Закономерности взаимодействия организма с окружающей средой. Закономерности взаимодействия организма со средой

Лекция №6

1. Биотические факторы

1.1. Понятие, виды биотических факторов.

1.2. Биотические факторы наземной и водной среды, почв

1.3. Биологически активные вещества живых организмов

1.4. Антропогенные факторы

2. Общие закономерности взаимодействия организмов и экологических факторов

2.1. Понятие лимитирующего фактора. Закон минимума Либиха, закон Шелфорда

2.2. Специфика воздействия антропогенных факторов на организм

2.3. Классификация организмов по отношению к экологическим факторам

Биотические факторы

Опосредованные взаимодействия заключаются в том, что одни организмы являются средообразователями по отношению к другим, причем приоритетная значимость здесь принадлежит, безусловно, растениям-фотосинтетикам. Хорошо известна, например, локальная и глобальная средообразующая функция лесов, в том числе их почво- и полезащитная и водоохранная роль. Непосредственно в условиях леса создается своеобразный микроклимат, который зависит от морфологических особенностей деревьев и позволяет обитать именно здесь специфическим лесным животным, травянистым растениям, мхам и др. Условия ковыльных степей представляют совершенно иные режимы абиотических факторов. В водоемах и водотоках растения - основной источник такого важнейшего абиотического компонента среды, как кислород.



Одновременно растения служат непосредственным местом обитания для других организмов. Например, в тканях дерева (в древесине, лубе, коре) развиваются многие грибы, плодовые тела которых (трутовики) можно видеть на по­верхности ствола; внутри листьев, плодов, стеблей травяни­стых и древесных растений живет множество насекомых и других беспозвоночных, а дупла деревьев - обычное место обитания ряда млекопитающих и птиц. Для многих видов скрытноживущих животных место питания совмещено с местом обитания.

Взаимодействия между живыми организмами в наземной и водной среде

Взаимодействия между живимыми организмами (преимущественно животными) классифицируют с точки зрения их взаимных реакции.

Различают гомотипические (от греч. гомос - одинаковый) реакции, т. е. взаимодействия между особями и группами особей одного и того же вида, и гетеротипические (от греч. гетерос - иной, разный) - взаимодействия между представителями разных видов. Среди животных существуют виды, способные питаться только одним видом пищи (монофаги), на более или менее ограниченном круге источников пищи (узкие или широкие олигофаги), или на многих видах, используя в пищу не только растительные, но и животные ткани (полифаги). К числу последних принадлежат, например, многие птицы, способные поедать как насекомых, так и семена растений, или такой известный вид, как медведь - по природе своей хищник, но охотно поедает ягоды, мед.

Наиболее распространенный тип гетеротипических взаимодействий между животными - хищничество, т. е. непосредственное преследование и поедание одних видов другими, например насекомых - птицами, травоядных копытных -плотоядными хищниками, мелких рыб - более крупными и т. п. Хищничество широко распространено между беспозвоночными животными - насекомыми, паукообразными, червями и др.

Из других форм взаимодействий между организмами можно назвать хорошо известное опыление растений животными (насекомыми); форезию, т.е. перенос одними видами других (например, семян растений птицами и млекопитающими); комменсализм (сотрапезничество), когда одни организмы питаются остатками пищи или выделениями других, примером чего являются гиены и грифы, пожирающие остатки пищи львов; синойкию (сожительство), например использование одними животными мест обитания (нор, гнезд) других животных; нейтрализм, т. е. взаимонезависимость разных видов, обитающих на общей территории.

Одним из важных типов взаимодействия между организмами считается конкуренция, которую определяют как стремление двух видов (или индивидуумов одного вида) обладать одним и тем же ресурсом. Таким образом, выделяют внутривидовую и межвидовую конкуренцию. Конкуренцию межвидовую рассматривают, кроме того, как стремление одного вида вытеснить другой вид (конкурента) из данного места обитания.

Однако реальные доказательства конкуренции в природных (а не в экспериментальных) условиях найти трудно. Конечно, две разные особи одного вида могут пытаться отнять друг у друга куски мяса или иной пищи, но подобные явления объясняются разнокачественностью самих особей, их разной приспособленностью к одним и тем же экологическим факторам. Любой вид организма приспособлен не к одному какому-либо фактору, а к их комплексу, причем требования двух разных (пусть даже близких) видов не совпадают. Поэтому один из двух окажется вытесненным в природной среде не в силу конкурентных стремлений" другого, а просто потому, что он хуже адаптирован к другим факторам. Характерный пример - "конкуренция" за свет между хвойными и лиственными древесными породами в молодняках.

Лиственные (осина, береза) опережают в росте сосну или ель, но это нельзя считать конкуренцией между ними: просто первые лучше адаптированы к условиям вырубок и гарей, чем вторые. Многолетние работы по уничтожению лиственных "сорняков" при помощи гербицидов и арборицидов (химических препаратов для уничтожения травянистых и кустарниковых растений), как правило, не приводили к "победе" хвойных, поскольку далеко не только световое довольствие, но и многие другие факторы (как биотические, так и абиотические) не отвечали их требованиям.

Все эти обстоятельства человек должен учитывать при управлении живой природой, при эксплуатации животных и растений, т. е. при промысле или проведении таких хозяйственных мероприятий, как защита растений в сельском хозяйстве.

Биотические факторы почвы

Как уже упоминалось выше, почва - биокосное тело. В процессах ее образования и функционирования важнейшую роль играют живые организмы. К ним относятся, в первую очередь, зеленые растения, извлекающие из почвы питательные химические вещества и возвращающие их обратно вместе с отмирающими тканями.

Но в процессах почвообразования решающую роль играют населяющие почву живые организмы (педобионты): микробы, беспозвоночные и др. Микроорганизмам принадлежит ведущая роль в трансформации химических соединений, миграции химических элементов, питании растений.

Первичное разрушение мертвой органики осуществляют беспозвоночные животные (черви, моллюски, насекомые и др.) в процессе питания и выделения в почву продуктов пищеварения. Фотосинтетическое связывание углерода в почве осуществляют в некоторых типах почв микроскопические зеленые и синезеленые водоросли.

Почвенные микроорганизмы осуществляют основное разрушение минералов и приводят к образованию органических и минеральных кислот, щелочей, выделяют синтезированные ими ферменты, полисахариды, фенольные соединения.

