Что значит интенсивность света. Плотность энергии и интенсивность электромагнитной волны

Свет играет огромную роль не только в интерьере, но и в нашей жизни в целом. Ведь от правильной освещенности помещения зависит эффективность работы, а так же наше психологическое состояние. Свет дает человеку возможность не только видеть, но и оценивать цвета и формы окружающих предметов.

Конечно, для человеческих глаз наиболее комфортен естественный свет. При таком освещении все видно очень хорошо и без искажений цветов. Но не всегда естественное освещение присутствует, в темное время суток, например, приходиться обходиться искусственными источниками света.

Чтобы глаза не напрягались, и не портилось зрение, необходимо создать оптимальные условия света и тени, создавая максимально комфортное освещение.

Для глаз самое приятное освещение - естесcтвенное

Освещение, так же как и многие другие факторы, оценивается по количественным и качественным параметрам. Количественные характеристики определяются интенсивностью света, а качественные – его спектральным составом и распределением в пространстве.

Как и в чем измеряется интенсивность света?

У света есть множество характеристик и на каждую существует своя единица измерения:

  • Сила света характеризует величину световой энергии, которая переносится за определенное время в какое-либо направление. Она измеряется в канделах (кд), 1 кд приблизительно равна силе света, который излучает одна горящая свеча;
  • Яркость так же измеряется в канделах, помимо этого существуют такие единицы измерения, как стильб, апостильб и ламберт;
  • Освещенность – это отношение светового потока, который падает на определенный участок, к его поверхности. Измеряется она в люксах.

Именно освещенность является важным показателем для правильной работы зрения. Для того, чтобы определить эту величину используется специальный прибор для измерения. Называется он люксометр.

Люксометр – это прибор для измерения освещенности.

Состоит данный прибор из приемника света и измерительной части, она бывает стрелочного типа или электронного. Приемник света – это фотоэлемент, который преобразует световую волну в электрический сигнал и направляет в измерительную часть. Это устройство является фотометром и обладает заданной спектральной чувствительностью. С его помощью можно измерить не только видимый свет, но и инфракрасное излучение и т. д.

Данный прибор используется как в производственных помещениях, так и в учебных заведениях, а так же дома. Для каждого вида деятельности и занятий существуют свои нормы того, какой должна быть интенсивность света.

Комфортная интенсивность освещения

Зрительный комфорт зависит от многих факторов. Безусловно, самым приятным для человеческого глаза является солнечный свет. Но современный ритм жизни диктует свои правила, и очень часто приходится работать или просто находиться при искусственном освещении.

Производители осветительных приборов и ламп стараются создавать такие источники света, которые отвечали бы особенностям зрительного восприятия людей и создавали бы максимально комфортный по интенсивности свет.

Свет от лампы накаливания наиболее точно передает естественные оттенки

В обычных лампах накаливания в качестве источника освещения используется раскаленная пружина, а потому, этот свет наиболее похож на естественный.

Лампы разделяют на следующие категории по типу света, который они дают:

  • теплый свет, имеющий красноватые оттенки, он хорошо подходит для домашней обстановки;
  • нейтральный свет, белый, используется для освещения рабочих мест;
  • холодный свет, голубоватый, предназначен для мест, где выполняются работы высокой точности или для мест с жарким климатом.

Важно не только то, к какому типу относятся лампы, но и конструкция самого светильника или люстры: сколько лампочек вкручивается туда, куда направлен свет, закрыты или открыты плафоны – все эти особенности нужно учитывать при выборе осветительного прибора.

Нормы освещенности зафиксированы в нескольких документах, самые главные это: СНиП (строительные нормы и правила) и СанПиН (санитарные правила и нормы). Существуют также МГСН (Московские городские строительные нормы), а так же свой свод правил для каждого региона.

Именно на основе всех этих документов и принимается решение о том, какой должна быть интенсивность освещения.

Безусловно, задумываясь о том, какую люстру повесить в гостиную, спальню или кухню, никто не замеряет интенсивность освещения с помощью люксометра. Однако, знать в общих чертах какой свет будет комфортней для глаз, очень полезно.

В Таблице 1 приведены нормы освещенности для жилых помещений:

Таблица 1

В Таблице 2 привдены нормы освещенности для офисов

В домашних условиях, без специального оборудования трудно измерить освещение в помещениях, а потому для того чтобы понять, какую лампу выбрать, стоит обратить внимание на цвет (холодный, нейтральный или теплый) и количество Ватт. В помещениях для отдыха лучше использовать не слишком яркие, а в рабочих кабинетах – с более интенсивным светом.

Поскольку для глаз наиболее приятно естественное освещение, то предпочтение в домашней обстановке стоит отдавать лампам, дающим теплый свет. Когда мы приходим домой, глазам обязательно нужен отдых после напряженного рабочего дня. Правильно подобранные по яркости лампы для люстр и светильников помогут создать подходящее по интенсивности освещение.

