Распределение стока реки в течение года называется. Внутригодовое распределение стока

Горы Англии — одна из интереснейших природных достопримечательность этой удивительной страны. Мало кто из туристов связывает Туманный Альбион с активным отдыхом в гористой местности, но кое-что знать о дикой природе Великобритании все же стоит.

Самые высокие горы на территории Англии

Итак, горы Англии входят в систему парков Areas of Outstanding Natural Beauty -«Территории Выдающейся Природной Красоты». Среди горных вершин на территории страны самыми высокими считаются шотландская гора Бен-Невис, Сноудон в Уэльсе и Скофел в Англии.

Они являются национальным достоянием и охраняются законом как заповедные зоны. Такие места очень популярны не только среди туристов, но и профессиональных спортсменов. Например, ежегодно в Великобритании проходит турнир под названием «Покорение трех вершин», в котором принимают участие как жители Соединенного королевства, так и любители горного туризма со всего мира. Цель данного мероприятия — успеть покорить три самые высокие горы Англии за 24 часа. Длина такого маршрута в среднем составляет 44 км.

Популярные виды отдыха

Горная местность Великобритании невероятно живописна и привлекает своей неподражаемой живой природой и уникальным растительным миром. Отправляясь покорять уэльскую вершину Сноудон, не забудьте прогуляться в национальном парке Сноудония. Это место любят посещать семьи с детьми, любители живой природы, спортсмены и просто те, кто хочет уединиться и провести время вдали от шумных и пыльных городов. Среднее количество приезжающих на отдых в Сноудонию составляет 6 миллионов человек в год.

Специально для любителей острых ощущений в Шотландии почти круглый проводятся походы на самую высокую гору Бен-Невис. Чтобы добраться до ее пика, который находится на высоте 1344 м, нужно преодолеть расстояние в 17 км пешком по узкой и каменистой тропе, постоянно поднимающейся вверх. По пути туристов может встретить самая разная погода — дождь, туман и пронизывающий холодный ветер. При таких погодных условиях очень легко сбиться с маршрута или потеряться, отстав от группы. Потому в целях безопасности с собой всегда нужно носить с собой карту, компас и минимальный запас провизии — мобильная связь в горах может подвести.

В Англии одной из наиболее помещаемых мест для спортивного отдыха считается горная вершина Скофел-Пайк. Ее высота достигает 978 метров над уровнем моря, а сама гора расположена на территории красивейшего национального парка Лейк-Дистрикт. После покорения Скофел туристы могут полюбоваться уникальными ландшафтами Озерного края, познакомиться с историко-культурной областью графства Камбрия и даже посетить соседние Кемберлендские горы.

Горы Великобритании ежегодно принимают огромное количество туристов со всех уголков земли, которые желают покорить местные вершины ради собственного интереса или в рамках спортивных состязаний. Специально для этого существуют несколько способов прохождения горных троп — отдельные маршруты для любителей и профессионалов.

; 7: Боуленд Форест; 8: Север Йорк Мурс; 9: Шропширские холмы; 10: Холмы Котсуолдс ; 11: Чилтерн Хилс; 12: Норт Даунс; 13: Северный Уэссекс Даунс; 14: Холмы Мендип; 15: Эксмур ; 16: Дартмур ; 17: Бодмин-Мур

Горы и холмы Англии состоят из множества различных форм рельефа, таких как горный хребет высотой более 910 м (3000 футов), несколько небольших территорий низких гор, предгорий и морских скал. Большинство основных возвышенностей входят в состав Областей выдающейся природной красоты (англ. Areas of Outstanding Natural Beauty ) или Национальных Парков. Самые высокие и наиболее обширные территории находятся на севере и западе (включая северо-запад), в то время как территории на юго-востоке и востоке страны как правило, низменные.

Северная Англия

Чевиот Хилс

Озёрный край

Мидлендс

Территория Английского Мидлендса имеет, в основном, плоскую поверхность, с несколькими отдельными холмами, такими как Тернерс Хилл, с которого открываются прекрасные виды. На западе, Шропширские холмы, такие как Лонг Минд, Кли Хилл и хребет Стиперстонс, расположенные близко к границе Уэльса , возвышаются на высоту более 500 м. Уэнлок Эдж, тянущийся сквозь середину Шропширских Холмов, является длинным, низким горным хребтом, который простирается на расстояние более 24 км. Далее на юг, холм Блэк Маунтин, находящийся на границе с Уэльсом возвышается на высоту более 700 м, и является самой высокой точкой в Херефордшире .