Важнейшим звеном в биогеохимическом цикле азота является азотфиксация, которую осуществляют азотфиксирующие бактерии. Известно, что общая продукция фиксации азота микробами составляет 160-170 млн. т/год. Необходимо также упомянуть что фиксация азота, как правило, является симбиотической (совместной с растениями), осуществляемой клубеньковыми бактериями, располагающимися на корнях растений.

Биологически активные вещества живых организмов

К числу экологических факторов биотической природы относятся химические соединения, активные продуцируемые живыми организмами. Таковы в частности, фитонциды – образуемые организмов растениями преимущественно летучие вещества, убивающие микроорганизмы или подавляющие их рост. К ним относятся гликозиды, терпеноиды, фенолы, дубильные и многие другие вещества. Например, 1 га лиственного леса выделяет около 2 кг летучих веществ в сутки, хвойного - до 5 кг, можжевелового - около 30 кг. Поэтому воздух лесных экосистем имеет важнейшее санитарно-гигиеническое значение, убивая микроорганизмы, вызывающие опасные заболевания человека. Для растения фитонциды выполняют функцию защиты от бактериальных, грибных инфекций, от простейших. Растения способны вырабатывать защитные вещества в ответ на заражение их патогенными грибами.

Летучие вещества одних растений могут служить средством вытеснения других растений. Взаимное влияние растений путем выделения в окружающую среду физиологически активных веществ называют аллелопатией (от греч. аллелон - взаимно, патос - страдание).

Органические вещества, образуемые микроорганизмами и обладающие способностью убивать микробов (или препятствовать их росту), называются антибиотиками; характерным примером является пенициллин. К антибиотикам относятся также антибактериальные вещества, содержащиеся в растительных и животных клетках.

Опасные алкалоиды, оказывающие отравляющее и психотропное действие, содержатся во многих грибах, высших растениях. Сильнейшая головная боль, тошнота вплоть до потери сознания может возникнуть в результате долгого пребывания человека на багульниковом болоте.

Свойствами вырабатывать и выделять отпугивающие, привлекающие, сигнальные, убивающие вещества обладают позвоночные и беспозвоночные животные. В их числе можно назвать многих паукообразных (скорпион, каракурт, тарантул и др.), пресмыкающихся. Человек широко использует яды животных и растений в лечебных целях.

Совместная эволюция животных и растений выработала у них сложнейшие информационно-химические взаимоот­ношения. Приведем лишь один пример: многие насекомые по запаху различают свои кормовые породы, жуки-короеды, в частности, прилетают только к умирающему дереву, рас­познавая его по составу летучих терпенов живицы.

Антропогенные экологические факторы

Вся история научно-технического прогресса, представляет собой совокупность преобразования человеком в своих целях природных экологических факторов и создания новых, ранее в природе не существовавших.

Выплавка металлов из руд и производство оборудования невозможны без создания высоких температур, давлений, мощных электромагнитных полей. Получение и сохранение высоких урожаев сельскохозяйственных культур требует производства удобрений и средств химической защиты растений от вредителей и возбудителей заболеваний. Современ­ное здравоохранение немыслимо без средств хемо- и физиотерапии. Эти примеры можно умножить.

Достижения научно-технического прогресса стали использоваться в политических и экономических целях, что крайним образом проявилось в создании специальных поражающих человека и его имущество экологических факторов: от огнестрельного оружия до средств массового физического, химического и биологического воздействия. В данном случае можно прямо говорить о совокупности антропотропных (т. е. направленных на человеческий организм) и, в частности, антропоцидных экологических факторов, вызывающих загрязнение окружающей среды.

С другой стороны, кроме таких факторов целенаправленного назначения, в процессе эксплуатации и переработки природных ресурсов неизбежно образуются побочные химические соединения и зоны высоких уровней физических факторов. В ряде случаев эти процессы могут носить скачкообразный характер (в условиях аварий и катастроф) с тяжелыми экологическими и материальными последствиями. Отсюда и потребовалось создавать способы и средства защиты человека от опасных и вредных факторов, что реализовалось в настоящее время в упомянутую выше систему - безопасность жизнедеятельности.

В упрощенной форме ориентировочная классификация антропогенных экологических факторов представлена на рис. 1.


Рис. 1. Классификация антропогенных экологических факторов

Общие закономерности взаимодействия организмов и экологических факторов

Любой экологический фактор динамичен, изменчив во времени и пространстве.

Теплое время года с правильной периодичностью сменяется холодным; в течение суток наблюдаются более или менее широкие колебания температуры, освещенности, влажности, силы ветра и т. п. Все это - природные, колебания экологических факторов, однако воздействовать на них способен и человек. Влияние антропогенной деятельности на окружающую среду проявляется в общем случае в изменении режимов (абсолютных значений и динамики) экологических факторов, а также - состава факторов, например при внесении ксенобиотиков в природные системы в процессе производства или специальных мероприятий - таких, как защита растений при помощи ядохимикатов или внесение органических и минеральных удобрений в почву.

Однако каждому живому организму требуются строго определенные уровни, количества (дозы) экологических факторов, а также определенные пределы их колебаний. Если режимы всех экологических факторов соответствуют наследственно закрепленным требованиям организма (т. е. его генотипу), то он способен выживать и давать жизнеспособное потомство. Требования и устойчивость того или иного вида организма к экологическим факторам определяют границы географической зоны, в пределах которой он может обитать, т. е. его ареал. Факторы окружающей среды определяют также амплитуду колебаний численности того или иного вида во времени и пространстве, которая никогда не остается постоянной, а изменяется в более или менее широких пределах.

Закон лимитирующего фактора

Живой организм в природных условиях одновременно подвергается воздействию со стороны не одного, а многих экологических, факторов - как биотических, так и абиотических, причем каждый фактор требуется организму в определенных количествах или дозах. Растения нуждаются в значительных количествах влаги, питательных веществ (азот, фосфор, калий), но другие вещества, например бор или молибден, требуются в ничтожных количествах. Тем не менее недостаток или отсутствие любого вещества (как макро-, так и микроэлемента) отрицательно сказывается на состоянии организма, даже если все остальные присутствуют в требуемых количествах. Один из основоположников агрохимии - немецкий ученый Юстус Либих (1803-1873) сформулировал теорию минерального питания растений. Он установил, что развитие растения или его состояние зависят не от тех химических элементов (или веществ), то есть факторов, которые присутствуют в почве в достаточных количествах, а от тех, которых не хватает. Например, достаточное для растения содержание азота или фосфора в почве не может компенсировать недостаток железа, бора или калия. Если любого (хотя бы одного) из элементов питания в почве меньше, чем требуется данному растению, то оно будет развиваться ненормально, замедленно или иметь патологические отклонения. Результаты своих исследований Ю. Либих сформулировал в виде фундаментального закона минимума.