Интенси́вность - скалярная физическая величина, количественно характеризующая мощность, переносимую волной в направлении распространения. Численно интенсивность равна усреднённой за период колебаний волны мощности излучения, проходящей через единичную площадку, расположенную перпендикулярно направлению распространения энергии. В математической форме это может быть выражено следующим образом:

где - период волны, - мощность, переносимая волной через площадку .

Интенсивность волны связана со средней плотностью энергии в волне и скоростью распространения волны следующим соотношением:

Единицей измерения интенсивности в Международной системе единиц (СИ) является Вт/м², в системе СГС - эрг/с·см².

Объёмная плотность энергии электромагнитного поля в линейной изотропной среде, как известно из электродинамики, даётся выражением (мы учли здесь также связь между векторами Е иН в электромагнитной волне):

Вектор плотности потока энергии электромагнитной волны (то, что в теории упругих волн называется вектором Умова) называется вектором Умова-Пойнтинга, или чаще просто вектором Пойнтинга Р :

Модуль среднего значения вектора Пойнтинга называется интенсивностью электромагнитной волны:

В случае синусоидальной монохроматической плоской (когда плоскости колебаний векторов Е и Н не меняются со временем) электромагнитной волны, распространяющейся в направлении х :

для интенсивности получается:

Следует обратить внимание, что интенсивность электромагнитной волны зависит от амплитуды (либо электрического, либо магнитного поля; они связаны), но не зависит от частоты волны - в отличие от интенсивности упругих механических волн.

Понятие когерентность.

В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.

Классический пример двух когерентных колебаний - это два синусоидальных колебания одинаковой частоты.

Когерентность волны означает, что в различных пространственных точках волны осцилляции происходят синхронно, то есть разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно - ситуация, когда разность фаз между двумя точками не постоянна, а меняется со временем. Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (то есть нескоррелированных) излучателей.

Изучение когерентности световых волн приводит к понятиям временно́й и пространственной когерентности. При распространении электромагнитных волн в волноводахмогут иметь место фазовые сингулярности. В случае волн на воде когерентность волны определяет так называемая вторая периодичность.

Без когерентности невозможно наблюдать такое явление, как интерференция.

Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фазнакладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Установим зависимость между смещением х частиц среды, участвующих в волновом процессе, и расстоянием у этих частиц от источника колебаний О для любого момента времени Для большей наглядности рассмотрим поперечную волну, хотя все последующие рассуждения

будут верны и для продольной волны. Пусть колебания источника являются гармоническими (см. § 27):

где А - амплитуда, круговая частота колебаний. Тогда все частицы среды тоже придут в гармоническое колебание с такой же частотой и амплитудой, но с различными фазами. В среде возникает синусоидальная волна, изображенная на рис. 58.

График волны (рис. 58) внешне похож на график гармонического колебания (рис. 46), но по существу они различны. График колебания представляет зависимость смещения данной частицы от времени. График волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Он является как бы моментальной фотографией волны.

Рассмотрим некоторую частицу С, находящуюся на расстоянии у от источника колебаний (частицы О). Очевидно, что если частица О колеблется уже то частица С колеблется еще только где время распространения колебаний от до С, т. е. время, за которое волна прошла путь у. Тогда уравнение колебания частицы С следует написать так:

Но где скорость распространения волны. Тогда

Соотношение (23), позволяющее определить смещение любой точки волны в любой момент времени, называется уравнением волны. Вводя в рассмотрение длину волны X как расстояние между двумя ближайшими точками волны, находящимися в одинаковой фазе, например между двумя соседними гребнями волны, можно придать уравнению волны другой вид. Очевидно, что длина волны равна расстоянию, на которое распространяется колебание за период со скоростью

где частота волны. Тогда, подставляя в уравнение и учитывая, что получим другие формы уравнения волны:

Так как прохождение волн сопровождается колебанием частиц среды, то вместе с волной перемещается в пространстве и энергия колебаний. Энергия, переносимая волной за единицу времени через единицу площади, перпендикулярной к лучу, называется интенсивностью волны (или плотностью потока энергии). Получим выражение для интенсивности волны

Волновой процесс связан с распространением энергии (Е) в пространстве. Количественной энергетической характеристикой этого процесса является поток энергии (Ф ) - отношение энергии, перенесенной волной через некоторую поверхность, ко времени (t), за которое этот перенос совершается . Если перенос энергии осуществляется равномерно, то: Ф = Е / t , а для общего случая поток представляет производную от энергии по времени - Ф = d Е / d t . Единица измерения потока энергии совпадает с единицей мощности Дж/ с = Вт.

Интенсивность волны (или плотность потока энергии) (I) - отношение потока энергии к площади (S) поверхности, расположенной перпендикулярно направлению распространения волны . Для равномерного распределения энергии по поверхности, через которую проходит волна I = Ф / S , а в общем случае - I = dФ / dS . Измеряется интенсивность в Вт / м 2 .