Так же на территории Мидлендса находятся другие небольшие территории невысоких холмов, такие как Кэннок Чейз в Стаффордшире и Чарнвуд Форест в Лестершире .

Юго-Западная Англия

Самой высокой и обширной возвышенностью на юго-западе является болотистая территория на Юго-западном полуострове. В Национальном парке Эксмур , расположенном в западном Сомерсете и граничащем с Бристольским заливом самой высокой точкой является вершина Данкери Бикон, высотой 519 м, которая описывается в книге англ. Lorna Doone . Холмистая болотистая местность Дартмур в графстве Девон простирается на площадь 650км² (наивысшая точка Хай Уиллхейс 621м) являлась пейзажем для фильма Собака Баскервилей .

Скофел-Пайк в южной Камбрии является самой высокой горой Англии. Хотя родина англичан считается преимущественно равнинной страной, здесь всё же есть несколько величественных гор и холмов, помимо самой высокой вершины. Большинство высоких гор Англии располагается в Лейк-Дистрикт – Озёрном крае, что добавляет привлекательности этому региону в сфере туризма. Ниже представлены основные горы и наивысшие вершины Англии, которые привлекают любителей альпинизма, скалолазания и горного треккинга.

Скофел-Пайк

Самая высокая гора в Англии располагается на территории национального парка Лейк-Дистрикт. Её высота составляет 978 м. У подножия этой вершины находится наиболее глубокое озеро Англии – Wast Water (78,6 м). Здесь же расположен самый высокий окружающий водоём горный хребет Crag Tarn, высота которого составляет 822 м над уровнем моря.

Гора Скофел-Пайк в особенности популярна среди альпинистов. Множество любителей горного экстрима приезжает сюда во время проведения фестиваля National Three Peaks Challenge.

Необходимо за 24 часа взойти на 3 самые высокие горы Великобритании: Бен-Невис (Шотландия), Скофел-Пайк (Англия) и Сноудон (Уэльс). Участники восхождения поднимаются поочерёдно на каждую из вершин.

Массовый туризм имеет и печальные последствия для экологии этого региона. Крайние годы здесь наблюдается увеличение процессов эрозии и загрязнение окружающей среды.

Хелвеллин

Эта гора также располагается в Озёрном крае и при высоте в 950 м является второй самой высокой горой в Англии. Хелвеллин возвышается между деревней Паттердейлом на востоке и водохранилищем Тирмер на западе.

У этой горы почти плоская вершина, что позволило впервые осуществить здесь успешную посадку британского самолёта в 1926 году. Западные склоны этой горы Англии использовались для добычи свинца в период с 1839 по 1880 гг., но эта затея оказалась финансово невыгодной.

Гора Хелвеллин – место обитания множества птиц, включая ворон, жаворонков, канюков и каменки. Местная флора довольно скудная и представлена в основном альпийской луговой травой и лапландской ивой, которая произрастает на вершине.

Горные склоны также издавна используются местными пастухами для выпаса домашней скотины. Немало туристов отправляется на прогулки по горным тропам Хелвеллин, но нередко такие походы приводят к гибели.

Скиддо

При высоте в 931 м это третья самая высокая гора Англии. Она располагается к северу от Кесвика в окружении равнинных долин, за счёт чего кажется в особенности величественной.

Среди иных гор Озёрного края Англии Скиддо – единая вершина не вулканического происхождения, которая полностью состоит из морских отложений. Это относительно простой для восхождения пик, который особенно привлекателен для горного треккинга в Англии.

Грэйт Гейбл или «Великий Гейбл»

Эта гора высотой в 898 м также располагается в Озёрном крае Англии. Она в особенности популярна среди туристов и альпинистов, а также привлекает любителей скалолазания со всего мира. Для её покорения особых навыков не требуется, но всё же следует соблюдать осторожность при горных походах.