Среда обитания – это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном, меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологические факторы имеют разную природу и специфику действия. Среди них выделяют абиотические и биотические, антропогенные.

Абиотические факторы – температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности – это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы – это формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других существ, вступает в связь с представителями своего вида и других видов – растениями, животными, микроорганизмами, зависит от них и сам оказывает на них воздействие. Окружающий органический мир – составная часть среды каждого живого существа.

Взаимные связи организмов – основа существования биоценозов и популяций; рассмотрение их относится к области син-экологии.

Антропогенные факторы – это формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. В ходе истории человечества развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете следует выделять в особую силу, не укладывающуюся в рамки этой классификации. В настоящее время практически судьба живого покрова Земли, всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

Один и тот же фактор среды имеет различное значение в жизни совместно обитающих организмов разных видов. Например, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но не действует на более мелких, которые укрываются в норах или под снегом. Солевой состав почвы важен для питания растений, но безразличен для большинства наземных животных и т. п.

Изменения факторов среды во времени могут быть: 1) регулярно-периодическими, меняющими силу воздействия в связи со временем суток, или сезоном года, или ритмом приливов и отливов в океане; 2) нерегулярными, без четкой периодичности, например, изменения погодных условий в разные годы, явления катастрофического характера – бури, ливни, обвалы и т. п.; 3) направленными на протяжении известных, иногда длительных, отрезков времени, например, при похолодании или потеплении климата, зарастании водоемов, постоянном выпасе скота на одном и том же участке и т. п.

Среди факторов среды выделяют ресурсы и условия. Ресурсы окружающей среды организмы используют, потребляют, тем самым уменьшая их количество. К ресурсам относят пищу, воду при ее дефиците, убежища, удобные места для размножения и т. п. Условия – это такие факторы, к которым организмы вынуждены приспосабливаться, но повлиять на них обычно не могут. Один и тот же фактор среды может быть ресурсом для одних и условием для других видов. Например, свет – жизненно необходимый энергетический ресурс для растений, а для обладающих зрением животных – условие зрительной ориентации. Вода для многих организмов может быть и условием жизни, и ресурсом.

2.2. Адаптации организмов

Приспособления организмов к среде носят название адаптации. Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание.

Способность к адаптациям – одно из основных свойств жизни вообще, так как обеспечивает и саму возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и развиваются в ходе эволюции видов.

Основные механизмы адаптации на уровне организма: 1) биохимические – проявляются во внутриклеточных процессах, как, например, смена работы ферментов или изменение их количества; 2) физиологические – например, усиление потоотделения при повышении температуры у ряда видов; 3) морфо-анатомические – особенности строения и формы тела, связанные с образом жизни; 4) поведенческие – например, поиск животными благоприятных мест обитания, создание нор, гнезд и т. п.; 5) онтогенетические – ускорение или замедление индивидуального развития, способствующие выживанию при изменении условий.

Экологические факторы среды оказывают на живые организмы различные воздействия, т. е. могут влиять как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций; как ограничители, обусловливающие невозможность существования в данных условиях; как модификаторы, вызывающие морфологические и анатомические изменения организмов; как сигналы, свидетельствующие об изменениях других факторов среды.

2.3. Общие законы действия факторов среды на организмы

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


Рис. 1. Схема действия факторов среды на живые организмы


Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до +29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды – выносящие значительные колебания температуры, эврибатные – широкий диапазон давления, эвригалинные – разную степень засоления среды.




Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 - стенотермные виды, криофилы;

3–7 – эвритермные виды;

8, 9 - стенотермные виды, термофилы


Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено» – стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке, – эврибионтными.

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.



Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): t мин, t опт, t макс – температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)


Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.



Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1 – клевер луговой; 2 – тысячелистник обыкновенный; 3 – келерия Делявина; 4 – мятлик луговой; 5 – типчак; 6 – подмаренник настоящий; 7 – осока ранняя; 8 – таволга обыкновенная; 9 – герань холмовая; 10 – короставник полевой; 11 – козлобородник коротконосиковый


Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности


Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.



Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)


Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

2.4. Принципы экологической классификации организмов

В экологии разнообразие и разноплановость способов и путей адаптации к среде создают необходимость множественных классификаций. Используя какой-либо единственный критерий, нельзя отразить все стороны приспособленности организмов к среде. Экологические классификации отражают сходство, возникающее у представителей самых разных групп, если они используют сходные пути адаптации. Например, если мы классифицируем животных по способам движения, то в экологическую группу видов, передвигающихся в воде реактивным путем, попадут такие разные по систематическому положению животные, как медузы, головоногие моллюски, некоторые инфузории и жгутиковые, личинки ряда стрекоз и др. (рис. 7). В основу экологических классификаций могут быть положены самые разнообразные критерии: способы питания, передвижения, отношение к температуре, влажности, солености среды, давлению и т. п. Разделение всех организмов на эврибионтных и стенобионтных по широте диапазона приспособлений к среде представляет пример простейшей экологической классификации.



Рис. 7. Представители экологической группы организмов, передвигающихся в воде реактивным способом (по С. A. Зернову, 1949):

1 – жгутиковое Medusochloris phiale;

2 – инфузория Craspedotella pileosus;

3 – медуза Cytaeis vulgaris;

4 – пелагическая голотурия Pelagothuria;

5 – личинка стрекозы-коромысла;

6 – плывущий осьминог Octopus vulgaris:

а – направление струи воды;

б – направление движения животного


Другой пример – разделение организмов на группы по характеру питания. Автотрофы – это организмы, использующие в качестве источника для построения своего тела неорганические соединения. Гетеротрофы – все живые существа, нуждающиеся в пище органического происхождения. В свою очередь, автотрофы делятся на фототрофов и хемотрофов. Первые для синтеза органических молекул используют энергию солнечного света, вторые – энергию химических связей. Гетеротрофов делят на сапрофитов, использующих растворы простых органических соединений, и голозоев. Голозои обладают сложным комплексом пищеварительных ферментов и могут употреблять в пищу сложные органические соединения, разлагая их на более простые составные компоненты. Голозои делятся на сапрофагов (питаются мертвыми растительными остатками), фитофагов (потребителей живых растений), зоофагов (нуждающихся в живой пище) и некрофагов (трупоядных животных). В свою очередь, каждую из этих групп можно подразделить на более мелкие, имеющие свою специфику в характере питания.

