3 признак равенства треугольников называется. Третий признак равенства треугольников

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = A 1 B 1 , ∠A = ∠A 1 , ∠B = ∠B 1 (рис. 68). Докажем, что Δ АВС = Δ А 1 В 1 С 1 .

Рис. 68

Наложим треугольник АВС на треугольник A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , сторона АВ - с равной ей стороной AjBj, и вершины С и С 1 оказались по одну сторону от прямой А 1 В 1 .

Так как ∠A = ∠A 1 и ∠B = ∠B 1 , то сторона АС, наложится на луч А 1 С 1 , а сторона ВС - на луч В 1 С 1 . Поэтому вершина С - общая точка сторон АС и ВС - окажется лежащей как на луче А 1 С 1 , так и на луче B 1 C 1 и, следовательно, совместится с общей точкой этих лучей - вершиной С 1 . Значит, совместятся стороны АС и A 1 C 1 , ВС и В 1 С 1 .

Итак, треугольники АВС и А 1 В 1 С 1 полностью совместятся, поэтому они равны. Теорема доказана.

Третий признак равенства треугольников

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = А 1 В 1 , ВС = В 1 С 1 , СА = С 1 А 1 (рис. 69).


Рис. 69

Докажем, что Δ АВС = Δ А 1 В 1 С 1 . Приложим треугольник АВС к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , вершина В - с вершйной В 1 , а вершины С и С 1 оказались по разные стороны от прямой A 1 B 1 (рис. 70).


Рис. 70

Возможны три случая: луч С 1 С проходит внутри угла А 1 С 1 В 1 (рис. 70, а); луч С 1 С совпадает с одной из сторон этого угла (рис. 70, б); луч С 1 С проходит вне угла А 1 С 1 В 1 (рис. 70, в). Рассмотрим первый случай (остальные случаи рассмотрите самостоятельно).

Так как по условию теоремы стороны АС и А 1 С 1 , ВС и В 1 С 1 равны, то треугольники А 1 С 1 С и В 1 С 1 С - равнобедренные (см. рис. 70, а). По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠A 1 CB 1 = ∠A 1 C 1 B 1 . Итак, АС = А 1 С 1 , ВС = В 1 С 1 , ∠C = ∠C 1 .

Следовательно, треугольники АВС и А 1 В 1 С 1 равны по первому признаку равенства треугольников. Теорема доказана.

Из третьего признака равенства треугольников следует, что треугольник - жёсткая фигура . Поясним, что это означает.

Представим себе две рейки, у которых два конца скреплены гвоздём (рис. 71, а). Такая конструкция не является жёсткой: сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмём ещё одну рейку и скрепим её концы со свободными концами первых двух реек (рис. 71, б).


Рис. 71

Полученная конструкция - треугольник - будет уже жёсткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т. е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, так как новый треугольник должен быть равен исходному по третьему признаку равенства треугольников.

Это свойство - жёсткость треугольника - широко используется на практике. Так, чтобы закрепить столб в вертикальном положении, к нему ставят подпорку (рис. 72, а); такой же принцип используется при установке кронштейна (рис. 72, б).


Рис. 72

Задачи

121. Отрезки АВ и CD пересекаются в середине О отрезка АВ, ∠OAD = ∠OBC.

    а) Докажите, что Δ СВО = Δ DAO;
    б) найдите ВС и СО, если CD = 26 см, AD = 15 см.

122. На рисунке 53 (см. с. 31) ∠1 = ∠2, ∠3 = ∠4.

    а) Докажите, что Δ АВС = Δ CDA;
    б) найдите АВ и ВС, если АО =19 см, CD = 11 см.

123. На биссектрисе угла А взята точка D, а на сторонах этого угла - точки В и С такие, что ∠ADB = ∠ADC. Докажите, что BD = CD.

124. По данным рисунка 73 докажите, что ОР = ОТ, ∠P = ∠T.


Рис. 73

125. На рисунке 74 ∠DAC = ∠DBC, АО = ВО. Докажите, что ∠C = ∠D и AC = BD.


Рис. 74

126. На рисунке 74 ∠DAB = ∠CBA, ∠CAB = ∠DBA, АС =13 см. Найдите BD.

