха иссякнет вдвое быстрее. Чем глубже будет погружение, тем быстрее кончится запас воздуха.

Увеличившееся поглощение азота сокращает действительное время на дне

Чем больше внешнее давление, тем быстрее ткани организма дайвера абсорбируют азот. Не будем вдаваться в подробности, однако напомним, что организм дайвера может переносить строго определенное количества азота и увеличение этой нормы может привести к развитию декомпрессионной болезни. Чем глубже погружается дайвер, тем меньше у него времени до того, как его ткани абсорбируют максимально допустимое количество этого газа.

Поскольку по мере увеличения глубины увеличивается и давление, то дайвер начинает потреблять больше воздуха и быстрее абсорбировать азот.

4. Быстрое изменение давления может привести к развитию декомпрессионной болезни

Увеличившееся давление под водой заставляет ткани организма дайвера абсорбировать больше азота. Если дайвер поднимается на поверхность медленно, то расширяющийся азот постепенно выходит из тканей и крови дайвера при каждом выдохе.

Однако организм дайвера не способен быстро избавляться от лишнего азота. Чем быстрее дайвер поднимается на поверхность, тем быстрее расширяется азот и тем быстрее он должен удаляться из организма. Если дайвер проходит через быстро меняющееся давление не останавливаясь, его организм оказывается не в состоянии избавиться от этого расширившегося газа и тогда он образует пузырьки в крови и тканях.

Эти пузырьки приводят к развитию декомпрессионной болезни, так как блокируют нормальный ток крови, вызывая инсульт, паралич и другие угрожающие жизни состояния. Быстрое изменение давления является одной самых распространённых причин возникновения декомпрессионной болезни.

Чем ближе к поверхности – тем быстрее меняется давление.

Чем ближе дайвер к поверхности, тем быстрее меняется внешнее давление.

Изменение глубины / Изменение давления / Увеличение давления

0 – 10 м / x 2.0
10 м – 20 м / x 1.5
20 м – 30 м / x 1.33

А теперь сравните с меньше глубиной (ближе к поверхности):

0 – 1,5 м / x 1.15
1, 5 м – 3 м / x 1.13
3 м – 5 м / x 1.12

Чем ближе дайвер к поверхности, тем чаще должен компенсировать меняющееся внешнее давление. Чем меньше глубина, тем чаще дайвер должен:

  • уравнивать давление в ушах и маске
  • регулировать свою плавучесть для того, чтобы избежать неконтролируемого погружения или спуска

За несколько метров до поверхности дайвер должен быть особенно осторожным. Никогда не нужно пулей лететь вверх после остановки безопасности. На последних 5 метрах внешнее давление меняется быстрее всего и пройти их нужно медленнее, чем весь остальной подъем.

Большинство новичков обычно проходят первые 12 метров глубины под присмотром более опытных дайверов. Так должно быть в идеале. Тем не менее, вы всегда должны помнить, что для дайверу труднее контролировать свою плавучесть и уравнивать давление на мелководье, чем на большой глубине, поскольку изменения давления более значительные!

37.1. Домашний эксперимент.
1. Надуйте резиновый шарик.
2. Пронумеруйте фразы в таком порядке, чтобы получился связный рассказ о проделанном эксперименте.

37.2. В сосуде под поршнем заключен газ (рис. а), объем которого меняется при постоянной температуре. На рисунке б представлен график зависимости расстояния h, на котором относительно дна находится поршень, от времени t. Заполните пропуски в тексте, используя слова: увеличивается; не меняется; уменьшается.

37.3.На рисунке показана установка для изучения зависимости давления газа в закрытом сосуде от температуры. Цифрами обозначены: 1 – пробирка с воздухом; 2 – спиртовка; 3 – резиновая пробка; 4 – стеклянная трубка; 5 – цилиндр; 6 – резиновая мембрана. Поставьте знак «+» около верных утверждений и знак «» около неверных.


37.4. Рассмотрите графики зависимости давления p от времени t, соответствующие различным процессам в газах. Вставьте недостающие слова в предложение.

38.1. Домашний эксперимент.
Возьмите полиэтиленовый пакет, сделайте в нем четыре дырочки одинакового размера в разных местах нижней части пакета, используя, например, толстую иглу. Над ванной налейте в пакет воды, зажмите его сверху рукой и выдавливайте воду через дырочки. Меняйте положение руки с пакетом, наблюдая, какие изменения происходят со струйками воды. Зарисуйте опыт и опишите свои наблюдения.

38.2. Отметьте галочкой утверждения, которые отражают суть закона Паскаля.

38.3. Допишите текст.

38.4. На рисунке показана передача давления твердым и жидким телом, заключенным под диском в сосуде.

а) Отметьте верное утверждение.
После установки гири на диск возрастает давление … .

б) Ответьте на вопросы, записав необходимые формулы и проводя соответствующие расчеты.
С какой силой будет давить на диск площадью 100 см2 установленная на него гиря массой 200 г?
Как изменится при этом и на сколько давление:
на дно сосуда 1
на дно сосуда 2
на боковую стенку сосуда 1
на боковую стенку сосуда 2

39.1. Отметьте верное окончание фразы.

Нижнее и боковое отверстия трубки затянуты одинаковыми резиновыми мембранами. В трубку наливают воду и медленно опускают ее в широкий сосуд с водой до тех пор, пока уровень воды в трубке не совпадет с уровнем воды в сосуде. В этом положении мембраны … .

39.2. На рисунке показан опыт с сосудом, дно которого может отпадать.

В ходе опыта были сделаны три наблюдения.
1. Дно пустой бутылки прижато, если трубка погружена в воду на некоторую глубину Н.
2. Дно по-прежнему прижато к трубке, когда в нее начинают наливать воду.
3. Дно начинает отходить от трубки в тот момент, когда уровень воды в трубке совпадет с уровнем воды в сосуде.
а) В левом столбце таблицы запишите номера наблюдений, которые позволяют прийти к выводам, обозначенным в правом столбце.


б) Запишите свои гипотезы о том, что может измениться в описанном выше опыте, если:

в сосуде будет находиться вода, а в трубку будут наливать подсолнечное масло дно трубки начнет отходить когда уровень масла будет выше уровня воды в сосуде;
в сосуде будет находиться подсолнечное масло, а в трубку будут наливать воду дно трубки начнет отходить раньше, чем совпадут уровни воды и масла.

39.3. В закрытом баллоне с площадью основания 0,03 м2 и высотой 1,2 м находится воздух плотностью 1,3 кг/м3. Определите «весовое» давление воздуха на дно баллона.

40.1. Запишите, какие из опытов, изображенных на рисунке, подтверждают, что давление в жидкости с глубиной увеличивается.

Поясните, что демонстрирует каждый из опытов.


40.2. Кубик помещен в жидкость плотностью p, налитую в открытый сосуд. Поставьте в соответствие указанным уровням жидкости формулы для вычисления давления, созданного столбом жидкости на этих уровни.

40.3. Отметьте знаком «+» верные утверждения.

Сосуды различной формы заполнили водой. При этом … .
+ давление воды на дно всех сосудов одинаково, поскольку давление жидкости на дно определяется только высотой столба жидкости.

40.4. Выберите пару слов, пропущенных в тексте. «Дном сосудов 1, 2 и 3 служит резиновая пленка, укрепленная в стойке прибора».

40.5. Чему равно давление воды на дно прямоугольного аквариума длиной 2 м, шириной 1 м и глубиной 50 см, доверху заполненного водой.

40.6. Используя рисунок, определите:

а) давление, созданное столбом керосина на поверхность воды:

б) давление на дно сосуда, созданное только столбом воды:

в) давление на дно сосуда, созданное двумя жидкостями:

41.1. В одну из трубок сообщающихся сосудов налита вода. Что произойдет, если зажим с пластиковой трубки убрать?