Иначе можно построить классификацию по способу добывания пищи. Среди животных выявляются, например, такие группы, как филътраторы (мелкие рачки, беззубка, кит и др.), пасущиеся формы (копытные, жуки-листоеды), собиратели (дятлы, кроты, землеройки, куриные), охотники на движущуюся добычу (волки, львы, мухи-ктыри и т. п.) и целый ряд других групп. Так, несмотря на большое несходство в организации, одинаковый способ овладения добычей приводит у львов и мух-ктырей к ряду аналогий в их охотничьих повадках и общих чертах строения: поджарости тела, сильному развитию мускулатуры, способности развивать кратковременно большую скорость и т. п.

Экологические классификации помогают выявлять возможные в природе пути приспособления организмов к среде.

2.5. Активная и скрытая жизнь

Обмен веществ – одно из главнейших свойств жизни, определяющее тесную вещественно-энергетическую связь организмов со средой. Метаболизм проявляет сильную зависимость от условий существования. В природе мы наблюдаем два основных состояния жизни: активную жизнедеятельность и покой. При активной жизнедеятельности организмы питаются, растут, передвигаются, развиваются, размножаются, характеризуясь при этом интенсивным метаболизмом. Покой может быть разным по глубине и продолжительности, многие функции организма при этом ослабевают или не выполняются совсем, так как уровень обмена веществ падает под влиянием внешних и внутренних факторов.

В состоянии глубокого покоя, т. е. пониженного вещественно-энергетического обмена, организмы становятся менее зависимыми от среды, приобретают высокую степень устойчивости и способны переносить условия, которые не могли бы выдержать при активной жизнедеятельности. Эти два состояния чередуются в жизни многих видов, являясь адаптацией к местообитаниям с нестабильным климатом, резкими сезонными изменениями, что характерно для большей части планеты.

При глубоком подавлении обмена веществ организмы могут вообще не проявлять видимых признаков жизни. Вопрос о том, возможна ли полная остановка обмена веществ с последующим возвращением к активной жизнедеятельности, т. е. своего рода «воскрешение из мертвых», дискутировался в науке более двух столетий.

Впервые явление мнимой смерти было обнаружено в 1702 г. Антони ван Левенгуком – открывателем микроскопического мира живых существ. Наблюдаемые им «анималькули» (коловратки) при высыхании капли воды сморщивались, выглядели мертвыми и могли пребывать в таком состоянии длительное время (рис. 8). Помещенные вновь в воду, они набухали и переходили к активной жизни. Левенгук объяснил это явление тем, что оболочка «анималькулей», очевидно, «не позволяет ни малейшего испарения» и они остаются живыми в сухих условиях. Однако через несколько десятилетий естествоиспытатели уже спорили о возможности того, что «жизнь может быть полностью прекращена» и восстановлена вновь «через 20, 40, 100 лет или более».

В 70-х годах XVIII в. явление «воскрешения» после высыхания было обнаружено и подтверждено многочисленными опытами у ряда других мелких организмов – пшеничных угриц, свободноживущих нематод и тихоходок. Ж. Бюффон, повторив опыты Дж. Нидгема с угрицами, утверждал, что «эти организмы можно заставить сколько угодно раз подряд умирать и вновь оживать». Л. Спалланцани впервые обратил внимание на глубокий покой семян и спор растений, расценив его как сохранение их во времени.


Рис. 8. Коловратка Philidina roseola на разных стадиях высыхания (по П. Ю. Шмидту, 1948):

1 – активная; 2 – начинающая сокращаться; 3 – полностью сократившаяся перед высыханием; 4 – в состоянии анабиоза


В середине XIX в. было убедительно установлено, что устойчивость сухих коловраток, тихоходок и нематод к высоким и низким температурам, недостатку или отсутствию кислорода возрастает пропорционально степени их обезвоживания. Однако оставался открытым вопрос, происходит ли при этом полное прерывание жизни или лишь ее глубокое угнетение. В 1878 г. Клод Бернал выдвинул понятие «скрытая жизнь», которую он характеризовал прекращением обмена веществ и «перерывом отношений между существом и средой».

Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни. В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.

Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.

Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.

Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.

Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).

Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.

Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.

He только в арктических и антарктических, но и в средних широтах некоторые морозостойкие виды членистоногих (коллемболы, ряд мух, жужелицы и др.) зимуют в состоянии оцепенения, быстро оттаивая и переходя к активности под лучами солнца, а затем вновь теряют подвижность при снижении температуры. Взошедшие весной растения прекращают и возобновляют рост и развитие вслед за похолоданием и потеплением. После выпавшего дождя голый грунт часто зеленеет за счет быстрого размножения почвенных водорослей, находившихся в вынужденном покое.


Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)


Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.

Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.

Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).

Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.


Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)


Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.

Несмотря на разнообразие экологических факторов, в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей. Эффект воздействия экологических факторов зависит не только от их характера, но и от дозы, воспринимаемой организмам. У всех организмов в процессе их эволюции выработались приспособления к восприятию факторов в определенных количественных пределах, которые являются пределами положительного влияния на организм, его жизнедеятельность. Однако для каждого организма, будь то растение, животное или микроорганизм, существует конкретное количество фактора, которое для него наиболее благоприятно. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто экологическим оптимумом для орга-низма данного вида. Оптимальными условиями следует считать те, при которых особи данного вида проявляют максимальную жизнедеятельность (растут и развиваются) и оставляют наибольшее число потомков, т.е. оказываются наиболее приспособленными к условиям среды обитания. Уменьшение или увеличение силы воздействия фактора относительно пределов оптимального диапазона снижает жизнеспособность организмов. И чем сильнее отклонение от
оптимума, тем больше выражено угнетающее действие данного фактора на организм. Максимальное и минимальное переносимые значения фактора - это критические точки, за пределами которых существование организма уже невозможно, наступает смерть. Они называются верхним и нижним пределами или экологическим минимумом и экологическим максимумом. Диапазон силы фактора между экологическим минимумом и максимумом называется пределами выносливости или пределами толерантности. В пределах толерантности жизнедеятельность организма сильно варьирует в зависимости от степени выраженности фактора и графически описывается куполообразной кривой (рис.1)