28.07.2015


Колебания речного стока и критерии его оценки. Речным стоком называют перемещение воды в процессе ее кругооборота в природе, когда она стекает по речному руслу. Речной сток определяется количеством воды, протекающим по речному руслу за определенный промежуток времени.
На режим стока оказывают влияние многочисленные факторы: климатические - осадки, испарение, влажность и температура воздуха; топографические - рельеф местности, форма и размеры речных бассейнов и почвенно-геологические, включая растительный покров.
Для любых бассейнов, чем больше осадков и меньше испарение, тем больше сток реки.
Установлено, что с возрастанием площади водосбора продолжительность весеннего половодья также увеличивается, гидрограф же имеет более вытянутую и «спокойную» форму. В легко проницаемых грунтах больше фильтрация и меньше сток.
При выполнении различных гидрологических расчетов, связанных с проектированием гидротехнических сооружений, мелиоративных систем, систем водоснабжения, мероприятий по борьбе с наводнениями, дорог и т. д., определяют следующие основные характеристики речного стока.
1. Расход воды - это объем воды, протекающий через рассматриваемый створ в единицу времени. Средний расход воды Qcp рассчитывают как среднее арифметическое из расходов за данный промежуток времени Т:

2. Объем стока V - это объем воды, который протекает через заданный створ за рассматриваемый промежуток времени T

3. Модуль стока M - это расход воды, приходящийся на 1 км2 площади водосбора F (или стекающей с единицы площади водосбора):

В отличие от расхода воды модуль стока не связан с конкретным створом реки и характеризует сток в целом с бассейна. Средний многолетний модуль стока M0 не зависит от водности отдельных лет, а определяется только географическим положением бассейна реки. Это позволило районировать нашу страну в гидрологическом отношении и построить карту изолиний среднемноголетних модулей стока. Эти карты приводятся в соответствующей нормативной литературе. Зная площадь водосбора какой-либо реки и определив для нее по карте изолиний величину M0, можно установить средний многолетний расход воды Q0 этой реки по формуле

Для близко расположенных створов реки модули стока можно принять постоянными, то есть

Отсюда по известному расходу воды в одном створе Q1 и известным площадям водосборов в этих створах F1 и F2, расход воды в другом створе Q2 может быть установлен по соотношению

4. Слой стока h - это высота слоя воды, которая бы получилась при равномерном распределении по всей площади бассейна F объема стока V за определенный промежуток времени:

Для среднего многолетнего слоя стока h0 весеннего половодья составлены карты изолиний.
5. Модульный коэффициент стока К - это отношение любой из выше приведенных характеристик стока к ее среднеарифметическому значению:

Эти коэффициенты могут быть установлены для любых гидрологических характеристик (расходов, уровней, осадков, испарения и т.д.) и для любых периодов стока.
6. Коэффициент стока η - это отношение слоя стока к слою выпавших на водосборную площадь осадков х:

Этот коэффициент может быть выражен также через отношение объема стока к объему осадков за один и тот же промежуток времени.
7. Норма стока - наиболее вероятная средняя многолетняя величина стока, выраженная любой из вышеприведенных характеристик стока за многолетний период. Для установления нормы стока ряд наблюдений должен быть не менее 40...60 лет.
Норма годового стока Q0 определяется по формуле

Так как на большинстве водомерных постов число лет наблюдений обычно менее 40, то необходимо проверить, достаточно ли этого числа лет для получения достоверных значений нормы стока Q0. Для этого вычисляют среднеквадратическую ошибку нормы стока по зависимости

Продолжительность периода наблюдений достаточна, если величина среднеквадратической ошибки σQ не превышает 5 %.
На изменение годового стока преимущественное влияние оказывают климатические факторы: осадки, испарение, температура воздуха и т. д. Все они взаимосвязаны и, в свою очередь, зависят от ряда причин, которые имеют случайный характер. Поэтому гидрологические параметры, характеризующие сток, определяются совокупностью случайных величин. При проектировании мероприятий по лесосплаву необходимо знать значения этих параметров с необходимой вероятностью их превышения. Например, при гидравлическом расчете лесосплавных плотин необходимо установить максимальный расход весеннего паводка, который может быть превышен пять раз за сто лет. Эту задачу решают, используя методы математической статистики и теории вероятности. Для характеристики величин гидрологических параметров - расходов, уровней и т. д. используют понятия: частота (повторяемость) и обеспеченность (продолжительность).
Частота показывает, во скольких случаях за рассматриваемый период времени величина гидрологического параметра находилась в определенном интервале. Например, если среднегодовой расход воды в заданном створе реки изменялся за ряд лет наблюдений от 150 до 350 м3/с, то можно установить, сколько раз значения этой величины находились в интервалах 150...200, 200...250, 250...300 м3/с и т. д.
Обеспеченность показывает, во скольких случаях величина гидрологического элемента имела значения, равные и большие определенной величины. В широком понимании обеспеченность - это вероятность превышения данной величины. Обеспеченность какого-либо гидрологического элемента равна сумме частот вышерасположенных интервалов.
Частота и обеспеченность могут выражаться числом случаев, но в гидрологических расчетах их чаще всего определяют в процентах от общего числа членов гидрологического ряда. Например, в гидрологическом ряду двадцать значений среднегодовых расходов воды, шесть из них имели величину, равную или большую 200 м3/с, это значит, что этот расход обеспечен на 30 %. Графически изменения частоты и обеспеченности изображаются кривыми частоты (рис. 8а) и обеспеченности (рис. 8б).

