Деление урана. Коэффициент размножения нейтронов


Ядерные цепные реакции

Ядерными реакциями называются реакции, при которых происходит изменение атомных ядер при взаимодействии их с элементарными частицами или друг с другом.

В 1934г. итальянский учёный Энрико Ферми со своими сотрудниками начал исследования по облучению элементов нейтронами, которые как нейтральные частицы беспрепятственно проникали в атомные ядра веществ, вызывая их расщепление.

Многим ученым данный эксперимент казался бессмысленным, потому что нейтронов было много меньше, чем альфа-частиц и протонов. Но результаты показали существенную эффективность данного расщепления, которая компенсировала слабость нейтронных источников по сравнению с источниками альфа-частиц и протонов.

В 1939 г. немецкими учеными Отто Ганном и Фрицем Штрассманом была открыта реакция деления урана при бомбардировке их нейтронами.

Рассмотрим механизм протекания данной реакции.

Поглотив лишний нейтрон, ядро возбуждается и деформируется, приобретая вытянутую форму.

В ядре действует два вида сил: электростатические силы отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами (с лат. nucleus протон и нейтрон), благодаря которым ядро не распадается.

Но ядерные силы - короткодействующие, поэтому в вытянутом ядре они уже не могут удержать сильно удаленные друг от друга части ядра.

Под действием электростатических сил отталкивания ядро разрывается на две части, которые разлетаются в разные стороны с огромной скоростью и излучают при этом 2-3 нейтрона.

Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков ядра и частиц.

При одновременном делении большого количества ядер урана внутренняя энергия окружающей среды и ее температура заметно возрастают. То есть реакция деления ядер урана идет с выделением энергии в окружающую среду.

При этом нельзя не отметить, что в ядрах атомов содержится колоссальное количество энергии. Так при полном делении всех ядер, содержащихся в 1 г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 тонн нефти.

На рисунке показана схема цепной реакции, при которой общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. Резко возрастает число распадающихся ядер и энергия, выделяющаяся в единицу времени. Именно поэтому данная реакция носит взрывной характер.

В производстве электроэнергии используют цепные реакции, не носящие взрывного характера, в которых число свободных нейтронов не меняется с течением времени.

Это условие будет выполнено, если коэффициент размножения нейтронов k будет больше или равен единице.

Коэффициентом размножения нейтронов называют отношение числа нейтронов, образовавшихся при делении к числу поглощенных нейтронов.

Если k больше или равен 1, то число нейтронов увеличивается с течением времени или остается постоянным и цепная реакция идет. Но для проведения реакции в стационарных условиях, k должен быть равен строго 1. В противном случае мгновенно произойдет взрыв.

Если k строго меньше 1, то нейтронов больше поглощается, чем образуется. Из этого следует, что общее число нейтронов уменьшается, и цепная реакция не протекает.

Для осуществления подобных реакций используют такие факторы как: масса урана, отражающая оболочка, содержание примесей, замедлители нейтронов, ускорители элементарных частиц.

Масса урана

атомный ядро нейтрон реакция

Не каждый нейтрон, излученный при делении ядра, вызывает деление других ядер. Если масса куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своем пути ядро, вызвать его деление для образования новых нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится.

Чтобы реакция не прекращалась, нужно увеличить массу урана до определенного значения, называемого критическим.

Значит наименьшая масса урана, при которой возможно протекание цепной реакции, называется критической, при значении которой число нейтронов, появившихся при делении ядер, становится равным числу потерянных нейтронов (поглощенных ядрами без дальнейшего деления и вылетевших за пределы куска).

При таких параметрах общее число нейтронов остается постоянным, и реакция может идти длительное время, не прекращаясь и не приобретая взрывного характера.

Отражающая оболочка

Уменьшить потерю нейтронов (которые вылетают из урана, не прореагировав с ядрами) можно с помощью специальной отражающей оболочки. Для этого кусок урана помещают в оболочку, сделанную из вещества, хорошо отражающего нейтроны (например, из бериллия). Отражаясь от стенок оболочки, нейтроны возвращаются и вступают во взаимодействие с ядрами атомов урана.

Если уран содержит в себе избыток примесей других химических элементов, то они поглощают большую часть нейтронов и процесс не протекает.