41.2. В одну из трубок сообщающихся сосудов налита вода, а в другую – бензин. Если зажим с пластиковой трубки убрать, то:

41.3. Впишите в текст подходящие по смыслу формулы и сделайте вывод.
Сообщающиеся сосуды заполнены одной и той же жидкостью. Давление столба жидкости

41.4. Какова высота столба воды в U-образном сосуде относительно уровня АВ, если высота столба керосина 50 см?

41.5. В сообщающиеся сосуды налиты машинное масло и вода. Рассчитайте, на сколько сантиметров уровень воды находится ниже уровня масла, если высота столба масла относительно границы раздела жидкостей Нм = 40 см.

42.1. На весах уравновесили стеклянный шар объемом 1 л. Шар закрыт пробкой, в которую вставлена резиновая трубка. Когда из шара при помощи насоса откачали воздух и зажали трубку зажимом, равновесие весов нарушилось.
а) Груз какой массы придется положить на левую чашу весов, чтобы их уравновесить? Плотность воздуха 1,3 кг/м3.

б) Каков вес воздуха, находившегося в колбе до откачивания?

42.2. Опишите, что произойдет, если конец резиновой трубки шара, из которого откачали воздух (см. задание 42.1), опустить в стакан с водой, а затем снять зажим. Объясните явление.

42.3. На асфальте начерчен квадрат со стороной 0,5 м. Рассчитайте массу и вес столба воздуха высотой 100 м, расположенного над квадратом, считая, что плотность воздуха не меняется с высотой и равна 1,3 кг/м3.

42.4. При движении поршня вверх внутри стеклянной трубки вода поднимается за ним. Отметьте правильное объяснение этого явления. Вода поднимается за поршнем … .

43.1. В кружках А, В, С схематично изображен воздух разной плотности. Отметьте на рисунке места, где следует расположить каждый кружок, чтобы в целом получилась картина, иллюстрирующая зависимость плотности воздуха от высоты над уровнем моря.

43.2. Выберите правильный ответ.
Для того чтобы покинуть Землю, любая молекула воздушной оболочки Земли должна обладать скоростью, большей чем … .

43.3. На Луне, масса которой примерно в 80 раз меньше массы Земли, отсутствует воздушная оболочка (атмосфера). Чем это можно объяснить? Запишите вашу гипотезу.

44.1. Выберите правильное утверждение.
В опыте Торричелли в стеклянной трубке над поверхностью ртути … .


44.2. В трех отрытых сосудах находится ртуть: в сосуде А высота столба ртути 1 м, в сосуде В – 1 дм, в сосуде С – 1 мм. Вычислите, какое давление на дно сосуда оказывает столб ртути в каждом случае.

44.3. Запишите значения давления в указанных единицах по приведенному образцу, округлив результат до целых.

44.4. Найдите давление на дно цилиндра, заполненного подсолнечным маслом, если атмосферное давление равно 750 мм рт. ст.

44.5. Какое давление испытывает аквалангист на глубине 12 м под водой, если атмосферное давление 100 кПа? Во сколько раз это давление больше атмосферного?

45.1. На рисунке показана схема устройства барометра-анероида. Отдельные детали конструкции прибора обозначены цифрами. Заполните таблицу.

45.2. Заполните пропуски в тексте.

На рисунках изображен прибор, который называется __барометр-анероид_.
Этим прибором измеряют ___атмосферное давление __.
Запишите показание каждого прибора с учетом погрешности измерения.

45.3. Заполните пропуски в тексте. «Разница атмосферного давления в разных слоях атмосферы Земли вызывает движение воздушных масс».

45.4. Запишите значения давления в указанных единицах, округляя результат до целых.

46.1. На рисунке а изображена трубка Торричелли, расположенная на уровне моря. На рисунках б и в отметьте уровень ртути в трубке, помещенной соответственно на горе и в шахте.

46.2. Заполните пропуски в тексте, используя слова, приведенные в скобках.
Измерения показывают, что давление воздуха быстро (уменьшается, увеличивается) с увеличением высоты. Причиной тому служит не только (уменьшение, увеличение) плотности воздуха, но и (понижение, повышение) его температуры при удалении от поверхности Земли на расстояние до 10 км.

46.3. Высота Останкинской телебашни достигает 562 м. Чему равно атмосферное давление около вершины телебашни, если у ее основания атмосферное давление равно 750 мм рт. ст.? Давление выразите в мм рт. ст. и в единицах СИ, округлив оба значения до целых.

46.4. Выберите на рисунке и обведите график, который наиболее правильно отражает зависимость атмосферного давления p от высоты h над уровнем моря.

46.5. У кинескопа телевизора размеры экрана составляют l = 40 см и h = 30 см. С какой силой давит атмосфера на экран с наружной стороны (или какова сила давления), если атмосферное давление pатм = 100 кПа?

47.1. Постройте график зависимости давления p, измеряемого под водой, от глубины погружения h, заполнив предварительно таблицу. Считайте g = 10 Н/кг, pатм = 100 кПа.

47.2. На рисунке изображен открытый жидкостный манометр. Цена деления и шкалы прибора 1 см.

а) Определите, на сколько давление воздуха в левом колене манометра отличается от атмосферного.

б) Определите давление воздуха в левом колене манометра с учетом того, что атмосферное давление 100 кПа.

47.3. На рисунке показана U-образная трубка, заполненная ртутью, правый конец которой закрыт. Чему равно атмосферное давление, если разность уровней жидкости в коленах U-образной трубки равна 765 мм, а мембрана погружена в воду на глубину 20 см?

47.4. а) Определите цену деления и показание металлического манометра (рис. а).

б) Опишите принцип действия прибора, используя цифровые обозначения деталей (рис. б).

48.1. а) Зачеркните ненужные из выделенных слов, чтобы получилось описание работы поршневого насоса, изображенного на рисунке.

б) Опишите, что происходит при движении рукоятки насоса вверх.

48.2. Поршневым насосом, схема которого приведена в задании 48.1, при нормальном атмосферном давлении можно поднять воду на высоту не более 10 м. Объясните почему.

48.3. Вставьте в текст пропущенные слова, чтобы получилось описание работы поршневого насоса с воздушной камерой.

49.1. Допишите формулы, показывающие правильные соотношения между площадями покоящихся поршней гидравлической машины и массами грузов.

49.2. Площадь малого поршня гидравлической машины равна 0,04 м2, площадь большого – 0,2 м2. С какой силой следует действовать на малый поршень, чтобы равномерно поднять груз массой 100 кг, находящийся на большом поршне?

49.3. Заполните пропуски в тексте, описывающем принцип действия гидравлического пресса, схема устройства которого показана на рисунке.

49.4. Опишите принцип действия отбойного молотка, схема устройства которого показана на рисунке.

49.5. На рисунке показана схема устройства пневматического тормоза железнодорожного вагона.

Человек на лыжах, и без них.

По рыхлому снегу человек идёт с большим трудом, глубоко проваливаясь при каждом шаге. Но, надев лыжи, он может идти, почти не проваливаясь в него. Почему? На лыжах или без лыж человек действует на снег с одной и той же силой, равной своему весу. Однако действие этой силы в обоих случаях различно, потому что различна площадь поверхности, на которую давит человек, с лыжами и без лыж. Площадь поверхности лыж почти в 20 раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж.

Ученик, прикалывая кнопками газету к доске, действует на каждую кнопку с одинаковой силой. Однако кнопка, имеющая более острый конец, легче входит в дерево.

Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, к которой она приложена (перпендикулярно которой она действует).

Этот вывод подтверждают физические опыты.

Опыт.Результат действия данной силы зависит от того, какая сила действует на единицу площади поверхности.

По углам небольшой доски надо вбить гвозди. Сначала гвозди, вбитые в доску, установим на песке остриями вверх и положим на доску гирю. В этом случае шляпки гвоздей лишь незначительно вдавливаются в песок. Затем доску перевернем и поставим гвозди на острие. В этом случае площадь опоры меньше, и под действием той же силы гвозди значительно углубляются в песок.

Опыт. Вторая иллюстрация.

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия этой силы.