В гидрологических расчетах чаще используют кривую обеспеченности. Из этой кривой видно, что чем больше величина гидрологического параметра, тем меньше процент обеспеченности, и наоборот. Поэтому принято считать, что годы, для которых обеспеченность стока, то есть среднегодовой расход воды Qг, меньше 50 % являются многоводными, а годы с обеспеченностью Qг больше 50 % - маловодными. Год с обеспеченностью стока 50 % считают годом средней водности.
Обеспеченность водности года иногда характеризуют ее средней повторяемостью. Для многоводных лет повторяемость показывает, как часто встречаются в среднем годы данной или большей водности, для маловодных - данной или меньшей водности. Например, среднегодовой расход многоводного года 10%-ной обеспеченности имеет среднюю повторяемость 10 раз в 100 лет или 1 раз в 10 лет; средняя повторяемость маловодного года 90%-ной обеспеченности также имеет повторяемость 10 раз в 100 лет, так как в 10 % случаев среднегодовые расходы будут иметь меньшие значения.
Годы определенной водности имеют соответствующее наименование. В табл. 1 для них приведены обеспеченность и повторяемость.

Связь между повторяемостью у и обеспеченностью р может быть записана в таком виде:
для многоводных лет

для маловодных лет

Все гидротехнические сооружения для регулирования русла или стока рек рассчитываются по водности года определенной обеспеченности, гарантирующей надежность и безаварийность работы сооружений.
Расчетный процент обеспеченности гидрологических показателей регламентируется «Инструкцией по проектированию лесосплавных предприятий».
Кривые обеспеченности и способы их расчета. В практике гидрологических расчетов применяются два способа построения кривых обеспеченности: эмпирический и теоретический.
Обоснованный расчет эмпирической кривой обеспеченности можно выполнить только при числе наблюдений за стоком реки более 30...40 лет.
При расчете обеспеченности членов гидрологического ряда для годового, сезонного и минимального стоков можно использовать формулу Н.Н. Чегодаева:

Для определения обеспеченности максимальных расходов воды применяют зависимость С.Н. Крицкого и М.Ф. Менкеля:

Порядок построения эмпирической кривой обеспеченности:
1) все члены гидрологического ряда записываются в убывающем по абсолютной величине порядке;
2) каждому члену ряда присваивается порядковый номер, начиная с единицы;
3) определяется обеспеченность каждого члена убывающего ряда по формулам (23) или (24).
По результатам расчета строят кривую обеспеченности, подобную той, которая представлена на рис. 8б.
Ho эмпирические кривые обеспеченности обладают рядом недостатков. Даже при достаточно длительном периоде наблюдений нельзя гарантировать, что этот интервал охватывает все возможные максимальные и минимальные значения стока реки. Расчетные значения обеспеченности стока 1...2 % не надежны, так как достаточно обоснованные результаты можно получить только при числе наблюдений за 50...80 лет. В связи с этим, при ограниченном периоде наблюдений за гидрологическим режимом реки, когда число лет менее тридцати, или при полном их отсутствии, строят теоретические кривые обеспеченности.
Исследования показали, что распределение случайных гидрологических величин наиболее хорошо подчиняется уравнению кривой Пирсона III типа, интегральное выражение которой является кривой обеспеченности. Пирсоном получены таблицы для построения этой кривой. Кривая обеспеченности может быть построена с достаточной для практики точностью по трем параметрам: среднеарифметическому значению членов ряда, коэффициентам вариации и асимметрии.
Среднеарифметическое значение членов ряда вычисляется по формуле (19).
Если число лет наблюдений менее десяти или наблюдения вообще не проводились, то среднегодовой расход воды Qгcp принимают равным среднему многолетнему Q0, то есть Qгcp = Q0. Величина Q0 может быть установлена при помощи модульного коэффициента K0 или модуля стока M0, определенного по картам изолиний, так как Q0 = M0*F.
Коэффициент вариации Cv характеризует изменчивость стока или степень колебания его относительно среднего значения в данном ряду, он численно равен отношению среднеквадратической ошибки к среднеарифметическому значению членов ряда. На величину коэффициента Cv оказывают существенное влияние климатические условия, тип питания реки и гидрографические особенности ее бассейна.
При наличии данных наблюдений не менее чем за десять лет коэффициент вариации годового стока вычисляют по формуле