Замедлители нейтронов

С наибольшей вероятностью протекают реакции под действием медленных нейтронов, а при делении ядра образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая часть будет захвачена изотопами урана с дальнейшим делением ядер.

В качестве заместителей используются такие вещества, как графит, вода, тяжелая вода (за счет дейтерия, изотопа водорода) и т.д. Эти вещества только замедляют нейтроны, почти не поглощая их.

Ускорители элементарных частиц

Первые реакции расщепления осуществлялись при бомбардировке веществ альфа-частицами и протонами.

Ядерные реакции происходят, когда частицы или ядра попадают в сферу действия ядерных сил. Но т.к. одноименно заряженные частицы отталкиваются, то сближение положительно заряженных частиц с ядрами или ядер друг с другом требует сообщения частицам или ядрам большой кинетической энергии.

Данная энергия сообщается протонам и на ускорителях элементарных частиц.

Так в 1932г. на быстрых протонах удалось расщепить литий на две:

Подобные документы

    Деление тяжелых ядер. Реакция деления ядра урана-235. Развитие цепной реакции деления ядер урана. Коэффициент размножения нейтронов. Способы уменьшения потери нейтронов. Управляемая ядерная реакция. Главные условия протекания термоядерной реакции.

    презентация , добавлен 25.05.2014

    Основы ядерной энергетики. Способы получения энергии. Способы организации реакции горения, цепные реакции. Взаимодействие нейтронов с ядерным веществом, реакция деления ядер. Жизненный цикл нейтронов.

    курсовая работа , добавлен 09.04.2003

    Сущность цепной ядерной реакции. Распределение энергии деления ядра урана между различными продуктами деления. Виды и химический состав ядерного топлива. Массовые числа протона и нейтрона. Механизм цепной реакции деления ядер под действием нейтронов.

    реферат , добавлен 30.01.2012

    Способы получения энергии. Способы организации реакции горения, цепные реакции. Общие сведения о ядерных реакциях взаимодействия нейтронов с ядрами. Реакция радиационного захвата и реакция рассеяния. Возможность цепной реакции. Жизненный цикл нейтронов.

    курсовая работа , добавлен 09.04.2003

    Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат , добавлен 12.12.2009

    Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.

    реферат , добавлен 20.12.2011

    Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.

    презентация , добавлен 29.11.2015

    ООбщие характеристики и классификация нейтронов, механизмы их взаимодействия с веществом: упругое и неупругое рассеяние; ядерные реакции с образованием протона, альфа-частицы. Процесс замедления нейтронов, диффузное отражение; нейтронные волны в средах.

    реферат , добавлен 08.03.2012

    Изотопический спин, обменные силы, насыщение ядерных сил, мезоны и ядерные силы, класификация элементарных частиц. Приемлемые значения размеров зеркальных ядер. Опыты по рассеянию нейтронов протонами. Пространство изотопического спина.

    курсовая работа , добавлен 16.03.2004

    Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.

Уран, элемент с порядковым номером 92, самый тяжелый из встречающихся в природе. Использовался он еще в начале нашей эры, осколки керамики с желтой глазурью (содержащие более 1% оксида урана) находились среди развалин Помпеи и Геркуланума.

Уран был открыт в 1789 году в урановой смолке немецким химиком Мартоном Генрихом Клапротом, назвавшего его в честь планеты уран, открытой в 1781. Впервые получил металлический уран французский химик Юджин Пелиго в 1841, восстановив безводный тетрахлорид урана калием. В 1896 году Антуан-Анри Беккерель открывает явление радиоактивности урана случайным засвечиванием фотопластинок ионизирующим излучением от оказавшегося поблизости кусочка соли урана.

Физические и химические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления), в которых уран наиболее податлив и удобен для обработки. Альфа-фаза - очень примечательный тип призматической структуры, состоящей из волнистых слоев атомов в чрезвычайно асимметричной призматической решетке. Такая анизотропная структура затрудняет сплав урана с другими металлами. Только молибден и ниобий могут создавать с ураном твердофазные сплавы. Правда, металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соеденинения.