В рассмотренных примерах силы действовали перпендикулярно поверхности тела. Вес человека был перпендикулярен поверхности снега; сила, действовавшая на кнопку, перпендикулярна поверхности доски.

Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением .

Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:

давление = сила / площадь .

Обозначим величины, входящие в это выражение: давление - p , сила, действующая на поверхность, - F и площадь поверхности - S .

Тогда получим формулу:

p = F/S

Понятно, что бóльшая по значению сила, действующую на ту же площадь, будет производить большее давление.

За единицу давления принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м 2 перпендикулярно этой поверхности .

Единица давления - ньютон на квадратный метр (1 Н / м 2). В честь французского ученого Блеза Паскаля она называется паскалем (Па ). Таким образом,

1 Па = 1 Н / м 2 .

Используется также другие единицы давления: гектопаскаль (гПа ) и килопаскаль (кПа ).

1 кПа = 1000 Па;

1 гПа = 100 Па;

1 Па = 0,001 кПа;

1 Па = 0,01 гПа.

Запишем условие задачи и решим её.

Дано : m = 45 кг, S = 300 см 2 ; p = ?

В единицах СИ: S = 0,03 м 2

Решение:

p = F /S ,

F = P ,

P = g·m ,

P = 9,8 Н · 45 кг ≈ 450 Н,

p = 450/0,03 Н / м 2 = 15000 Па = 15 кПа

"Ответ": p = 15000 Па = 15 кПа

Способы уменьшения и увеличения давления.

Тяжелый гусеничный трактор производит на почву давление равное 40 - 50 кПа, т. е. всего в 2 - 3 раза больше, чем давление мальчика массой 45 кг. Это объясняется тем, что вес трактора распределяется на бóльшую площадь за счёт гусеничной передачи. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору .

В зависимости от того, нужно ли получить малое или большое давление, площадь опоры увеличивается или уменьшается. Например, для того, чтобы грунт мог выдержать давление возводимого здания, увеличивают площадь нижней части фундамента.

Шины грузовых автомобилей и шасси самолетов делают значительно шире, чем легковых. Особенно широкими делают шины у автомобилей, предназначенных для передвижения в пустынях.

Тяжелые машины, как трактор, танк или болотоход, имея большую опорную площадь гусениц, проходят по болотистой местности, по которой не пройдет человек.

С другой стороны, при малой площади поверхности можно небольшой силой произвести большое давление. Например, вдавливая кнопку в доску, мы действуем на нее с силой около 50 Н. Так как площадь острия кнопки примерно 1 мм 2 , то давление, производимое ею, равно:

p = 50 Н/ 0, 000 001 м 2 = 50 000 000 Па = 50 000 кПа.

Для сравнения, это давление в 1000 раз больше давления, производимого гусеничным трактором на почву. Можно найти еще много таких примеров.

Лезвие режущих и острие колющих инструментов (ножей, ножниц, резцов, пил, игл и др.) специально остро оттачивается. Заточенный край острого лезвия имеет маленькую площадь, поэтому при помощи даже малой силы создается большое давление, и таким инструментом легко работать.

Режущие и колющие приспособления встречаются и в живой природе: это зубы, когти, клювы, шипы и др. - все они из твердого материала, гладкие и очень острые.

Давление

Известно, что молекулы газа беспорядочно движутся.

Мы уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют весь сосуд, в котором находятся. Например, стальной баллон для хранения газов, камера автомобильной шины или волейбольный мяч. При этом газ оказывает давление на стенки, дно и крышку баллона, камеры или любого другого тела, в котором он находится. Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, - оно и создает давление газа.

Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа .

Рассмотрим следующий опыт. Под колокол воздушного насоса поместим резиновый шарик. Он содержит небольшое количество воздуха и имеет неправильную форму. Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает форму правильного шара.

Как объяснить этот опыт?

Для хранения и перевозки сжатого газа используются специальные прочные стальные баллоны.

В нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул в колоколе вокруг оболочки шарика уменьшается. Но внутри шарика их число не изменяется. Поэтому число ударов молекул о внешние стенки оболочки становится меньше, чем число ударов о внутренние стенки. Шарик раздувается до тех пор, пока сила упругости его резиновой оболочки не станет равной силе давления газа. Оболочка шарика принимает форму шара. Это показывает, что газ давит на ее стенки по всем направлениям одинаково . Иначе говоря, число ударов молекул, приходящихся на каждый квадратный сантиметр площади поверхности, по всем направлениям одинаково. Одинаковое давление по всем направлениям характерно для газа и является следствием беспорядочного движения огромного числа молекул.

Попытаемся уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это значит, что в каждом кубическом сантиметре газа молекул станет больше, плотность газа увеличится. Тогда число ударов молекул о стенки увеличится, т. е. возрастет давление газа. Это можно подтвердить опытом.

На рисунке а изображена стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке уменьшается, т. е. газ сжимается. Резиновая пленка при этом выгибается наружу, указывая на то, что давление воздуха в трубке увеличилось.

Наоборот, при увеличении объема этой же массы газа, число молекул в каждом кубическом сантиметре уменьшается. От этого уменьшится число ударов о стенки сосуда - давление газа станет меньше. Действительно, при вытягивании поршня из трубки объем воздуха увеличивается, пленка прогибается внутрь сосуда. Это указывает на уменьшение давления воздуха в трубке. Такие же явления наблюдались бы, если бы вместо воздуха в трубке находился бы любой другой газ.

Итак, при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается при условии, что масса и температура газа остаются неизменными .

А как изменится давление газа, если нагреть его при постоянном объеме? Известно, что скорость движения молекул газа при нагревании увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда чаще. Кроме того, каждый удар молекулы о стенку будет сильнее. Вследствие этого, стенки сосуда будут испытывать большее давление.

Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа , при условии, что масса газа и объем не изменяются.

Из этих опытов можно сделать общий вывод, что давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда .

Для хранения и перевозки газов их сильно сжимают. При этом давление их возрастает, газы необходимо заключать в специальные, очень прочные баллоны. В таких баллонах, например, содержат сжатый воздух в подводных лодках, кислород, используемый при сварке металлов. Конечно же, мы должны навсегда запомнить, что газовые баллоны нельзя нагревать, тем более, когда они заполнены газом. Потому что, как мы уже понимаем, может произойти взрыв с очень неприятными последствиями.

Закон Паскаля.

Давление передается в каждую точку жидкости или газа.

Давление поршня передается в каждую точку жидкости, заполняющей шар.

Теперь газ.

В отличие от твердых тел отдельные слои и мелкие частицы жидкости и газа могут свободно перемещаться относительно друг друга по всем направлениям. Достаточно, например, слегка подуть на поверхность воды в стакане, чтобы вызвать движение воды. На реке или озере при малейшем ветерке появляется рябь.

Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передается не только в направлении действия силы, а в каждую точку . Рассмотрим это явление подробнее.

На рисунке, а изображен сосуд, в котором содержится газ (или жидкость). Частицы равномерно распределены по всему сосуду. Сосуд закрыт поршнем, который может перемещаться вверх и вниз.

Прилагая некоторую силу, заставим поршень немного переместиться внутрь и сжать газ (жидкость), находящийся непосредственно под ним. Тогда частицы (молекулы) расположатся в этом месте более плотно, чем прежде(рис, б). Благодаря подвижности частицы газа будут перемещаться по всем направлениям. Вследствие этого их расположение опять станет равномерным, но более плотным, чем раньше (рис, в). Поэтому давление газа всюду возрастет. Значит, добавочное давление передается всем частицам газа или жидкости. Так, если давление на газ (жидкость) около самого поршня увеличится на 1 Па, то во всех точках внутри газа или жидкости давление станет больше прежнего на столько же. На 1 Па увеличится давление и на стенки сосуда, и на дно, и на поршень.

Давление, производимое на жидкость или газ, передается на любую точку одинаково во всех направлениях .

Это утверждение называется законом Паскаля .