Величина Cv меняется в широких пределах: от 0,05 до 1,50; для лесосплавных рек Cv = 0,15...0,40.
При коротком периоде наблюдений за стоком реки или при их полном отсутствии коэффициент вариации можно установить по формуле Д.Л. Соколовского:

В гидрологических расчетах для бассейнов с F > 1000 км2 также используют карту изолиний коэффициента Cv, если суммарная площадь озер не более 3 % площади водосбора.
В нормативном документе СНиП 2.01.14-83 для определения коэффициента вариации неизученных рек рекомендуется обобщенная формула К.П. Воскресенского:

Коэффициент асимметрии Cs характеризует несимметричность ряда рассматриваемой случайной величины относительно ее среднего значения. Чем меньшая часть членов ряда превышает величину нормы стока, тем больше величина коэффициента асимметрии.
Коэффициент асимметрии может быть рассчитан по формуле

Однако эта зависимость дает удовлетворительные результаты только при числе лет наблюдений n > 100.
Коэффициент асимметрии неизученных рек устанавливается по соотношению Cs/Cv для рек-аналогов, а при отсутствии достаточно хороших аналогов принимаются средние отношения Cs/Cv по рекам данного района.
Если невозможно установить отношение Cs/Cv по группе рек-аналогов, то значения коэффициента Cs для неизученных рек принимаются по нормативным соображениям: для бассейнов рек с коэффициентом озерности более 40 %

для зон избыточного и переменного увлажнения - арктической, тундровой, лесной, лесостепной, степной

Для построения теоретической кривой обеспеченности по приведенным выше трем ее параметрам - Q0, Cv и Cs - пользуются методом, предложенным Фостером - Рыбкиным.
Из выше приведенного соотношения для модульного коэффициента (17) следует, что средняя многолетняя величина стока заданной обеспеченности - Qp%, Мр%, Vp%, hp% - может быть рассчитана по формуле

Модульный коэффициент стока года заданной обеспеченности определяется по зависимости

Определив ряд любых характеристик стока за многолетний период различной обеспеченности, можно по этим данным построить и кривую обеспеченности. При этом все расчеты целесообразно вести в табличной форме (табл. 3 и 4).

Способы расчета модульных коэффициентов. Для решения многих водохозяйственных задач необходимо знать распределение стока по сезонам или месяцам года. Внутригодовое распределение стока выражают в виде модульных коэффициентов месячного стока, представляющих отношения среднемесячных расходов Qм.ср к среднегодовому Qг.ср:

Внутригодовое распределение стока различно для лет разной водности, поэтому в практических расчетах определяют модульные коэффициенты месячного стока для трех характерных лет: многоводного года 10%-ной обеспеченности, среднего по водности - 50%-ной обеспеченности и маловодного - 90%-ной обеспеченности.
Модульные коэффициенты месячного стока можно установить по фактическим знаниям среднемесячных расходов воды при наличии данных наблюдений не менее чем за 30 лет, по реке-аналогу или по типовым таблицам распределения месячного стока, которые составлены для разных бассейнов рек.
Среднемесячные расходы воды определяют, исходя из формулы