127. В треугольниках АВС и А 1 B 1 С 1 АВ = А 1 В 1 , ВС = B 1 C 1 , ∠B - ∠B 1 . На сторонах АВ и A 1 B 1 отмечены точки D и D 1 так, что ∠ACO = ∠A 1 C 1 D 1 . Докажите, что Δ BCD = Δ B 1 C 1 D 1 .

128. Докажите, что в равных треугольниках биссектрисы, проведённые к соответственно равным сторонам, равны.

129. Отрезки АС и BD пересекаются в середине О отрезка АС, ∠BCO = ∠DAO. Докажите, что Δ ВОА = Δ DOC.

130. В треугольниках АВС и A 1 В 1 С 1 отрезки СО и С 1 О 1 - медианы, BC = B 1 C 1 , ∠B - ∠B 1 и ∠C = ∠C 1 . Докажите, что:

    а) Δ АСО = Δ А 1 С 1 О 1 ;
    б) Δ ВСO = Δ В 1 С 1 O.

131. В треугольниках DEF и MNP EF - NP, DF = MP и ∠F = ∠P. Биссектрисы углов Е и D пересекаются в точке О, а биссектрисы углов М и N - в точке К. Докажите, что ∠DOE = ∠MKN.

132. Прямая, перпендикулярная к биссектрисе угла А, пересекает стороны угла в точках М и N. Докажите, что треугольник AMN - равнобедренный.

133. Докажите, что если биссектриса треугольника является его высотой, то треугольник - равнобедренный.

134. Докажите, что равнобедренные треугольники равны, если основание и прилежащий к нему угол одного треугольника соответственно равны основанию и прилежащему к нему углу другого треугольника.

135. Докажите, что если сторона одного равностороннего треугольника равна стороне другого равностороннего треугольника, то треугольники равны.

136. На рисунке 52 (см. с. 31) АВ-АС, BD = DC и ∠BAC = 50°. Найдите ∠CAD.

137. На рисунке 53 (см. с. 31) BC = AD, AB = CD. Докажите, что ∠B = ∠D.

138. На рисунке 75 AB = CD и BD = АС. Докажите, что: a) ∠CAD = ∠ADB; б) ∠BAC = ∠CDB.


Рис. 75

139. На рисунке 76 AB = CD, AD = BC, BE - биссектриса угла ABC, a DF - биссектриса угла ADC. Докажите, что:

    а) ∠ABE = ∠ADF;
    б) Δ АВЕ = Δ CDF.


Рис. 76

140. В треугольниках АВС и А 1 В 1 С 1 медианы ВМ и В 1 М 1 равны, АВ = А 1 В 1 АС = А 1 С 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

141. В треугольниках АВС и А 1 В 1 С 1 отрезки AD и A 1 D 1 - биссектрисы, АВ = А 1 В 1 , BD = B 1 D 1 и AD = A 1 D 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

142. Равнобедренные треугольники ADC и BCD имеют общее основание DC. Прямая АВ пересекает отрезок CD в точке О. Докажите, что: a) ∠ADB = ∠ACB; б) DO = OC.

Ответы к задачам

    121. б) ВС = 15 см, СО = 13 см.

    122. б) АВ = 11 см, ВС =19см.

    142. Указание. Рассмотреть два случая. Точка В лежит: а) на луче АО; б) на продолжении луча АО.

Второй признак равенства треугольников

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

MN = PR ∡ N = ∡ R ∡ M = ∡ P

Как и в доказательстве первого признака, нужно убедиться, достаточно ли этого для равенства треугольников, можно ли их полностью совместить?

1. Так как MN = PR , то эти отрезки совмещаются, если совместить их конечные точки.

2. Так как ∡ N = ∡ R и ∡ M = ∡ P , то лучи \(MK\) и \(NK\) наложатся соответственно на лучи \(PT\) и \(RT\).

3. Если совпадают лучи, то совпадают точки их пересечения \(K\) и \(T\).

4. Совмещены все вершины треугольников, то есть Δ MNK и Δ PRT полностью совместятся, значит они равны.

Третий признак равенства треугольников

Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.


MN = PR KN = TR MK = PT

Опять попробуем совместить треугольники Δ MNK и Δ PRT наложением и убедится, что соответственно равные стороны гарантирует и равенство соответственных углов этих треугольников и они полностью совпадут.