Размножение
Рост особей
Выживание особей

Как видно на представленном рисунке, в пределах толерантности выделяют несколько зон в зависимости от степени проявления жизнедеятельности организма при разной силе фактора. Эти зоны следующие:
1(F - F) - зона оптимума - это диапазон силы фактора, в пределах которого организм проявляет максимальную жизнедеятельность и наблюдается его рост, развитие и размножение;
(C - F, F - C) - зона нормальной жизнедеятельности - это диапазоны силы фактора, в пределах которых организм проявляет нормальную жизнедеятельность и наблюдается его рост и развитие, но размножение уже невозможно;
(S - C, C - S) - зона выживания - это диапазоны силы фактора, в пределах которых организм проявляет сниженную жизнедеятельность, способную обеспечить только его существование, но недостаточную, чтобы обеспечить его рост, развитие и размножение;
(A - S, S - A) - зона угнетения или зона пессимума - это диапазоны силы фактора, в пределах которых фактор оказывает угнетающее действие на организм и жизнедеятельность его настолько снижена, что в конечном итоге может произойти гибель организма.
Кривая может быть симметричной или асимметричной, широкой или узкой. Форма ее зависит от видовой принадлежности организма, от характера фактора и от того, какая из реакций организма выбрана в качестве ответной и на какой стадии развития.
Представители разных видов сильно отличаются по зоне оптимума и пределам толерантности к одному и тому же фактору (например, рыбы теплых и холодных морей). Одна и та же сила фактора может быть оптимальной для одного вида, пессимальной для другого вида и выходить за пределы вы-носливости для третьего вида. В зависимости от положения зоны оптимума в пределах толерантности организмы бывают теплолюбивые и холодоустойчивые, влаголюбивые и засухоустойчивые и т.д. Зона оптимума может быть разной у организмов одного и того же вида на разных стадиях развития (например, у рыб при созревании половых клеток и икрометании) к одному и тому же фактору, разной по отношению к разным факторам.
Каждый вид специфичен по своим экологическим потребностям. Для каждого вида характерны свои пределы толерантности по отношению к одному и тому же фактору. Эта особенность видов была сформулирована в 1924 году русским ботаником Л.Г.Раменским как «правило экологической индивидуальности видов» применительно к растениям, а несколь-
ко позже это правило широко было подтверждено и в зоологических исследованиях.
Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием экологическая пластичность или экологическая валентность вида. Чем шире диапазон колебания фактора, в пределах которого данный вид может существовать, тем больше его экологическая пластич-ность и тем шире у него пределы толерантности. Организмы с широкими пределами толерантности являются более выносливыми и их называют эврибионтными. Виды, способные существовать при небольших отклонениях фактора от оптимальной величины, экологически непластичны и являются маловыносливыми. Они имеют узкие пределы толерантности и называются стенобионтными или узкоспециализированными. Виды, длительно существующие при относительно стабильных условиях среды, вырабатывают черты стенобион- тности, а те, которые существуют при значительных колебаниях факторов среды, становятся эврибионтными.
Бионтность организма к тому или иному фактору обозначается прибавлением к названию фактора приставки эври- или стено-. Например:
стенотермный или эвритермный (по отношению к температуре);
стеногидрический или эвригидрический (по отношению к влажности);
стеногалинный или эвригалинный (по отношению к солености воды);
стенофагный или эврифагный (по отношению к пище); стеноойкный или эвриойкный (по отношению к местообитанию).
Эврибионтных организмов по отношению ко всем факторам очень мало. Эврибионтность способствует широкому распространению видов (простейшие, бактерии, грибы и т.д.). Стенобионтность же обычно ограничивает ареалы. Однако из-за высокой специфичности стенобионты могут занимать обширные территории (птица скопа).
Таким образом, к каждому из факторов среды особи приспосабливаются относительно независимым путем, при этом
экологическая пластичность по отношению к различным факторам среды оказывается неодинаковой. Поэтому каждый вид обладает своим специфическим экологическим спектром, т.е. суммой экологических валентностей по отношению к факторам среды обитания.

Любой экологический фактор динамичен, изменчив во времени и пространстве.

Теплое время года с правильной периодичностью сменяется холодным; в течение суток наблюдаются более или менее широкие колебания температуры, освещенности, влажности, силы ветра и т. п. Все это - природные, колебания экологических факторов, однако воздействовать на них способен и человек. Влияние антропогенной деятельности на окружающую среду проявляется в общем случае в изменении режимов (абсолютных значений и динамики) экологических факторов, а также - состава факторов, например при внесении ксенобиотиков в природные системы в процессе производства или специальных мероприятий - таких, как защита растений при помощи ядохимикатов или внесение органических и минеральных удобрений в почву.

Однако каждому живому организму требуются строго определенные уровни, количества (дозы) экологических факторов, а также определенные пределы их колебаний. Если режимы всех экологических факторов соответствуют наследственно закрепленным требованиям организма (т. е. его генотипу), то он способен выживать и давать жизнеспособное потомство. Требования и устойчивость того или иного вида организма к экологическим факторам определяют границы географической зоны, в пределах которой он может обитать, т. е. его ареал. Факторы окружающей среды определяют также амплитуду колебаний численности того или иного вида во времени и пространстве, которая никогда не остается постоянной, а изменяется в более или менее широких пределах.

Закон лимитирующего фактора

Живой организм в природных условиях одновременно подвергается воздействию со стороны не одного, а многих экологических, факторов - как биотических, так и абиотических, причем каждый фактор требуется организму в определенных количествах или дозах. Растения нуждаются в значительных количествах влаги, питательных веществ (азот, фосфор, калий), но другие вещества, например бор или молибден, требуются в ничтожных количествах. Тем не менее недостаток или отсутствие любого вещества (как макро-, так и микроэлемента) отрицательно сказывается на состоянии организма, даже если все остальные присутствуют в требуемых количествах. Один из основоположников агрохимии - немецкий ученый Юстус Либих (1803-1873) сформулировал теорию минерального питания растений. Он установил, что развитие растения или его состояние зависят не от тех химических элементов (или веществ), то есть факторов, которые присутствуют в почве в достаточных количествах, а от тех, которых не хватает. Например, достаточное для растения содержание азота или фосфора в почве не может компенсировать недостаток железа, бора или калия. Если любого (хотя бы одного) из элементов питания в почве меньше, чем требуется данному растению, то оно будет развиваться ненормально, замедленно или иметь патологические отклонения. Результаты своих исследований Ю. Либих сформулировал в виде фундаментального закона минимума.