(33): Qм.cp = KмQг.ср


Максимальные расходы воды. При проектировании плотин, мостов, запаней, мероприятий по укреплению берегов необходимо знать максимальные расходы воды. В зависимости от типа питания реки за расчетный максимальный расход может быть принят максимальный расход воды весеннего половодья или осеннего паводка. Расчетная обеспеченность этих расходов определяется классом капитальности гидросооружений и регламентируется соответствующими нормативными документами. Например, лесосплавные плотины Ill класса капитальности рассчитываются на пропуск максимального расхода воды 2%-ной обеспеченности, а IV класса - 5%-ной обеспеченности, берегоукрепительные сооружения не должны разрушаться при скоростях течения, соответствующих максимальному расходу воды 10%-ной обеспеченности.
Способ определения величины Qmax зависит от степени изученности реки и от различия между максимальными расходами весеннего половодья и паводка.
Если имеются данные наблюдений за период более 30...40 лет, то строят эмпирическую кривую обеспеченности Qmax, а при меньшем периоде - теоретическую кривую. В расчетах принимают: для весеннего половодья Cs = 2Сv, а для дождевых паводков Cs = (3...4)CV.
Поскольку наблюдения за режимом рек ведутся на водомерных постах, то обычно кривую обеспеченности строят для этих створов, а максимальные расходы воды в створах расположения сооружений рассчитывают по соотношению

Для равнинных рек максимальный расход воды весеннего половодья заданной обеспеченности р% вычисляют по формуле

Значения параметров n и K0 определяются в зависимости от природной зоны и категории рельефа по табл. 5.

I категория - реки, расположенные в пределах холмистых и платообразных возвышенностей - Среднерусская, Струго-Красненская, Судомская возвышенности, Среднесибирское плоскогорье и др.;
II категория - реки, в бассейнах которых холмистые возвышенности чередуются с понижениями между ними;
III категория - реки, большая часть бассейнов которых располагается в пределах плоских низменностей - Молого-Шекснинская, Мещерская, Белорусское полесье, Приднестровская, Васюганская и др.
Значение коэффициента μ устанавливается в зависимости от природной зоны и процента обеспеченности по табл. 6.

Параметр hp% вычисляют по зависимости

Коэффициент δ1 рассчитывают (при h0 > 100 мм) по формуле

Коэффициент δ2 определяют по соотношению

Расчет максимальных расходов воды весеннего половодья ведется в табличной форме (табл. 7).

Уровни высоких вод (УВВ) расчетной обеспеченности устанавливаются по кривым расходов воды для соответствующих значений Qmaxp% и расчетных створов.
При приближенных расчетах максимальный расход воды дождевого паводка может быть установлен по зависимости

В ответственных расчетах определение максимальных расходов воды следует проводить в соответствии с указаниями нормативных документов.

Водный режим рек характеризуется совокупным изменением во времени уровней и объемов воды в реке. Уровень воды (Н ) – высота водной поверхности реки относительно постоянной нулевой отметки (ординара или нуля графика водомерного поста). Среди колебаний уровней воды в реке выявляются многолетние, обусловленные вековыми изменениями климата, и периодические: сезонные и суточные. В годовом цикле водного режима рек выделяют несколько характерных периодов, называемых фазами водного режима. У разных рек они различные и зависят от климатических условий и соотношения источников питания: дождевого, снегового, подземного и ледникового. Например, у рек умеренно-континентального климата (Волги, Оби и др.) выделяются следующие четыре фазы: весеннее половодье, летняя межень, осенний подъем воды, зимняя межень. Половодье – ежегодно повторяющееся в один и тот же сезон длительное увеличение водности реки, вызывающее подъем уровня. В умеренных широтах оно наступает весной за счет интенсивного снеготаяния.

Межень – период длительных низких уровней и расходов воды в реке при преобладании подземного питании («маловодье»). Летний межень обусловлена интенсивным испарением и просачиванием воды в грунт, несмотря на наибольшее количество осадков в это время. Зимняя межень – результат отсутствия поверхностного питания, реки существуют лишь за счет подземных вод.