Совместим, например, одинаковые отрезки \(MK\) и\(PT\). Допустим, что точки \(N\) и \(R\) при этом не совмещаются.

Пусть \(O\) - середина отрезка \(NR\). Соответственно данной информации MN = PR , KN = TR . Треугольники \(MNR\) и \(KNR\) равнобедренные с общим основанием \(NR\).

Поэтому их медианы \(MO\) и \(KO\) являются высотами, значит перпендикулярны \(NR\). Прямые \(MO\) и \(KO\) не совпадают, так как точки \(M\), \(K\), \(O\) не лежат на одной прямой. Но через точку \(O\) прямой \(NR\) можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

Доказано, что должны совместиться и вершины \(N\) и \(R\).

Третий признак позволяет назвать треугольник очень сильной, устойчивой фигурой, иногда говорят, что треугольник - жёсткая фигура . Если длины сторон не меняются, то углы тоже не меняются. Например, у четырёхугольника такого свойства нет. Поэтому разные поддержки и укрепления делают треугольными.

Но своеобразную устойчивость, стабильность и совершенство числа \(3\) люди оценивали и выделяли давно.

Об этом говорят сказки.

Там мы встречаем «Три медведя», «Три ветра», «Три поросенка», «Три товарища», «Три брата», «Три счастливца», «Трое умельцев», «Три царевича», «Три друга», «Три богатыря» и др.

Там даются «три попытки», «три совета», «три указания», «три встречи», исполняются «три желания», нужно потерпеть «три дня», «три ночи», «три года», пройти через «три государства», «три подземных царства», выдержать «три испытания», проплыть через «три моря».

С далеких времен и по сей день поиск признаков равенства фигур считается базовой задачей, которая является основой основ геометрии; сотни теорем доказываются с использованием признаков равенства. Умение доказывать равенство и подобие фигур — важная задача во всех сферах строительства.

Вконтакте

Применение навыка на практике

Предположим, что у нас есть фигура, начерченная на листе бумаги. При этом у нас есть линейка и транспортир, с помощью которых мы можем замерять длины отрезков и углы между ними. Как перенести на второй лист бумаги фигуру таких же размеров или увеличить ее масштаб в два раза.

Мы знаем, что треугольник — это фигура, состоящая из трех отрезков, называемых сторонами, образующими углы. Таким образом, существует шесть параметров — три стороны и три угла, которые определяют эту фигуру.

Однако, замерив величину всех трех сторон и углов, перенести данную фигуру на другую поверхность окажется непростой задачей. Кроме того, есть смысл задать вопрос: а не достаточно ли будет знания параметров двух сторон и одного угла, или всего лишь трех сторон.

Замерив длину двух сторон и между ними, затем отложим этот угол на новом листке бумаги, так мы сможем полностью воссоздать треугольник. Давайте разберемся, как это сделать, научимся доказывать признаки, по которым их можно считать одинаковыми, и определимся с тем, какое минимальное число параметров достаточно знать, чтобы получить уверенность в том, что треугольники одинаковы.

Важно! Фигуры называются одинаковыми, если отрезки, образующие их стороны, и углы равны между собой. Подобными называются те фигуры, у которых стороны и углы пропорциональны. Таким образом, равенство — это подобие с коэффициентом пропорциональности 1.

Какие существуют признаки равенства треугольников, дадим их определение:

  • первый признак равенства: два треугольника можно считать одинаковыми, если равны две их стороны, а также угол между ними.
  • второй признак равенства треугольников: два треугольника будут одинаковыми, если одинаковы два угла, а также соответствующая сторона между ними.
  • третий признак равенства треугольников: треугольники можно считать одинаковыми, когда все их стороны имеют равную длину.

Как доказать, что треугольники равны. Приведем доказательство равенства треугольников.

Доказательство 1 признака

Долгое время среди первых математиков данный признак считался аксиомой, однако, как оказалось, его можно геометрически доказать, опираясь на более базовые аксиомы.

Рассмотрим два треугольника — KMN и K 1 M 1 N 1 . Сторона КМ имеет такую же длину как и K 1 M 1 , а KN = K 1 N 1 . А угол MKN равен углам KMN и M 1 K 1 N 1 .