МБОУ « Шумячская СШ им. В.Ф.Алешина»

Итоговый проект на тему: «Закономерности взаимоотношений организмов и среды».

Работу выполнил:

ученик 9 класса «А»

Сидоренков Егор

Учитель: Василенкова

Ольга Владимировна

пгт. Шумячи

Паспорт проекта

Название проекта

Закономерности взаимоотношений организмов и среды.

Образовательная организация

МБОУ «Шумячская СШ им. В.Ф.Алешина»

Разработчики

Учитель биологии МБОУ «Шумячская СШ им. В.Ф.Алешина»-Василенкова О.В.

Ученик 9 «А» класса МБОУ «Шумячская СШ им. В.Ф.Алешина»-Сидоренков Егор

Актуальность

В настоящее время большое внимание уделяется сохранению здоровья школьников. Одной из проблем является, по нашему убеждению, отсутствие у детей осознанного отношения к своему здоровью. Мы считаем, что главное - помочь школьникам выработать собственные жизненные ориентиры в выборе здорового образа жизни, научить оценивать свои физические возможности, видеть перспективы их развития, осознать ответственность за свое здоровье.

Цель проекта

Изучение влияния древесных пород на воздушную среду и здоровье учащихся.

Задачи проекта

Методы

    анализ литературы,

    метод практических действий,

    индивидуальная работа.

Этапы работы над проектом

Исследование проводилось в три этапа. На первом этапе я изучил проблему, определил цель и задачи теоретической и экспериментальной работы, отобрал наиболее оптимальные диагностические способы оценки здоровья. На втором этапе на основе данных медицинского работника школы, изучил состояние здоровья учащихся по видам заболеваний и уровень физической подготовленности по отношению к группе здоровья. На третьем этапе исследования обработал данные, обобщил результаты и сделал выводы.

Реализация проекта

Для реализации проекта были определены следующие направления: повышение уровня профессиональной компетентности педагогов, взаимодействие с родителями.

Данный проект реализуется посредством внедрения в работу проектного метода обучения.

Предполагаемые результаты

Продукты проекта

Исследовательская работа, сопровождающаяся

презентацией.

Приложение

Фотографии.

Пояснительная записка

В настоящее время большое внимание уделяется сохранению здоровья школьников. Правительством Российской Федерации разработана и утверждена Национальная образовательная инициатива «Наша новая школа». Одним из направлений работы является сохранение и укрепление здоровья детей.

Концепция школьного образования гласит, в школьном возрасте закладывается фундамент здоровья, происходит созревание и совершенствование жизненных систем и функций организма, повышается устойчивость к внешним воздействиям, формируются движения, осанка, приобретаются привычки.представления, черты характера, без которых невозможен здоровый образ жизни.

Значимость данной проблемы рассматривается и в Федеральной программе развития образования, Концепции модернизации образования, в Конвенции о правах ребенка. В Законе «Об образовании» статья 51 п.1 говорится, что образовательное учреждение создает условия, гарантирующие охрану и укрепление здоровья воспитанников.

Одной из проблем является, по нашему убеждению, отсутствие у детей осознанного отношения к своему здоровью. Мы считаем, что главное - помочь школьникам выработать собственные жизненные ориентиры в выборе здорового образа жизни, научить оценивать свои физические возможности, видеть перспективы их развития, осознать ответственность за свое здоровье.

В современномшкольном учреждении необходим поиск новых подходов к оздоровлению детей, базирующихся на мониторинге состояния здоровья каждого ребёнка, учёте и использовании особенностей его организма, индивидуализации оздоровительных мероприятий, создании определённых условий.

Одним из перспективных методов, способствующих решению этой проблемы, является метод проектной деятельности. Основываясь на личностно-ориентированном подходе к обучению и воспитанию, он развивает познавательный интерес, любознательность к различным областям знаний, формирует навыки сотрудничества, практические умения. В проекте можно объединить содержание образования из различных областей знаний, кроме того, открываются большие возможности в организации совместной познавательно-поисковой деятельности школьников, педагогов и родителей.

Школьники испытывают потребность в общении с природой. Они учатся любить ее, наблюдать, сопереживать, понимать, что наша Земля не может существовать без растений, так как они не только помогают нам дышать, но и лечат от разных болезней. Мы должны беречь и сохранять их, уметь правильно пользоваться их лечебными свойствами.

Формируя гуманное отношение к природе, необходимо, чтобы школьник понял, что человек и природа взаимосвязаны, поэтому забота о природе, есть забота о человеке, его будущем.

Гипотеза: Эффективность формирования основ здорового образа жизни у школьников обеспечивается следующими педагогическими условиями: информацией об основах здорового образа жизни; обогащение предметно-пространственной среды путем подбора целебных растений для арома и фитотерапии;

Обоснование актуальности проекта

Чтобы активно влиять на позицию ребенка по отношению к собственному здоровью, необходимо знать, прежде всего, что сам термин «здоровье» определяется неоднозначно.

Понятие “здоровье” имеет множество определений. Но самым популярным, и, пожалуй, наиболее емким следует признать определение, данное Всемирной организацией здравоохранения: “Здоровье - это состояние полного физического, психического и социального благополучия, а не просто отсутствие болезней или физических дефектов”.

Предполагаемые результаты

    Развитие исследовательских умений и навыков;

    Формирование у детей осознанного отношения к своему здоровью;

    Обогащение предметно-пространственной среды путем подбора целебных растений для арома и фитотерапии;

Цели:

Формирование у детей осознанного отношения к своему здоровью и обеспечение максимальной активности детей в процессе познания мира.

Изучение влияния древесных пород на воздушную среду и здоровье учащихся.

Задачи:

Привлечь внимание к проблеме формирования у учащихся культуры сохранения собственного здоровья.

Изучить вопрос влияния древесных пород на воздушную среду, опираясь на научную литературу; фитонцидные свойства древесных пород.