На основе закона Паскаля легко объяснить следующие опыты.

На рисунке изображен полый шар, имеющий в различных местах небольшие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его давление другим слоям, лежащим глубже. Таким образом, давление поршня передается в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде одинаковых струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить одинаковые струйки дыма. Это подтверждает, что и газы передают производимое на них давление во все стороны одинаково .

Давление в жидкости и газе.

Под действием веса жидкости резиновое дно в трубке прогнется.

На жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому, каждый слой жидкости, налитой в сосуд, своим весом создает давление, которое по закону Паскаля передается по всем направлениям. Следовательно, внутри жидкости существует давление. В этом можно убедиться на опыте.

В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой пленкой, нальем воду. Под действием веса жидкости дно трубки прогнется.

Опыт показывает, что, чем выше столб воды над резиновой пленкой, тем больше она прогибается. Но всякий раз после того, как резиновое дно прогнулось, вода в трубке приходит в равновесие (останавливается), так как, кроме силы тяжести, на воду действует сила упругости растянутой резиновой пленки.

Силы, действующие на резиновую пленку,

одинаковы с обеих сторон.

Иллюстрация.

Дно отходит от цилиндра вследствие давления на него силы тяжести.

Опустим трубку с резиновым дном, в которую налита вода, в другой, более широкий сосуд с водой. Мы увидим, что по мере опускания трубки резиновая пленка постепенно выпрямляется. Полное выпрямление пленки показывает, что силы, действующие на нее сверху и снизу, равны. Наступает полное выпрямление пленки тогда, когда уровни воды в трубке и сосуде совпадают.

Такой же опыт можно провести с трубкой, в которой резиновая пленка закрывает боковое отверстие, как это показано на рисунке, а. Погрузим эту трубку с водой в другой сосуд с водой, как это изображено на рисунке, б . Мы заметим, что пленка снова выпрямится, как только уровни воды в трубке и сосуде сравняются. Это означает, что силы, действующие на резиновую пленку, одинаковы со всех сторон.

Возьмем сосуд, дно которого может отпадать. Опустим его в банку с водой. Дно при этом окажется плотно прижатым к краю сосуда и не отпадет. Его прижимает сила давления воды, направленная снизу вверх.

Будем осторожно наливать воду в сосуд и следить за его дном. Как только уровень воды в сосуде совпадет с уровнем воды в банке, оно отпадет от сосуда.

В момент отрыва на дно давит сверху вниз столб жидкости в сосуде, а снизу вверх на дно передается давление такого же по высоте столба жидкости, но находящейся в банке. Оба эти давления одинаковы, дно же отходит от цилиндра вследствие действия на него собственной силы тяжести.

Выше были описаны опыты с водой, но если взять вместо воды любую другую жидкость, результаты опыта будут те же.

Итак, опыты показывают, что внутри жидкости существует давление, и на одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается .

Газы в этом отношении не отличаются от жидкостей, ведь они тоже имеют вес. Но надо помнить, что плотность газа в сотни раз меньше плотности жидкости. Вес газа, находящегося в сосуде, мал, и его "весовое" давление во многих случаях можно не учитывать.

Расчет давления жидкости на дно и стенки сосуда.

Расчет давления жидкости на дно и стенки сосуда.

Рассмотрим, как можно рассчитывать давление жидкости на дно и стенки сосуда. Решим сначала задачу для сосуда, имеющего форму прямоугольного параллелепипеда.

Сила F , с которой жидкость, налитая в этот сосуд, давит на его дно, равна весу P жидкости, находящейся в сосуде. Вес жидкости можно определить, зная ее массу m . Массу, как известно, можно вычислить по формуле: m = ρ·V . Объем жидкости, налитой в выбранный нами сосуд, легко рассчитать. Если высоту столба жидкости, находящейся в сосуде, обозначить буквой h , а площадь дна сосуда S , то V = S·h .

Масса жидкости m = ρ·V , или m = ρ·S·h .

Вес этой жидкости P = g·m , или P = g·ρ·S·h .

Так как вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, то, разделив вес P на площадь S , получим давление жидкости p :

p = P/S , или p = g·ρ·S·h/S,

Мы получили формулу для расчета давления жидкости на дно сосуда. Из этой формулы видно, что давление жидкости на дно сосуда зависит только от плотности и высоты столба жидкости .

Следовательно, по выведенной формуле можно рассчитывать давление жидкости, налитой в сосуд любой формы (строго говоря, наш расчет годится только для сосудов, имеющих форму прямой призмы и цилиндра. В курсах физики для института доказано, что формула верна и для сосуда произвольной формы). Кроме того, по ней можно вычислить и давление на стенки сосуда. Давление внутри жидкости, в том числе давление снизу вверх, также рассчитывается по этой формуле, так как давление на одной и той же глубине одинаково по всем направлениям.

При расчете давления по формуле p = gρh надо плотность ρ выражать в килограммах на кубический метр (кг/м 3), а высоту столба жидкости h - в метрах (м), g = 9,8 Н/кг, тогда давление будет выражено в паскалях (Па).

Пример . Определите давление нефти на дно цистерны, если высота столба нефти 10 м, а плотность ее 800 кг/м 3 .

Запишем условие задачи и запишем ее.

Дано :

ρ = 800 кг/м 3

Решение :

p = 9.8 Н/кг · 800 кг/м 3 · 10 м ≈ 80 000 Па ≈ 80 кПа.

Ответ : p ≈ 80 кПа.

Сообщающиеся сосуды.

Сообщающиеся сосуды.

На рисунке изображены два сосуда, соединённые между собой резиновой трубкой. Такие сосуды называются сообщающимися . Лейка, чайник, кофейник - примеры сообщающихся сосудов. Из опыта мы знаем, что вода, налитая, например, в лейку, стоит всегда на одном уровне в носике и внутри.

Сообщающиеся сосуды встречаются нам часто. Например, им может быть чайник, лейка или кофейник.

Поверхности однородной жидкости устанавливаются на одном уровне в сообщающихся сосудах любой формы.

Разные по плотности жидкости.

С сообщающимися сосудами можно проделать следующий простой опыт. В начале опыта резиновую трубку зажимаем в середине, и в одну из трубок наливаем воду. Затем зажим открываем, и вода вмиг перетекает в другую трубку, пока поверхности воды в обеих трубках не установятся на одном уровне. Можно закрепить одну из трубок в штативе, а другую поднимать, опускать или наклонять в разные стороны. И в этом случае, как только жидкость успокоится, ее уровни в обеих трубках уравняются.

В сообщающихся сосудах любой формы и сечения поверхности однородной жидкости устанавливаются на одном уровне (при условии, что давление воздуха над жидкостью одинаково) (рис. 109).

Это можно обосновать следующим образом. Жидкость покоится, не перемещаясь из одного сосуда в другой. Значит, давления в обоих сосудах на любом уровне одинаковы. Жидкость в обоих сосудах одна и та же, т. е. имеет одинаковую плотность. Следовательно, должны быть одинаковы и ее высоты. Когда мы поднимаем один сосуд или доливаем в него жидкость, давление в нем увеличивается и жидкость перемещается в другой сосуд до тех пор, пока давления не уравновесятся.

Если в один из сообщающихся сосудов налить жидкость одной плотности, а во второй - другой плотности, то при равновесии уровни этих жидкостей не будут одинаковыми. И это понятно. Мы ведь знаем, что давление жидкости на дно сосуда прямо пропорционально высоте столба и плотности жидкости. А в этом случае плотности жидкостей будут различны.

При равенстве давлений высота столба жидкости с большей плотностью будет меньше высоты столба жидкости с меньшей плотностью (рис.).

Опыт. Как определить массу воздуха.

Вес воздуха. Атмосферное давление.

Существование атмосферного давления.

Атмосферное давление больше, чем давление разреженного воздуха в сосуде.

На воздух, как и на всякое тело, находящееся на Земле, действует сила тяжести, и, значит, воздух обладает весом. Вес воздуха легко вычислить, зная его массу.