Если рассматривать KM и K 1 M 1, KN и K 1 N 1 как два луча, которые выходят из одной точки, то можно сказать, что между этими парами лучей одинаковые углы (это задано условием теоремы). Произведем параллельный перенос лучей K 1 M 1 и K 1 N 1 из точки K 1 в точку К. Вследствие этого переноса лучи K 1 M 1 и K 1 N 1 полностью совпадут. Отложим на луче K 1 M 1 отрезок длиной КМ, берущий свое начало в точке К. Поскольку по условию полученный отрезок и будет равен отрезку K 1 M 1 то точки М и M 1 совпадают. Аналогично и с отрезками KN и K 1 N 1 . Таким образом, перенося K 1 M 1 N 1 так, что точки K 1 и К совпадают, а две стороны накладываются, получаем полное совпадение и самих фигур.

Важно! В интернете встречаются доказательства равенства треугольников по двум сторонам и углу при помощи алгебраических и тригонометрических тождеств с численными значениями сторон и углов. Однако исторически и математически данная теорема была сформулирована задолго до алгебры и раньше, чем тригонометрия. Для доказательства этого признака теоремы использовать что-либо, кроме базовых аксиом, некорректно.

Доказательство 2 признака

Докажем второй признак равенства по двум углам и стороне, основываясь на первом.

Доказательство 2 признака

Рассмотрим KMN и PRS. К равен Р, N равен S. Сторона КN имеет такую же длину, как и РS. Необходимо доказать, что KMN и PRS — одинаковы.

Отразим точку М относительно луча КN. Полученную точку назовем L. При этом длина стороны КМ = КL. NKL равен PRS. KNL равен RSP.

Поскольку сумма углов равна 180 градусов, то KLN равен PRS, а значит PRS и KLN- одинаковые (подобные) по обеим сторонам и углу, согласно первому признаку.

Но, так как KNL равен KMN, то KMN и PRS — две одинаковые фигуры.

Доказательство 3 признака

Как установить, что треугольники равны. Это прямо вытекает из доказательства второго признака.

Длина KN = PS. Поскольку К = Р, N = S, KL=KM, при этом КN = KS, MN=ML, то:

Это означает, что обе фигуры являются подобными друг другу. Но так как их стороны одинаковы, то и они также равны.

Из признаков равенства и подобия вытекает множество следствий. Одно из них заключается в том, что для того, чтобы определить, равны два треугольника или нет, необходимо знать их свойства, одинаковы ли:

  • все три стороны;
  • обе стороны и угол между ними;
  • оба угла и сторона между ними.

Использование признака равенства треугольников для решения задач

Следствия первого признака

В ходе доказательства можно прийти к ряду интересных и полезных следствий.

  1. . Тот факт, что точка пересечения диагоналей параллелограмма делит их на две одинаковые части — следствие признаков равенства и вполне поддается доказательству.Стороны дополнительного треугольника (при зеркальном построении, как в доказательствах, которые мы выполняли) — сторонам главного (стороны параллелограмма).
  2. Если есть два прямоугольных треугольника, у которых одинаковые острые углы, то они подобны. Если при этом катет первого равен катету второго, то они равны. Понять это довольно легко — у любых прямоугольных треугольников есть прямой угол. Поэтому признаки равенства для них более просты.
  3. Два треугольника с прямыми углами, у которых два катета имеют одинаковую длину, можно считать одинаковыми. Это связано с тем, что между двумя катетами угол всегда равен 90 градусов. Поэтому по первому признаку (по двум сторонам и углу между ними) все треугольники с прямыми углами и одинаковыми катетами — равны.
  4. Если есть два прямоугольных треугольника, и у них один катет и гипотенуза равны, значит и треугольники одинаковы.

Докажем эту простую теорему.

Третий признак равенства треугольников по трем сторонам формулируется в виде теоремы.