Отметим, что интенсивность является тем физическим параметром, который на первичном уровне определяет степень физиологического ощущения, возникающего под действием волнового процесса (например, звук или свет).

Представим в виде параллелепипеда длиной l участок среды, в которой распространяется волна. Площадь грани параллелепипеда, которая перепендикулярна направлению скорости волны v, обозначим через S (см.рис.9) . Введемобъемную плотность энергии колебательного движения w, представляющую количество энергии в единице объема:
w = Е / V . За время t через площадку S пройдет энергия, равная произведению величины объема V = l S = v t S на объемную плотность энергии:

Е = w v t S . (25)

Разделив левую и правую части формулы (25) на время и площадь, получим выражение, связывающее интенсивность волны и скорость ее распространения. Вектор , модуль которого равен интенсивности волны, а направление совпадает с направлением ее распространения носит название вектора Умова :

Формулу (26) можно представить в несколько ином виде. Учитывая, что энергия гармонических колебаний (см.формулу (7)) и выразив массу m через плотность вещества r и объем V , для объемной плотности энергии получим: w = . Тогда формула (26) принимает вид:

. (27)

Итак интенсивность упругой волны, определяемая вектором Умова, прямо пропорциональна скорости ее распространения, квадрату амплитуды колебаний частиц и квадрату частоты колебаний.

Волновой процесс связан с распространением энерии (Е) в пространстве. Количественной энергетической характеристикой этого процесса являетсяпоток энергиии (Ф ) -отношение энергии, перенесенной волной через некоторую поверхность, ко времени (t), за которое этот перенос совершается . Если перенос энергии осуществляется равномерно, то:Ф = Е / t , а для общего случая поток представляет производную от энергии по времени - Ф = d Е / d t . Единица измерения потока энергии совпадает с единицей мощности Дж/ с = Вт.

Интенсивность волны (или плотность потока энергии) (I) - отношение потока энергии к площади (S) поверхности, расположенной перпендикулярно направлению распространения волны . Для равномерного распределения энергии по поверхности, через которую проходит волна:I = Ф / S , а в общем случае - I = dФ / dS . Измеряется интенсивность в Вт / м 2 .

Отметим, что интенсивность является тем физическим параметром, который на первичном уровне определяет степень физиологического ощущения, возникающего под действием волнового процесса (например, звук или свет).

Представим в виде параллелепипеда длинойl участок среды, в которой распространяется волна. Площадь грани параллелепипеда, которая перепендикулярна направлению скорости волныv , обозначим через S (см.рис.9) . Введем объемную плотность энергии колебательного движенияw , представляющую количество энергии в единице объема:w = Е / V . За время t через площадку S пройдет энергия, равная произведению величины объемаV = l S = v t S на объемную плотность энергии:

Е = w v t S . (25)

Разделив левую и правую части формулы (25) на время и площадь, получим выражение, связывающее интенсивность волны и скорость ее распространения. Вектор , модуль которого равен интенсивности волны, а направление совпадает с направлением ее распространения носит названиевектора Умова:

. (26)

Формулу (26) можно представить в несколько ином виде. Учитывая, что энергия гармонических колебаний (см.формулу (7))
и выразив массуm через плотность вещества и объемV , для объемной плотности энергии получим:w =
. Тогда формула (26) принимает вид:

. (27)

Итак интенсивность упругой волны, определяемая вектором Умова, прямо пропорциональна скорости ее распространения, квадрату амплитуды колебаний частиц и квадрату частоты колебаний.

8. Эффект Доплера

Эффект Доплера состоит в изменении частоты волн, воспринимаемых некоторым приемником (наблюдателем) в зависимости от относительной скорости движения источника волн и наблюдателя.

Когда источник и приемник неподвижны (рис.10.а), то, естественно, частота волн, регистрируемых некоторым приемником, совпадает с частотой волн, испускаемых источником: ист = пр . Если источник приближается к неподвижному приемнику с некоторой скоростьюv ист , то его движение вызывает “сжатие” волны - расстояние между гребнями волн уменьшаются - уменьшается период и длина волны пр , регистрируемой приемником. Происходит увеличение частоты воспринимаемого волнового процесса: пр > ист (см. рис.10.б).

Для этого случая количественную связь между частотой излучаемых волн, скоростью движения источника и частотой, регистрируемой неподвижным приемным устройством, можно установить из следующих соображений.

Длина волны, воспринимаемая приемником:

пр = (v в - v ист ) T ист , (28)

где v в - скорость распространения волн относительно неподвижного источника,T ист - период этих волн. Таким образом, для приближающегося к приемнику источника длина волны сокращается. Воспринимаемая частота увеличивается:

пр =
или пр =
ист . (29)

При удалении источника от приемника (рис.10.в):

пр =
ист . (30)

Для общего случая, когда движутся источник и приемник:

пр =
ист (31)

Знак “плюс” в числителе формулы (30) и “минус” в её знаменателе соответствуют сближению источника и приемника, а обратные знаки - их взаимному удалению.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...