На опыте покажем, как вычислить массу воздуха. Для этого нужно взять прочный стеклянный шар с пробкой и резиновой трубкой с зажимом. Выкачаем из него насосом воздух, зажмем трубку зажимом и уравновесим на весах. Затем, открыв зажим на резиновой трубке, впустим в него воздух. Равновесие весов при этом нарушится. Для его восстановления на другую чашку весов придется положить гири, масса которых будет равна массе воздуха в объеме шара.

Опытами установлено, что при температуре 0 °С и нормальном атмосферном давлении масса воздуха объемом 1 м 3 равна 1,29 кг. Вес этого воздуха легко вычислить:

P = g·m, P = 9,8 Н/кг · 1,29 кг ≈ 13 Н.

Воздушная оболочка, окружающая Землю, называется атмосфера (от греч. атмос - пар, воздух, и сфера - шар).

Атмосфера, как показали наблюдения за полетом искусственных спутников Земли, простирается на высоту нескольких тысяч километров.

Вследствие действия силы тяжести верхние слои атмосферы, подобно воде океана, сжимают нижние слои. Воздушный слой, прилегающий непосредственно к Земле, сжат больше всего и, согласно закону Паскаля, передает производимое на него давление по всем направлениям.

В результате этого земная поверхность и телá, находящиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорится в таких случаях, испытывают атмосферное давление .

Существованием атмосферного давления могут быть объяснены многие явления, с которыми мы встречаемся в жизни. Рассмотрим некоторые из них.

На рисунке изображена стеклянная трубка, внутри которой находится поршень, плотно прилегающий к стенкам трубки. Конец трубки опущен воду. Если поднимать поршень, то за ним будет подниматься и вода.

Это явление используется в водяных насосах и некоторых других устройствах.

На рисунке показан цилиндрический сосуд. Он закрыт пробкой, в которую вставлена трубка с краном. Из сосуда насосом откачивается воздух. Затем конец трубки помещается в воду. Если теперь открыть кран, то вода фонтаном брызнет в внутрь сосуда. Вода поступает в сосуд потому, что атмосферное давление больше давления разреженного воздуха в сосуде.

Почему существует воздушная оболочка Земли.

Как и все тела, молекулы газов, входящих в состав воздушной оболочки Земли, притягиваются к Земле.

Но почему же тогда все они не упадут на поверхность Земли? Каким образом сохраняется воздушная оболочка Земли, ее атмосфера? Чтобы понять это, надо учесть, что молекулы газов находятся в непрерывном и беспорядочном движении. Но тогда возникает другой вопрос: почему эти молекулы не улетают в мировое пространство, то есть в космос.

Для того, чтобы совсем покинуть Землю, молекула, как и космический корабль или ракета, должна иметь очень большую скорость (не меньше 11,2 км/с). Это так называемая вторая космическая скорость . Скорость большинства молекул воздушной оболочки Земли значительно меньше этой космической скорости. Поэтому большинство их привязано к Земле силой тяжести, лишь ничтожно малое количество молекул улетает за пределы Земли в космос.

Беспорядочное движение молекул и действие на них силы тяжести приводят в результате к тому, что молекулы газов "парят" в пространстве около Земли, образуя воздушную оболочку, или известную нам атмосферу.

Измерения показывают, что плотность воздуха быстро уменьшается с высотой. Так, на высоте 5,5 км над Землей плотность воздуха в 2 раза меньше его плотность у поверхности Земли, на высоте 11 км - в 4 раза меньше, и т. д. Чем выше, тем воздух разреженнее. И наконец, в самых верхних слоях (сотни и тысячи километров над Землей) атмосфера постепенно переходит в безвоздушное пространство. Четкой границы воздушная оболочка Земли не имеет.

Строго говоря, вследствие действия силы тяжести плотность газа в любом закрытом сосуде неодинакова по всему объему сосуда. Внизу сосуда плотность газа больше, чем в верхних его частях, поэтому и давление в сосуде неодинаково. На дне сосуда оно больше, чем вверху. Однако для газа, содержащегося в сосуде, это различие в плотности и давлении столь мало, что его можно во многих случаях совсем не учитывать, просто знать об этом. Но для атмосферы, простирающейся на несколько тысяч километров, различие это существенно.

Измерение атмосферного давления. Опыт Торричелли.

Рассчитать атмосферное давление по формуле для вычисления давления столба жидкости (§ 38) нельзя. Для такого расчета надо знать высоту атмосферы и плотность воздуха. Но определенной границы у атмосферы нет, а плотность воздуха на разной высоте различна. Однако измерить атмосферное давление можно с помощью опыта, предложенного в 17 веке итальянским ученым Эванджелиста Торричелли , учеником Галилея.

Опыт Торричелли состоит в следующем: стеклянную трубку длиной около 1 м, запаянную с одного конца, наполняют ртутью. Затем, плотно закрыв второй конец трубки, ее переворачивают и опускают в чашку с ртутью, где под уровнем ртути открывают этот конец трубки. Как и в любом опыте с жидкостью, часть ртути при этом выливается в чашку, а часть ее остается в трубке. Высота столба ртути, оставшейся в трубке, равна примерно 760 мм. Над ртутью внутри трубки воздуха нет, там безвоздушное пространство, поэтому никакой газ не оказывает давления сверху на столб ртути внутри этой трубки и не влияет на измерения.

Торричелли, предложивший описанный выше опыт, дал и его объяснение. Атмосфера давит на поверхность ртути в чашке. Ртуть находится в равновесии. Значит, давление в трубке на уровне аа 1 (см. рис) равно атмосферному давлению. При изменении атмосферного давления меняется и высота столба ртути в трубке. При увеличении давления столбик удлиняется. При уменьшении давления - столб ртути уменьшает свою высоту.

Давление в трубке на уровне аа1 создается весом столба ртути в трубке, так как в верхней части трубки над ртутью воздуха нет. Отсюда следует, что атмосферное давление равно давлению столба ртути в трубке , т. е.

p атм = p ртути.

Чем больше атмосферное давление, тем выше столб ртути в опыте Торричелли. Поэтому на практике атмосферное давление можно измерить высотой ртутного столба (в миллиметрах или сантиметрах). Если, например, атмосферное давление равно 780 мм рт. ст. (говорят "миллиметров ртутного столба"), то это значит, что воздух производит такое же давление, какое производит вертикальный столб ртути высотой 780 мм.

Следовательно, в этом случае за единицу измерения атмосферного давления принимается 1 миллиметр ртутного столба (1 мм рт. ст.). Найдем соотношение между этой единицей и известной нам единицей - паскалем (Па).

Давление столба ртути ρ ртути высотой 1 мм равно:

p = g·ρ·h , p = 9,8 Н/кг · 13 600 кг/ м 3 · 0,001 м ≈ 133,3 Па.

Итак, 1 мм рт. ст. = 133,3 Па.

В настоящее время атмосферное давление принято измерять в гектопаскалях (1 гПа = 100 Па). Например, в сводках погоды может быть объявлено, что давление равно 1013 гПа, это то же самое, что 760 мм рт. ст.

Наблюдая ежедневно за высотой ртутного столба в трубке, Торричелли обнаружил, что эта высота меняется, т. е. атмосферное давление непостоянно, оно может увеличиваться и уменьшаться. Торричелли заметил также, что атмосферное давление связано с изменением погоды.

Если к трубке с ртутью, использовавшейся в опыте Торричелли, прикрепить вертикальную шкалу, то получится простейший прибор - ртутный барометр (от греч. барос - тяжесть, метрео - измеряю). Он служит для измерения атмосферного давления.

Барометр - анероид.

В практике для измерения атмосферного давления используют металлический барометр, называемый анероидом (в переводе с греческого - безжидкостный ). Так барометр называют потому, что в нем нет ртути.