Теорема : Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство. рассмотримΔABC и ΔA 1 B 1 C 1 у которых AB=A 1 B 1 , AC=A 1 C 1 , ВС=В 1 С 1 . Докажем, что ΔABC=ΔA 1 B 1 C 1

Пусть ABC и A 1 B 1 C 1 – треугольники, у которых AB=A 1 B 1 , AC=A 1 C 1 , BC=B 1 C 1 . Наложим ∆ABC на ∆A 1 B 1 C 1 так, чтобы вершина A совместиласьA 1 , а вершины B и B 1 , а вершины С и С 1 оказались по разные стороны от прямой A 1 В 1 . Возможны три случая: 1) луч С 1 С проходит внутри угла А 1 С 1 В 1 (рис. а)); 2)луч С 1 С совпадает с одной из сторон этого угла (рис. б)); луч С 1 С проходит вне угла А 1 С 1 В 1 (рис. в)). Рассмотрим первый случай. Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники А 1 С 1 С и В 1 С 1 С - равнобедренные. По теореме о свойстве углов равнобедренного треугольника Ðl = Ð2, Ð3 = Ð4, поэтому ÐA 1 CB 1 = =ÐA 1 С 1 B 1 . Итак, AC=A 1 C 1 , BC=B 1 C 1 , ÐС = ÐС 1 . Следовательно, треугольники ABC и А 1 В 1 С 1 равны по первому признаку равенства треугольников.

Запись на доске:

Дано: ΔABC, ΔA 1 B 1 C 1 , AB=A 1 B 1 , AC=A 1 C 1 , ВС=В 1 С 1

Доказать: ΔABC=ΔA 1 B 1 C 1

Доказательство. Наложим ∆ABC на ∆A 1 B 1 C 1 так, чтобы A →A 1 , а B → B 1 , а С и С 1 оказались по разные стороны от прямой A 1 В 1 . Рассмотрим случай. луч С 1 С проходит внутри ÐА 1 С 1 В 1 (рис. а)).

АС=A 1 C 1 , ВС=В 1 С 1 ═> ΔА 1 С 1 С и ΔВ 1 С 1 С - равноб. ═> Ðl = Ð2, Ð3 = Ð4 (по св-ву углов равноб. Δ), ═> ÐA 1 CB 1 =ÐA 1 С 1 B 1 ═> AC=A 1 C 1 , BC=B 1 C 1 , ÐС = ÐС 1 ═>

ΔABC=ΔА 1 В 1 С 1 по первому признаку равенства треугольников.

2.Ромб. Определение, свойства, признаки.

Ромб является разновидностью четырехугольника.

Определение : Ромбом называется параллелограмм, у которого все стороны равны.

На рисунке изображён параллелограмм ABCD у которого AB=BC=CD=DA. По определению этот параллелограмм – ромб. АС и ВD – диагонали ромба. Поскольку ромб – параллелограмм, для него справедливы все свойства и признаки параллелограмма.

Свойства :

1) В ромбе противоположные углы равны (ÐA=ÐC, ÐB=ÐD)

2) Диагонали ромба точкой пересечения делятся пополам. (BО=ОD, AО=ОC)



3) Диагонали ромба взаимно перпендикулярны и делятся его углы пополам. (АС DВ, ‌‌ÐАBО=ÐОВС, ÐADО=ÐОDC, ‌‌ÐBСО=ÐDСО, ÐDАО=ÐВАО) (особое свойство)

4) Сумма углов, прилежащих к одной стороне равна 180 0 (ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=180 0)

признаками ромба:

1) Если диагонали параллелограмма взаимно перпендикулярны, то этот параллелограмм – ромб

2) Если диагональ параллелограмма делит его углы пополам, то этот параллелограмм ромб.

3) если в параллелограмме все стороны равны, то он является ромбом.

Запись на доске.

Свойства :

1) ÐA=ÐC, ÐB=ÐD2) BО=ОD, AО=ОC

3) АС DВ, ‌‌ÐАBО=ÐОВС, ÐADО=ÐОDC, ‌‌ÐBСО=ÐDСО, ÐDАО=ÐВАО

4) ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=180 0

Обратные утверждения являются признаками ромба:

1 ) Если ABСD – парал-м, и АС DВ, то – ABСD - ромб.

2) Если ABСD – парал-м, и АС и DВ - биссектрисы, то – ABСD - ромб.

3) Если ABСD – парал-м, и АС=DВ и BC=AD, то – ABСD - ромб.

Задача.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...