Осуществить отбор древесных пород, исходя из их фитонцидных

Введение

Литературный обзор

География Шумячского района

Результаты исследования

Изучение планировки пришкольной территории

Изучение видового состава древесных пород

Изучение зеленой защитной полосы пришкольного участка

Санитарно – гигиеническая оценка древесных пород

Изучение лечебного действия деревьев и кустарников

Анализ состояния здоровья учащихся школы

Школьные болезни

Группы здоровья

Диагностика здоровья учащихся в режиме школы

Диагностика больных учащихся в режиме школы

Выводы и заключение

Список литературы

Приложение

1. Введение

Вопросам климата пришкольной территории (участка) в последние годы уделяется большое внимание, поскольку состояние учебных, воспитательно - образовательных, общественных и других типов учреждений напрямую связано со здоровьем человека.

Создание ограждений, визуально расширяющего границы участка и создающего эффект уединения является создание насаждений из деревьев и кустарников.

Характеризуя полезные функции насаждений, можно отметить их существенную роль в защите территории от пыли, вредных для человека газообразных соединений. Насаждения в значительной степени снижают концентрацию вредных газообразных веществ в атмосфере. В этом отношении эффективны кустарники, а именно кизильник, боярышник, калина, из деревьев – тополь. Это растения, имеющие опушенные или выделяющие клейкие вещества листья.

Всему растительному миру присущи фитонцидные свойства, однако степень антимикробной активности летучих выделений тех или иных видов различна. Так, фитонциды убивают вредные микроорганизмы у черемухи обыкновенной – за 15 минут, лимонного дерева – за 5 минут, у черной смородины – за 10 минут, но стоит помнить, что в воздухе микробы не размножаются, но могут сохранять свою жизнеспособность и болезнетворные свойства длительное время.

Актуальность проекта: в настоящее время большое внимание уделяется сохранению здоровья школьников. Одной из проблем является, по нашему убеждению, отсутствие у детей осознанного отношения к своему здоровью. Мы считаем, что главное - помочь школьникам выработать собственные жизненные ориентиры в выборе здорового образа жизни, научить оценивать свои физические возможности, видеть перспективы их развития, осознать ответственность за свое здоровье.

Одним из перспективных методов, способствующих решению этой проблемы, является метод проект­ной деятельности.

Фитонциды убивают вредные микроорганизмы - это способствует улучшению здоровья человека.

Объектом исследования стала воздушная среда пришкольного участка и состояние здоровья учащихся школы.

Цель исследования:

- изучение влияния древесных пород на воздушную среду и здоровье учащихся.

Формирование у детей осознанного отношения к своему здоровью и обеспечение максимальной активности детей в процессе познания мира.

Задачи:

    Привлечь внимание к проблеме формирования у учащихся культуры сохранения собственного здоровья.

    Изучить вопрос влияния древесных пород на воздушную среду, опираясь на научную литературу; фитонцидные свойства древесных пород.

    Осуществить отбор древесных пород, исходя из их фитонцидных свойств.

Методы исследования:

    анализ литературы,

    объяснительно-иллюстративный метод,

    метод практических действий,

    индивидуальная работа.

Методика исследования:

Исследование проводилось в три этапа. На первом этапе я изучил проблему, определил цель и задачи теоретической и экспериментальной работы, отобрал наиболее оптимальные диагностические способы оценки здоровья.

На втором этапе на основе данных медицинского работника школы, изучил состояние здоровья учащихся по видам заболеваний и уровень физической подготовленности по отношению к группе здоровья.

На третьем этапе исследования обработал данные, обобщил результаты и сделал выводы.

2.Литературный обзор

В этом проекте были использованы книги не только непосредственно по данной теме, но и дополнительные книги по географическому положению объекта исследования, природным условиям на данной территории.

Разные книги содержат различную информацию: одни делают упор на местообитания и область определения растений, другие – на биологические особенности вида. Поэтому в проекте я не выделял какую-либо одну книгу, на которую опиралась и полностью основывалась на ней; все имеющиеся книги были одинаково полезны.

В целом все книги помогли мне правильно исследовать территорию окрестностей школы. На основе данных из многих книг я смог правильно сформулировать цель и задачи исследования, а также четко сделать вывод.

3. География Шумячского района

    Растительность

Климат

Климат умеренно-континентальный. Средняя температура января −9 C, июля +17 C. Относится к избыточно увлажняемым территориям, осадков от 630 до 730 мм в год, больше в северо-западной части - где чаще проходят циклоны, максимум летом . Среднегодовое количество дней с осадками от 170 до 190. Вегетационный период 129-143 дня. Период с положительной среднесуточной температурой воздуха продолжается 213-224 дня. Средняя продолжительность безморозного периода 125-148 дней. Для района характерна значительная изменчивость циркуляции атмосферы в течение года, что приводит к весьма заметным отклонениям температуры и осадков. Распределение осадков в течение года также неравномерно. Наибольшее количество их выпадает летом (порядка 225-250 мм). За год в целом преобладают ветры западного, юго-западного и южного направлений. Также Шумячский район характеризуется высокой облачностью (наибольшее количество ясных дней весной - до 10%)

    Почвы

Преобладающими типами почв являются дерново-подзолистые (78 % площади) и супесчаные. Реже встречаются типичные подзолы , дерновые, различные виды болотных и пойменных почв. Отмечается низкое содержание гумуса и деградация плодородия, а в результате прекращения мелиорации местами развивается водная эрозия почв.

4.Результаты исследований

4.1. Изучение планировки пришкольной территории

Школа является многофункциональным учреждением. В течение учебного года учащиеся не только обучаются, а также отдыхают, занимаются спортом и гуляют на территории пришкольного участка. Поэтому каждому ребенку на территории должно быть не только комфортно, но и безопасно.

Для этого была проведена оценка пришкольной территории по наличию и расположению рядом с ней основных функциональных зон.

Таблица №1

Оценка пришкольной территории по наличию и расположению рядом с ней основных функциональных зон

Измерения

Результаты

Расстояние от границ школы до предприятий быта, промышленного предприятия

не менее 50

Рядом со школой отсутствуют промышленные предприятия.

Расстояние до ближайшего жилого дома

не менее 10

Расстояние от школы до дороги с нерегулярным движением автотранспорта

Расстояние от школы до дороги с регулярным движением автотранспорта

Вывод: в расположении основных функциональных зон выдержаны все санитарно-гигиенические нормы.