Паводки – кратковременные непериодические подъемы уровни воды и увеличение объемов воды в реке. В отличие от половодий они случаются во все сезоны года: в теплое полугодие они вызваны сильными или продолжительными дождями, зимой – таянием снега во время оттепелей, в устьях некоторых рек – за счет нагона воды из морей, куда они впадают. В умеренных широтах осенний подъем воды в реках называют иногда паводочным периодом; он связан с уменьшением температуры и сокращением испарения, а не с увеличением осадков – их меньше, чем летом, хотя осенью чаще бывает пасмурная дождливая погода. Осенние паводки па реке Неве в Санкт-Петербурге вызваны прежде всего нагоном воды из Финского залива западными ветрами; максимально высокое наводнение 410 см произошло в Санкт-Петербурге в 1824 г. Паводки обычно бывают кратковременными, подъем уровня воды ниже, а объем воды меньше, чем во время половодья.

Одной из важнейших гидрологических характеристик рек является речной сток, образующийся за счет поступления поверхностных и подземных вод с водосборной площади. Для количественной оценки стока рек применяется ряд показателей. Основным из них является расход воды в реке – количество воды, которое проходит через живое сечение реки за 1 секунду. Он вычисляется по формуле Q =v *ω, где Q – расход воды в м 3 /c, v – средняя скорость реки в м/с. ω – площадь живого сечения в м 2 . По данным ежедневных расходов строится календарный (хронологический) график колебаний расходов воды, называемый гидрографом.

Модификацией расхода является объем стока (W в м 3 или км 3) – количество воды, протекающее через живое сечение реки за длительный срок (месяц, сезон, чаще всего год): W=Q*T, где Т – период времени. Объем cтока от года к году меняется, средняя многолетняя величина стока называется нормой стока. Например, годовая норма стока Амазонки около 6930 км 3 , что составляет около >5% общего годового стока всех рек земного шара, Волги – 255 км 3 . Годовой объем стока подсчитывается не за календарный, а за гидрологический год, в пределах которого завершается полный годовой гидрологический йикл круговорота воды. В регионах с холодными снежными зимами за начало гидрологического года принимается 1 ноября или 1 октября.

Модуль стока (М, л/с км 2) – количество воды в литрах, стекающее с 1 км 2 площади бассейна (F) в секунду:

(10 3 – множитель для перевода м 3 в литры).

Модуль стока рек позволяет узнать степень водонасыщенности территории бассейна. Он зонален. Наибольший модуль стока у Амазонки – 30 641 л/с км 2 ; у Волги он равен 5670 л/с км 2 , а у Нила – 1010 л/с км 2 .

Слой стока (Y ) – слой воды (в мм), равномерно распределенный по площади водосборного бассейна (F ) и стекающий с него за определенное время (годовой слой стока).

Коэффициент стока (К ) – отношение объема стока воды в реке (W ) к количеству атмосферных осадков (х ), выпадавших на площадь бассейна (F ) за одно и то же время, или отношение слоя стока (Y ) к слою атмосферных осадков (х ), выпавших на эту же площадь (F ) за тот же промежуток времени (величина безмерная или выраженная в %):

K=W/(x*F)* 100%, или K=Y/x *100%.

Средний коэффициент стока всех рек Земли составляет 34%. т. е. только одна треть осадков, выпадающих на сушу, стекает в реки. Коэффициент стока зонален и изменяется от 75-65% в зонах тундр и тайги до 6-4% в полупустынях и пустынях. Например, у Невы он равен 65%, а у Нила – 4%.

С водным режимом рек связано понятие зарегулированности стока: чем меньше годовая амплитуда расходов воды в реке и уровней воды в ней, тем больше зарегулирован сток.

Реки являются наиболее мобильной частью гидросферы. Их сток представляет собой интегральную характеристику водного баланса территории суши.

На величину стока рек и его распределение в течение года влияет комплекс природных факторов и хозяйственная деятельность человека. Среди природных условий основным является климат, особенно осадки и испарение. При обильных осадках сток рек большой, но надо учитывать их вид и характер выпадения. Например, снег даст больший сток, чем дождь, поскольку зимой меньше испарение. Ливневые осадки увеличивают сток по сравнению с обложными при одинаковом их количестве. Испарение , особенно интенсивное, уменьшает сток. Помимо высокой температуры, ему способствуют ветер и дефицит влажности воздуха. Справедливо высказывание русского климатолога А. И. Воейкова: «Реки – продукт климата».