Внешний вид анероида изображен на рисунке. Главная часть его - металлическая коробочка 1 с волнистой (гофрированной) поверхностью (см. др. рис.). Из этой коробочки выкачан воздух, а чтобы атмосферное давление не раздавило коробочку, ее крышка 2 пружиной оттягивается вверх. При увеличении атмосферного давления крышка прогибается вниз и натягивает пружину. При уменьшении давления пружина выпрямляет крышку. К пружине с помощью передаточного механизма 3 прикреплена стрелка-указатель 4, которая продвигается вправо или влево при изменении давления. Под стрелкой укреплена шкала, деления которой нанесены по показаниям ртутного барометра. Так, число 750, против которого стоит стрелка анероида (см. рис.), показывает, что в данный момент в ртутном барометре высота ртутного столба 750 мм.

Следовательно, атмосферное давление равно 750 мм рт. ст. или ≈ 1000 гПа.

Значение атмосферного давления весьма важно для предвидения погоды на ближайшие дни, так как изменение атмосферного давления связано с изменением погоды. Барометр - необходимый прибор для метеорологических наблюдений.

Атмосферное давление на различных высотах.

В жидкости давление, как мы знаем, зависит от плотности жидкости и высоты ее столба. Вследствие малой сжимаемости плотность жидкости на различных глубинах почти одинакова. Поэтому, вычисляя давление, мы считаем ее плотность постоянной и учитываем только изменение высоты.

Сложнее дело обстоит с газами. Газы сильно сжимаемы. А чем сильнее газ сжат, тем больше его плотность, и тем большее давление он производит. Ведь давление газа создается ударами его молекул о поверхность тела.

Слои воздуха у поверхности Земли сжаты всеми вышележащими слоями воздуха, находящимися над ними. Но чем выше от поверхности слой воздуха, тем слабее он сжат, тем меньше его плотность. Следовательно, тем меньшее давление он производит. Если, например, воздушный шар поднимается над поверхностью Земли, то давление воздуха на шар становиться меньше. Это происходит не только потому, что высота столба воздуха над ним уменьшается, но еще и потому, что уменьшается плотность воздуха. Вверху она меньше, чем внизу. Поэтому зависимость давления воздуха от высоты сложнее, чем жидкости.

Наблюдения показывают, что атмосферное давление в местностях, лежащих на уровне моря, в среднем равно 760 мм рт. ст.

Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °С, называется нормальным атмосферным давлением .

Нормальное атмосферное давление равно 101 300 Па = 1013 гПа.

Чем больше высота над уровнем моря, тем давление меньше.

При небольших подъемах, в среднем, на каждые 12 м подъема давление уменьшается на 1 мм рт. ст. (или на 1,33 гПа).

Зная зависимость давления от высоты, можно по изменению показаний барометра определить высоту над уровнем моря. Анероиды, имеющие шкалу, по которой непосредственно можно измерить высоту над уровнем моря, называются высотомерами . Их применяют в авиации и при подъеме на горы.

Манометры.

Мы уже знаем, что для измерения атмосферного давления применяют барометры. Для измерения давлений, бóльших или меньших атмосферного, используется манометры (от греч. манос - редкий, неплотный, метрео - измеряю). Манометры бывают жидкостные и металлические .

Рассмотрим сначала устройство и действие открытого жидкостного манометра . Он состоит из двухколенной стеклянной трубки, в которую наливается какая-нибудь жидкость. Жидкость устанавливается в обоих коленах на одном уровне, так как на ее поверхность в коленах сосуда действует только атмосферное давление.

Чтобы понять, как работает такой манометр, его можно соединить резиновой трубкой с круглой плоской коробкой, одна сторона которой затянута резиновой пленкой. Если надавить пальцем на пленку, то уровень жидкости в колене манометра, соединенном в коробкой, понизится, а в другом колене повысится. Чем это объясняется?

При надавливании на пленку увеличивается давление воздуха в коробке. По закону Паскаля это увеличение давления передается и жидкости в том колене манометра, которое присоединено к коробке. Поэтому давление на жидкость в этом колене будет больше, чем в другом, где на жидкость действует только атмосферное давление. Под действием силы этого избыточного давления жидкость начнет перемещаться. В колене со сжатым воздухом жидкость опустится, в другом - поднимется. Жидкость придет в равновесие (остановится), когда избыточное давление сжатого воздуха уравновесится давлением, которое производит избыточный столб жидкости в другом колене манометра.

Чем сильнее давить на пленку, тем выше избыточный столб жидкости, тем больше его давление. Следовательно, об изменении давления можно судить по высоте этого избыточного столба .

На рисунке показано, как таким манометром можно измерять давление внутри жидкости. Чем глубже погружается в жидкость трубочка, тем больше становится разность высот столбов жидкости в коленах манометра , тем, следовательно, и большее давление производит жидкость .

Если установить коробочку прибора на какой-нибудь глубине внутри жидкости и поворачивать ее пленкой вверх, вбок и вниз, то показания манометра при этом не будут меняется. Так и должно быть, ведь на одном и том же уровне внутри жидкости давление одинаково по всем направлениям .

На рисунке изображен металлический манометр . Основная часть такого манометра - согнутая в трубу металлическая трубка 1 , один конец которой закрыт. Другой конец трубки с помощью крана 4 сообщается с сосудом, в котором измеряют давление. При увеличении давления трубка разгибается. Движение её закрытого конца при помощи рычага 5 и зубчатки 3 передается стрелке 2 , движущейся около шкалы прибора. При уменьшении давления трубка, благодаря своей упругости, возвращается в прежнее положение, а стрелка - к нулевому делению шкалы.

Поршневой жидкостный насос.

В опыте, рассмотренном нами ранее (§ 40), было установлено, что вода в стеклянной трубке под действием атмосферного давления поднималась вверх за поршнем. На этом основано действие поршневых насосов.

Насос схематически изображен на рисунке. Он состоит из цилиндра, внутри которого ходит вверх и вниз, плотно прилегая к стенкам сосуда, поршень 1 . В нижней части цилиндра и в самом поршне установлены клапаны 2 , открывающиеся только вверх. При движении поршня вверх вода под действием атмосферного давления входит в трубу, поднимает нижний клапан и движется за поршнем.

При движении поршня вниз вода, находящаяся под поршнем, давит на нижний клапан, и он закрывается. Одновременно под давлением воды открывается клапан внутри поршня, и вода переходит в пространство над поршнем. При следующем движении поршня вверх в месте с ним поднимается и находящаяся над ним вода, которая и выливается в отводящую трубу. Одновременно за поршнем поднимается и новая порция воды, которая при последующем опускании поршня окажется над ним, и вся эта процедура повторяется вновь и вновь, пока работает насос.

Гидравлический пресс.

Закон Паскаля позволяет объяснить действие гидравлической машины (от греч. гидравликос - водяной). Это машины, действие которых основано на законах движения и равновесия жидкостей.

Основной частью гидравлической машины служат два цилиндра разного диаметра, снабженные поршнями и соединительной трубкой. Пространство под поршнями и трубку заполняют жидкостью (обычно минеральным маслом). Высоты столбов жидкости в обоих цилиндрах одинаковы, пока на поршни не действуют силы.

Допустим теперь, что силы F 1 и F 2 - силы, действующие на поршни, S 1 и S 2 - площади поршней. Давление под первым (малым) поршнем равно p 1 = F 1 / S 1 , а под вторым (большим) p 2 = F 2 / S 2 . По закону Паскаля давление покоящейся жидкостью во все стороны передается одинаково, т. е. p 1 = p 2 или F 1 / S 1 = F 2 / S 2 , откуда:

F 2 / F 1 = S 2 / S 1 .

Следовательно, сила F 2 во столько раз больше силы F 1 , во сколько раз площадь большого поршня больше площади малого поршня . Например, если площадь большого поршня 500 см 2 , а малого 5 см 2 , и на малый поршень действует сила 100 Н, то на больший поршень будет действовать сила, в 100 раз бóльшая, то есть 10 000 Н.

Таким образом, с помощью гидравлической машины можно малой силой уравновесить бóльшую силу.