4.2. Изучение видового состава древесных пород на территории пришкольного участка МБОУ « Шумячская СШ им. В.Ф. Алешина»

Был определен основной видовой состав деревьев и кустарников. Всего 17 видов деревьев и 2 вида кустарников.

По результатам исследования было выяснено, что на территории пришкольного участка встречаются древесные породы, обладающие фитонцидными свойствами (береза, липа, рябина, сирень и т.д.) и они размещены со стороны автодороги, защищая школу от копоти, пыли и вредных микроорганизмов.

Вывод : большая часть древесных пород правильно высажена на территории участка с учетом главной цели защиты детей от пыли и вредных микроорганизмов.

4.3. Изучение зеленой защитной полосы пришкольного участка

Озелененную часть пришкольной территории не зря называют «зеленой защитной полосой» Она выполняет функции защиты школьного здания от шума, пыли, нормализует состав воздуха. Поэтому с помощью рулетки были произведены замеры основных показателей, характеризующих зеленую защитную зону, и получены следующие данные

Таблица №2

Зеленая защитная полоса пришкольного участка

Измерения

Санитарно-гигиенические нормы, м

Полученные результаты

Ширина защитной полосы из деревьев и кустарников:

на границе территории

со стороны магистрали

не менее 1,5

не менее 6

Расстояние от школы до деревьев

не менее 15

Расстояние от школы до кустарников

не менее 5

Ширина между узколиственными деревьями

Ширина между широколиственными деревьями

Вывод : основные показатели, характеризующие зеленую защитную зону соответствуют санитарно-гигиеническим нормам.

4.4. Санитарно – гигиеническая оценка древесных пород

Произведена оценка жизненной устойчивости деревьев.

Результаты исследований сведены в таблицу.

Таблица №3

Санитарно-гигиеническая оценка древесных пород

Название дерева

Санитарно – гигиеническая оценка

Эстетическая оценка

Санитарно-гигиенические функции зеленых насаждений

Снижение запыленности и загазованности воздуха

Клен, сирена, липа

Газозащитная роль зеленых насаждений

Клен, сирень, береза,липа, можжевельник

Ветрозащитная роль

Фитонцидное действие

Береза, сосна, сирень, черемуха, можжевельник и т. д.

4.5. Изучение лечебного действия деревьев и кустарников

Изучены фитонцидные свойства древесных пород и выявлено их влияние на организм человека.

Изучение производилось анализом научной литературы, результаты исследования сведены в таблицу.

Таблица №4

Деревья и кустарники, летучие выделения которых обладают лечебным действием

Семейство, вид

Лечебное действие

Степень антимикробной активности, мин

Береза

Выполняет роль санитара окружающей среды, расправляясь со многими болезнетворными организмами

Ива желтая

Выполняет роль санитара окружающей среды

Клен

Фитонциды увеличивают защитные силы организма

Липа

Вещества оказывают бронхолитическое воздействие

Сосна обыкновенная

Практически все виды, входящие в род сосновых, обладают антимикробными свойствами. Сосновые фитонциды увеличивают защитные силы организма и снижают риск простудных заболеваний

Сирень

Выделяемые вещества обладают антимикробными свойствами

Смородина черная

Фитонциды активны по отношению к золотистому стафилококку, микроскопическим грибам, возбудителям дизентерии, дифтерии

Черемуха

Исключительные антимикробные свойства фитонцидов

Яблоня

Выделяемые вещества активны по отношению к возбудителям дизентерии, золотистого стафилококка, протея, вирусов группы А

Из анализа результатов таблицы, видно, что наибольшими фитонцидными свойствами обладают береза, черная смородина, сирень, сосна – именно эти породы наиболее полезны для человека.

5. Анализ состояния здоровья учащихся школы

Исходя из санитарно - гигиенического состояния пришкольной территории, я решил сделать оценку здоровья учащихся нашей школы.

Школьные болезни

Результаты медосмотров показывают, что на первом месте стоят заболевания дыхательных путей, болезни желудка, нарушение осанки и зрения.

Большую часть времени дети проводят за партой, телевизором, компьютером. Причина нарушения зрения – переутомление глаз от чрезмерной нагрузки и несоблюдением правил ухода за глазами. Данные опроса свидетельствуют, что переутомление происходит не от школьной загруженности, а от образа жизни. Большую часть свободного времени подростки тратят на просмотр сериалов и компьютерные игры.

Группы здоровья

Таблица №5

Учебный год

Всего учащихся

Диагностика здоровья учащихся в режиме школы

Таблица №6

Учебный год

Всего учащихся

Всего здоровых, %

Прослеживается отрицательная динамика здоровья детей по сравнению с каждым предыдущим годом.

Диагностика больных учащихся в режиме школы

Таблица №7

Виды заболеваний

2014/15 уч. г.

2015/16 уч. г.

2016/17 уч. г.

Нарушение зрения

Сердечно-сосудистые заболевания

Нарушение осанки

Из таблиц видно, что здоровыми признаны чуть более 1/3 учащихся школы.

Выводы и заключение:

Говоря об эстетической оценке деревьев, можно сказать, что в основном деревья имеют высокие декоративные качества и проведение санитарных мероприятий не требуется. Но есть и деревья средней декоративности, которым требуются небольшие работы по лечению ран, обрезке сухих ветвей и сучьев с последующей заделкой и декорированием мест повреждения. Такая помощь нужна берёзе.

В ходе работы проанализировано достаточно много материала, проведены исследования, сделаны выводы. Во всех формах организации использовались следующие принципы:

    работа для школы должна быть полезной;

    работа должна быть направлена на решение вопросов охраны здоровья детей;

    работа должна способствовать обретению учащимися дополнительных знаний и умений в области экологической культуры, медицины и сохранения здоровья.

Своим проектом я решил показать свое отношение и обратить внимание других ребят к здоровому образу жизни. Ведь забота о нашем здоровье – задача не только родителей, учителей, но и нас самих.

7. Литература

    Андреева Н.Д., Малиновская Н.В. «Биология в школе» №8, 2010.

    Артюхова И.С. «Биология в школе» №7, 2008.

    Медведев В.А. «Тысяча забытых рецептов», 2005г.

Приложение

Можжевельник

Липы по периметру школы

Сирень

Клён

Волейбольная площадка

Детская площадка

Спортивная площадка



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...