Основные физические свойства урана:
температура плавления 1132.2 °C (+/- 0.8);
температура кипения 3818 °C;
плотность 18.95 (в альфа-фазе);
удельная теплоемкость 6.65 кал/моль/°C (25 C);
прочность на разрыв 450 МПа.

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150-175 °C, образуя U 3 O 8 . При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой. Уран растворяется в соляной, азотной и других кислотах, образуя четырехвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.
Уран имеет четыре степени окисления - III-VI. Шестивалентные соединения включают в себя триокись уранила UO
3 и уранилхлорид урана UO 2 Cl 2 . Тетрахлорид урана UCl 4 и диоксид урана UO 2 - примеры четырехвалентного урана. Вещества, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

Уран стабильных изотопов не имеет, но известно 33 его радиоактивных изотопа. Природный уран состоит из трёх радиоактивных изотопов: 238 U (99,2739%, T=4.47⋅10 9 лет, α-излучатель, родоначальник радиоактивного ряда (4n+2)), 235 U (0.7205%, T=7,04⋅10 9 лет, родоначальник радиоактивного ряда (4n+3)) и 234 U (0.0056%, T=2.48⋅10 5 лет, α-излучатель). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U. Атомная масса природного урана 238,0289+0,0001.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и 234 U, в равновесии их удельные активности равны. Удельная радиоактивность природного урана 0.67 микрокюри/г, разделяется практически пополам между 234 U и 238 U; 235 U вносит малый вклад (удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U). Природный уран достаточно радиоактивен для засвечивания фотопластинки за время около часа. Поперечное сечение захвата тепловых нейтронов 233 U 4,6·10 -27 м2, 235 U 9,8 10 -27 м2, 238 U 2,7 10 -28 м2; сечение деления 233 U 5,27·10 -26 м2, 235 U 5,84·10 -26 м2, природной смеси изотопов 4,2·10 -28 м2.

Изотопы урана, как правило, α-излучатели. Средняя энергия α-излучения 230 U, 231 U, 232 U, 233 U, 234 U, 235 U, 236 U, 238 U равна соответственно 5,97; 3,05⋅10 -4 ; 5,414; 4,909; 4,859; 4,679; 4,572; 4,270 МэВ. В тоже время такие изотопы, как 233 U, 238 U и 239 U помимо альфа- испытывают и другой тип распада – спонтанное деление, хотя вероятность деления намного меньше вероятности α-распада.

С точки зрения практических приложений важно, что природные изотопы 233 U и 235 U делятся под действием как тепловых, так и быстрых нейтронов ( 235 U способен к спонтанному делению), а ядра 238 U способны к делению только при захвате нейтронов с энергией более 1 МэВ. При захвате нейтронов с меньшей энергией ядра 238 U превращаются сначала в ядра 239 U, которые далее испытывают β-распад и переходят сначала в 239 Np, а затем - в 239 Pu, ядерные свойства которого близки к 235 U. Эффективные сечения захвата тепловых нейтронов ядер 234 U, 235 U и 238 U равны 98⋅10 -28 , 683⋅10 -28 и 2,7⋅10 -28 м2 соответственно. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2⋅10 7 кВт.ч/кг.


Техногенные изотопы урана


В современных атомных реакторах нарабатываются 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240, из которых самый долгоживущий – 233 U (T = 1,62·10 5 лет); он получается при нейтронном облучении тория. Изотопы урана с массовым числом больше 240 в реакторах не успевают образоваться. Слишком мало времени жизни урана-240, и он распадается, не успев захватить нейтрон. Однако, в сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов – потомков тяжёлых изотопов урана. Сами «основатели рода» слишком неустойчивы к β-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В энергетических реакторах на тепловых нейтронах качестве ядерного топлива используют изотопы 235 U и 233 U, а в реакторах на быстрых нейтронах 238 U, т.е. изотопы, способные поддерживать цепную реакцию деления.