Почвогрунты влияют на сток через инфильтрацию и структуру. Глина увеличивает поверхностный сток, песок его сокращает, но увеличивает подземный сток, являясь регулятором влаги. Прочная зернистая структура почв (например, у черноземов) способствует проникновению воды вглубь, а на бесструктурных распыленных суглинистых почвах часто образуется корка, которая увеличивает поверхностный сток.

Весьма важно геологическое строение речного бассейна, особенно вещественный состав пород и характер их залегания, поскольку они определяют подземное питание рек. Водопроницаемые породы (мощные пески, трещиноватые породы) служат аккумуляторами влаги. Сток рек в таких случаях больше, так как меньшая доля осадков затрачивается на испарение. Своеобразен сток в карстовых областях: рек там почти нет, так как осадки поглощаются воронками и трещинами, но на контакте их с глинами или глинистыми сланцами наблюдаются мощные родники, питающие реки. Например, закарстованная Крымская яйла сама по себе сухая, но у подножия гор бьют мощные родники.

Влияние рельефа (абсолютной высоты и уклонов поверхности, густоты и глубины расчленения) велико и разнообразно. Сток горных рек обычно больше, чем равнинных, так как в горах на наветренных склонах обильнее осадки, меньше испарение из-за более низкой температуры, за счет больших уклонов поверхности короче путь и время добегания выпавших осадков до реки. Из-за глубокого эрозионного вреза обильнее подземное питание сразу из нескольких водоносных горизонтов.

Влияние растительности – разных типов лесов, лугов, посевов и т. д. – неоднозначно. В целом растительность регулирует сток. Например, лес, с одной стороны, усиливает транспирацию, задерживает осадки кронами деревьев (особенно хвойные леса снег зимой), с другой стороны, над лесом обычно выпадает больше осадков, под пологом деревьев ниже температура и меньше испарение, дольше снеготаяние, лучше просачивание осадков в лесную подстилку. Выявить влияние разных типов растительности в чистом виде весьма трудно ввиду совместного компенсирующего действия разных факторов, особенно в пределах крупных речных бассейнов.

Влияние озер однозначно: они уменьшают сток рек, поскольку с водной поверхности больше испарение. Однако озера, как и болота , являются мощными естественными регуляторами стока.

Влияние хозяйственной деятельности на сток весьма значительно. Причем человек воздействует как непосредственно па сток (его величину и распределение в году, особенно при постройке водохранилищ), так и на условия его формирования. При создании водохранилищ меняется режим реки: в период избытка вод происходит накопление их в водохранилищах, в период недостатка – использование на различные нужды, так что сток рек оказывается зарегулированным. Кроме того, сток таких рек в общем сокращается, ибо увеличивается испарение с водной поверхности, значительная часть воды расходуется на водоснабжение, орошение, обводнение, уменьшается подземное питание. Но эти неизбежные издержки с избытком перекрываются пользой от водохранилищ.

При переброске вод из одной речной системы в другую сток видоизменяется: в одной реке уменьшается, в другой – увеличивается. Например, при постройке канала имени Москвы (1937) в Волге он сократился, в реке Москве возрос. Другие транспортные каналы для переброски воды обычно не используются, например Волго-Балтийский, Беломорско-Балтийский, многочисленные каналы Западной Европы, Китая и др.

Большое значение для регулирования речного стока имеют мероприятия, выполняемые в бассейне реки, ибо его начальным звеном является склоновый сток на водосборе. Основные проводимые мероприятия следующие. Агролесомелиоративные – лесопосадки, гидромелиоративные – плотины и пруды в балках и на ручьях, агрономические – осенняя вспашка, снегонакопление и снегозадержание, пахота поперек склона или поконтурная на холмах и увалах, залужение склонов и др.

Помимо внутригодовой изменчивости стока, происходят его многолетние колебания, связанные, по-видимому, с 11-летними циклами солнечной активности. На большинстве рек отчетливо прослеживаются многоводные и маловодные периоды родолжительностью около 7 лет: в течение 7 лет водоносность реки превышает средние значения, половодья и межень высокие, столько же лет водоносность реки меньше среднегодовых значений, расходы воды во все фазы водного режима малы.

Литература.

  1. Любушкина С.Г. Общее землеведение: Учеб. пособие для студентов вузов, обучающихся по спец. "География" / С.Г. Любушкина, К.В. Пашканг, А.В. Чернов; Под ред. А.В. Чернова. - М. : Просвещение, 2004. - 288 с.


Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...