Отношение F 1 / F 2 показывает выигрыш в силе. Например, в приведенном примере выигрыш в силе равен 10 000 Н / 100 Н = 100.

Гидравлическая машина, служащая для прессования (сдавливания), называется гидравлическим прессом .

Гидравлические прессы применяются там, где требуется большая сила. Например, для выжимания масла из семян на маслобойных заводах, для прессования фанеры, картона, сена. На металлургических заводах гидравлические прессы используют для изготовления стальных валов машин, железнодорожных колес и многих других изделий. Современные гидравлические прессы могут развивать силу в десятки и сотни миллионов ньютонов.

Устройство гидравлического пресса схематически показано на рисунке. Прессуемое тело 1 (A) кладут на платформу, соединенную с большим поршнем 2 (B). При помощи малого поршня 3 (D) создается большое давление на жидкость. Это давление передается в каждую точку жидкости, заполняющей цилиндры. Поэтому такое же давление действует и на второй, большой поршень. Но так как площадь 2-го (большого) поршня больше площади малого, то и сила, действующая на него, будет больше силы, действующей на поршень 3 (D). Под действием этой силы поршень 2 (B) будет подниматься. При подъеме поршня 2 (B) тело (A) упирается в неподвижную верхнюю платформу и сжимается. При помощи манометра 4 (M) измеряется давление жидкости. Предохранительный клапан 5 (P) автоматически открывается, когда давление жидкости превышает допустимое значение.

Из малого цилиндра в большой жидкость перекачивается повторными движениями малого поршня 3 (D). Это осуществляется следующим образом. При подъеме малого поршня (D) клапан 6 (K) открывается, и в пространство, находящееся под поршнем, засасывается жидкость. При опускании малого поршня под действием давления жидкости клапан 6 (K) закрывается, а клапан 7 (K") открывается, и жидкость переходит в большой сосуд.

Действие воды и газа на погруженное в них тело.

Под водой мы легко можем поднять камень, который с трудом поднимается в воздухе. Если погрузить пробку под воду и выпустить ее из рук, то она всплывет. Как можно объяснить эти явления?

Мы знаем (§ 38), что жидкость давит на дно и стенки сосуда. И если внутрь жидкости поместить какое-нибудь твердое тело, то оно также будет подвергаться давлению, как и стенки сосуда.

Рассмотрим силы, которые действуют со стороны жидкости на погруженное в нее тело. Чтобы легче было рассуждать, выберем тело, которое имеет форму параллелепипеда с основаниями, параллельными поверхности жидкости (рис.). Силы, действующие на боковые грани тела, попарно равны и уравновешивают друг друга. Под действием этих сил тело сжимается. А вот силы, действующие на верхнюю и нижнюю грани тела, неодинаковы. На верхнюю грань давит сверху силой F 1 столб жидкости высотой h 1 . На уровне нижней грани давление производит столб жидкости высотой h 2 . Это давление, как мы знаем (§ 37), передается внутри жидкости во все стороны. Следовательно, на нижнюю грань тела снизу вверх с силой F 2 давит столб жидкости высотой h 2 . Но h 2 больше h 1 , следовательно, и модуль силы F 2 больше модуля силы F 1 . Поэтому тело выталкивается из жидкости с силой F выт, равной разности сил F 2 - F 1 , т. е.

Но S·h = V, где V - объем параллелепипеда, а ρ ж ·V = m ж - масса жидкости в объеме параллелепипеда. Следовательно,

F выт = g·m ж = P ж,

т. е. выталкивающая сила равна весу жидкости в объеме погруженного в нее тела (выталкивающая сила равна весу жидкости такого же объёма, как и объём погруженного в нее тела).

Существование силы, выталкивающей тело из жидкости, легко обнаружить на опыте.

На рисунке а изображено тело, подвешенное к пружине со стрелкой-указателем на конце. Стрелка отмечает на штативе растяжение пружины. При отпускании тела в воду пружина сокращается (рис., б ). Такое же сокращение пружины получится, если действовать на тело снизу вверх с некоторой силой, например, нажать рукой (приподнять).

Следовательно, опыт подтверждает, что на тело, находящееся в жидкости, действует сила, выталкивающая это тело из жидкости .

К газам, как мы знаем, также применим закон Паскаля. Поэтому на тела, находящиеся в газе, действует сила, выталкивающая их из газа . Под действием этой силы воздушные шары поднимаются вверх. Существование силы, выталкивающей тело из газа, можно также наблюдать на опыте.

К укороченной чашке весов подвесим стеклянный шар или большую колбу, закрытую пробкой. Весы уравновешиваются. Затем под колбу (или шар) ставят широкий сосуд так, чтобы он окружал всю колбу. Сосуд наполняется углекислым газом, плотность которого больше плотности воздуха (поэтому углекислый газ опускается вниз и заполняет сосуд, вытесняя из него воздух). При этом равновесие весов нарушается. Чашка с подвешенной колбой поднимается вверх (рис.). На колбу, погруженную в углекислый газ, действует бóльшая выталкивающая сила, по сравнению с той, которая действует на нее в воздухе.

Сила, выталкивающая тело из жидкости или газа, направлена противоположно силе тяжести, приложенной к этому телу .

Поэтому пролкосмосе). Именно этим объясняется, что в воде мы иногда легко поднимаем тела, которые с трудом удерживаем в воздухе.

К пружине подвешивается небольшое ведерко и тело цилиндрической формы (рис., а). Стрелка на штативе отмечает растяжение пружины. Она показывает вес тела в воздухе. Приподняв тело, под него подставляется отливной сосуд, наполненный жидкостью до уровня отливной трубки. После чего тело погружается целиком в жидкость (рис., б). При этом часть жидкости, объем которой равен объему тела, выливается из отливного сосуда в стакан. Пружина сокращается, и указатель пружины поднимается вверх, показывая уменьшение веса тела в жидкости. В данном случае на тело, кроме силы тяжести, действует еще одна сила, выталкивающая его из жидкости. Если в верхнее ведерко вылить жидкость из стакана (т. е. ту, которую вытеснило тело), то указатель пружины возвратится к своему начальному положению (рис., в).

На основании этого опыта можно заключить, что сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела . Такой же вывод мы получили и в § 48.

Если подобный опыт проделать с телом, погруженным в какой-либо газ, то он показал бы, что сила, выталкивающая тело из газа, также равна весу газа, взятого в объеме тела .

Сила, выталкивающая тело из жидкости или газа, называется архимедовой силой , в честь ученого Архимеда , который впервые указал на ее существование и рассчитал ее значение.

Итак, опыт подтвердил, что архимедова (или выталкивающая) сила равна весу жидкости в объеме тела, т. е. F А = P ж = g·m ж. Массу жидкости m ж, вытесняемую телом, можно выразить через ее плотность ρ ж и объем тела V т, погруженного в жидкость (так как V ж - объем вытесненной телом жидкости равен V т - объему тела, погруженного в жидкость), т. е. m ж = ρ ж ·V т. Тогда получим:

F A = g·ρ ж ·V т

Следовательно, архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.

Определим теперь вес тела, погруженного в жидкость (или в газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости P 1 будет меньше веса тела в вакууме P = g·m на архимедову силу F А = g·m ж (где m ж - масса жидкости или газа, вытесненной телом).

Таким образом, если тело погружено в жидкость или газ, то оно теряет в своем весе столько, сколько весит вытесненная им жидкость или газ .

Пример . Определить выталкивающую силу, действующую на камень объемом 1,6 м 3 в морской воде.

Запишем условие задачи и решим ее.

Когда всплывающее тело достигнет поверхности жидкости, то при дальнейшем его движении вверх архимедова сила будет уменьшаться. Почему? А потому, что будет уменьшаться объем части тела, погруженной в жидкость, а архимедова сила равна весу жидкости в объеме погруженной в нее части тела.

Когда архимедова сила станет равной силе тяжести, тело остановится и будет плавать на поверхности жидкости, частично погрузившись в нее.