U-232


232 U – техногенный нуклид, в природе не встречается, α-излучатель, Т=68,9 лет, материнские изотопы 236 Pu(α), 232 Np(β+) и 232 Pa(β-), дочерний нуклид 228 Тh. Способен к спонтанному делению. 232 U имеет интенсивность спонтанного деления 0.47 делений/с⋅кг. В ядерной индустрии 232 U нарабатывается как побочный продукт при синтезе делящегося (оружейного) нуклида 233U в ториевом топливном цикле. При облучении 232 Th происходит основная реакция:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233 U


и побочная двухстадийная реакция:


232 Th + n → 231 Th + 2n, 231 Th → (25.5 ч, β) → 231 Pa + n → 232 Pa → (1.31 дней, β) → 232 U.


Наработка 232 U в ходе двухстадийной реакции зависит от присутствия быстрых нейтронов (нужны нейтроны с энергией не менее 6 МэВ), ибо сечение первой реакции мало для тепловых скоростей. Энергиями более 6 МэВ обладает небольшое число нейтронов деления и если зона воспроизводства тория находится в такой части реактора, где она облучается умеренно быстрыми нейтронами (~ 500 кэВ) то эта реакция может быть практически исключена. Если в исходном веществе находится 230 Th, то образование 232 U дополняется реакцией: 230 Th + n → 231 Th и далее как указано выше. Эта реакция превосходно идет и с тепловыми нейтронами. Поэтому подавление образования 232 U (а это нужно по указанным ниже причинам) требует загрузки тория с минимальной концентрацией 230 Th.

Образующийся в энергетическом реакторе изотоп 232 U представляет проблему для охраны труда, поскольку он распадается на 212 Bi и 208 Te, которые излучают γ-кванты высоких энергий. Поэтому препараты, содержащие большое количество этого изотопа следует перерабатывать в горячей камере. Наличие 232 U в облучённом уране опасно и с точки зрения обращения с атомным оружием.

Накопление 232 U неизбежно при производстве 233 U в ториевом энергетическом цикле, что сдерживает внедрение его в энергетику. Необычным является то, что чётный изотоп 232 U имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн, резонансный интеграл 380), а также высокое сечение захвата нейтронов – 73 барна (резонансный интеграл 280).

Есть и польза от 232 U: он часто применяется в методе радиоактивных индикаторов в химических и физических исследованиях.


U-233



233 U открыт Сиборгом, Гофманом и Стоутоном. Уран-233 - α-излучатель, Т=1,585⋅105 лет, материнские нуклиды 237 Pu(α) 233 Np(β+) 233 Pa(β-), дочерний нуклид 229 Th. Уран-233 получается в атомных реакторах из тория: 232Th захватывает нейтрон и превращается в 233 Th, который распадается на 233 Ра, а затем в 233 U. Ядра 233 U (нечётный изотоп) способны как к спонтанному делению, так и к делению под действием нейтронов любых энергий, что делает его пригодным к производству как атомного оружия, так и реакторного топлива (возможно расширенное воспроизводство ядерного горючего). Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей. Эффективное сечение деления быстрыми нейтронами 533 барн, период полураспада 1585000 лет, в природе не встречается. Критическая масса 233 U в три раза меньше критической массы 235 U (около 16 кг). 233 U имеет интенсивность спонтанного деления равную 720 делений/с⋅кг. 235U можно получить из 232Th, облучением нейтронами:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233U


При поглощении нейтрона, ядро 233 U обычно делится, но изредка захватывает нейтрон, переходя в 234 U, хотя доля процессов неделения меньше, чем в других делящихся топлив ( 235 U, 239 Pu, 241 Pu) она остаётся малой при всех энергиях нейтронов. Отметим, что существует проект реактора на основе расплава солей, в котором протактиний физически изолируют, прежде чем он успеет поглотить нейтрон. Хотя 233 U, поглотив нейтрон, обычно делится, всё же он иногда сохраняет нейтрон, переходя в 234 U (этот процесс существенно менее вероятен, чем деление).

Наработка 233 U из сырья для ториевой промышленности - долгосрочная стратегия развития ядерной индустрии Индии, имеющей существенные запасы тория. Бридинг можно осуществить или в быстрых или в тепловых реакторах. Вне Индии, интерес к топливному циклу на основе тория не слишком велик, хотя мировые запасы тория в три раза превосходят запасы урана.Помимо топлива в атомных реакторах, можно использовать 233 U в оружейном заряде. Хотя сейчас это делают редко. В 1955 США проверили оружейные качества 233 U, взорвав бомбу на его основе в операции Teapot (заварной чайник). С оружейной точки зрения 233 U, сравним с 239 Pu: его радиоактивность – 1/7 (Т=159200 лет против 24100 лет у плутония), его критическая масса на 60% выше (16 кг против 10 кг), а скорость спонтанного деления выше в 20 раз (6⋅10 -9 против 3⋅10 -10 ). Однако, но так как его удельная радиоактивность ниже, то нейтронная плотность 233 U в три раза выше, чем у 239 Pu. Создание ядерного заряда на основе 233 U требует больших усилий, чем на плутонии, но технологические усилия примерно те же.