Полученный вывод легко проверить на опыте.

В отливной сосуд нальем воду до уровня отливной трубки. После этого погрузим в сосуд плавающее тело, предварительно взвесив его в воздухе. Опустившись в воду, тело вытесняет объем воды, равный объему погруженной в нее части тела. Взвесив эту воду, находим, что ее вес (архимедова сила) равен силе тяжести, действующей на плавающее тело, или весу этого тела в воздухе.

Проделав такие же опыты с любыми другими телами, плавающими в разных жидкостях - в воде, спирте, растворе соли, можно убедиться, что если тело плавает в жидкости, то вес вытесненной им жидкости равен весу этого тела в воздухе .

Легко доказать, что если плотность сплошного твердого тела больше плотности жидкости, то тело в такой жидкости тонет. Тело с меньшей плотностью всплывает в этой жидкости . Кусок железа, например, тонет в воде, но всплывает в ртути. Тело же, плотность которого равна плотности жидкости, остается в равновесии внутри жидкости.

Плавает на поверхности воды лед, так как его плотность меньше плотности воды.

Чем меньше плотность тела по сравнению с плотностью жидкости, тем меньшая часть тела погружена в жидкость .

При равных плотностях тела и жидкости тело плавает внутри жидкости на любой глубине.

Две несмешивающиеся жидкости, например вода и керосин, располагаются в сосуде в соответствии со своими плотностями: в нижней части сосуда - более плотная вода (ρ = 1000 кг/м 3), сверху - более легкий керосин (ρ = 800 кг/м 3).

Средняя плотность живых организмов, населяющих водную среду, мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается архимедовой силой. Благодаря этому водные животные не нуждаются в столь прочных и массивных скелетах, как наземные. По этой же причине эластичны стволы водных растений.

Плавательный пузырь рыбы легко меняет свой объем. Когда рыба с помощью мышц опускается на большую глубину, и давление воды на нее увеличивается, пузырь сжимается, объем тела рыбы уменьшается, и она не выталкивается вверх, а плавает в глубине. Таким образом, рыба может в определенных пределах регулировать глубину своего погружения. Киты регулируют глубину своего погружения за счет уменьшения и увеличения объема легких.

Плавание судов.

Суда, плавающие по рекам, озерам, морям и океанам, построены из разных материалов с различной плотностью. Корпус судов обычно делается из стальных листов. Все внутренние крепления, придающие судам прочность, также изготовляют из металлов. Для постройки судов используют различные материалы, имеющие по сравнению с водой как бóльшие, так и меньшие плотности.

Благодаря чему суда держатся на воде, принимают на борт и перевозят большие грузы?

Опыт с плавающим телом (§ 50) показал, что тело вытесняет своей подводной частью столько воды, что по весу эта вода равна весу тела в воздухе. Это также справедливо и для любого судна.

Вес воды, вытесняемой подводной частью судна, равен весу судна с грузом в воздухе или силе тяжести, действующей на судно с грузом .

Глубина, на которую судно погружается в воду, называется осадкой . Наибольшая допускаемая осадка отмечена на корпусе судна красной линией, называемой ватерлинией (от голланд. ватер - вода).

Вес воды, вытесняемой судном при погружении до ватерлинии, равный силе тяжести, действующей на судно с грузом, называется водоизмещением судна .

В настоящее время для перевозки нефти строятся суда водоизмещением 5 000 000 кН (5 · 10 6 кН) и больше, т. е. имеющие вместе с грузом массу 500 000 т (5 · 10 5 т) и более.

Если из водоизмещения вычесть вес самого судна, то мы получим грузоподъемность этого судна. Грузоподъемность показывает вес груза, перевозимого судном.

Судостроение существовало еще в Древнем Египте, в Финикии (считается, что Финикийцы были одними из лучших судостроителей), Древнем Китае.

В России судостроение зародилось на рубеже 17-18 вв. Сооружались главным образом военные корабли, но именно в России были построены первый ледокол, суда с двигателем внутреннего сгорания, атомный ледокол "Арктика".

Воздухоплавание.

Рисунок с описанием шара братьев Монгольфье 1783 года: «Вид и точные размеры „Аэростата Земной шар“, который был первым». 1786

С давних времен люди мечтали о возможности летать над облаками, плавать в воздушном океане, как они плавали по морю. Для воздухоплавания

вначале использовали воздушные шары, которые наполняли или нагретым воздухом, или водородом либо гелием.

Для того, чтобы воздушный шар поднялся в воздух, необходимо, чтобы архимедова сила (выталкивающая) F А, действующая на шар, была больше силы тяжести F тяж, т. е. F А > F тяж.

По мере поднятия шара вверх архимедова сила, действующая на него, уменьшается (F А = gρV ), так как плотность верхних слоев атмосферы меньше, чем у поверхности Земли. Чтобы подняться выше, с шара сбрасывается специальный балласт (груз) и этим облегчает шар. В конце концов шар достигает своей своей предельной высоты подъема. Для спуска шара из его оболочки при помощи специального клапана выпускается часть газа.

В горизонтальном направлении воздушный шар перемещается только под действием ветра, поэтому он называется аэростатом (от греч аэр - воздух, стато - стоящий). Для исследования верхних слоев атмосферы, стратосферы еще не так давно применялись огромные воздушные шары - стратостаты .

До того как научились строить большие самолеты для перевозки по воздуху пассажиров и грузов, применялись управляемые аэростаты - дирижабли . Они имеют удлиненную форму, под корпусом подвешивается гондола с двигателем, который приводит в движение пропеллер.

Воздушный шар не только сам поднимается вверх, но может поднять и некоторый груз: кабину, людей, приборы. Поэтому для того, чтобы узнать, какой груз может поднять воздушный шар, необходимо определить его подъемную силу .

Пусть, например, в воздух запущен шар объемом 40 м 3 , наполненный гелием. Масса гелия, заполняющая оболочку шара, будет равна:
m Ге = ρ Ге ·V = 0,1890 кг/м 3 · 40 м 3 = 7,2 кг,
а его вес равен:
P Ге = g·m Ге; P Ге = 9,8 Н/кг · 7,2 кг = 71 Н.
Выталкивающая же сила (архимедова), действующая на этот шар в воздухе, равна весу воздуха объемом 40 м 3 , т. е.
F А = g·ρ возд V; F А = 9,8 Н/кг · 1,3 кг/м 3 · 40 м 3 = 520 Н.

Значит, этот шар может поднять груз весом 520 Н - 71 Н = 449 Н. Это и есть его подъемная сила.

Шар такого же объема, но наполненный водородом, может поднять груз 479 Н. Значит, подъемная сила его больше, чем шара, наполненного гелием. Но все же чаще используют гелий, так как он не горит и поэтому безопаснее. Водород же горючий газ.

Гораздо проще осуществить подъем и спуск шара, наполненного горячим воздухом. Для этого под отверстием, находящимся в нижней части шара, располагается горелка. При помощи газовой горелки можно регулировать температуру воздуха внутри шара, а значит, его плотность и выталкивающую силу. Чтобы шар поднялся выше, достаточно сильнее нагреть воздух в нем, увеличив пламя горелки. При уменьшении пламени горелки температура воздуха в шаре уменьшается, и шар опускается вниз.

Можно подобрать такую температуру шара, при которой вес шара и кабины будет равен выталкивающей силе. Тогда шар повиснет в воздухе, и с него будет легко проводить наблюдения.

По мере развития науки происходили и существенные изменения в воздухоплавательной технике. Появилась возможность использования новых оболочек для аэростатов, которые стали прочными, морозоустойчивыми и легкими.

Достижения в области радиотехники, электроники, автоматики позволили сконструировать беспилотные аэростаты. Эти аэростаты используются для изучения воздушных течений, для географических и медико-биологических исследований в нижних слоях атмосферы.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

© Общеобразовательный журнал SLOVARSLOV.RU, 2024

Все статьи, расположенные на сайте, несут лишь ознакомительный характер.