Основное различие – наличие в 233 U примеси 232 U, которая затрудняет работы с 233 U и позволяет легко обнаружить готовое оружие.

Содержание 232 U в оружейном 233 U не должно превышать 5 частей на миллион (0.0005%). В коммерческом ядерном топливном цикле наличие 232 U не представляет собой большого недостатка, даже желательно, поскольку это снижает возможность распространения урана для оружейных целей. Для экономии топлива, после его переработки и повторного использования уровень 232 U достигает 0.1-0.2%. В специально спроектированных системах этот изотоп накапливается в концентрациях 0.5-1%.

В течение первых двух лет после производства 233 U, содержащего 232 U, 228 Th сохраняется на постоянном уровне, находясь в равновесии с собственным распадом. В этом периоде фоновое значение γ-излучения устанавливается и стабилизируется. Поэтому первые несколько лет произведенная масса 233 U испускает значительное γ-излучение. Десятикилограммовая сфера 233 U оружейной чистоты (5 миллионных долей 232U) создает фон 11 миллибэр/час на расстоянии 1 м спустя 1 месяц после производства, 110

миллибэр/ч через год, 200 миллибэр/ч через 2 года. Ежегодная предельная доза в 5 бэр превышается уже через 25 часов работы с таким материалом. Даже свежий 233 U (1 месяц со дня изготовления) ограничивает время сборки десятью часами в неделю. В полностью собранном оружии уровень радиации снижают поглощением корпусом заряда. В современных облегченных устройствах снижение не превышает 10 раз, создавая проблемы с безопасностью. В более тяжеловесных зарядах поглощение более сильное - в 100 - 1000 раз. Рефлектор из бериллия увеличивает уровень нейтронного фона: 9Be + γ-квант → 8Be + n. γ-лучи 232 U образуют характерную сигнатуру, их можно обнаружить и отследить передвижения и наличие атомного заряда. Нарабатываемый по ториевому циклу специально денатурированный 233 U (0.5 - 1.0% 232 U), создает ещё большую опасность. 10-килограмовая сфера, изготовленная из такого материала, на расстоянии 1 м через 1 месяц создает фон 11 бэр/час, 110 бэр/ч через год и 200 бэр/ч через 2 года. Контакт с такой атомной бомбой, даже при сокращении излучения в 1000 раз, ограничивается 25 часами в год. Наличие заметной доли 232 U в делящемся веществе делает его крайне неудобным для военного применения.


Природные изотопы урана


U-234


Уран-234 (уран II) входит в состав природного урана (0,0055%), Т=2,445⋅10 5 лет, α-излучатель, материнские радионуклиды: 238 Pu(α), 234 Pa(β-), 234 Np(β+), дочерний изотоп в 230 Th. Содержание 234 U в руде очень незначительно из-за его сравнительно короткого периода полураспада. 234 U образуется по реакциям:


238 U → (4.51 миллиарда лет, альфа-распад) → 234 Th

234 Th → (24.1 дней, бета-распад) → 234 Pa

234 Pa → (6.75 часов, бета-распад) → 234 U


Обычно 234 U находится в равновесии с 238 U, распадаясь и образуясь с одинаковой скоростью. Однако распадающиеся атомы 238 U существуют некоторое время в виде тория и протактиния, поэтому могут химически или физически отделиться от руды (выщелачиваться подземными водами). Поскольку 234 U обладает относительно коротким временем полураспада, весь этот изотоп, находящийся в руде, образовался в последние несколько миллионов лет. Примерно половину радиоактивности природного урана составляет вклад 234 U.

Концентрация 234 U в высокообогащённом уране довольно высока из-за предпочтительного обогащения легкими изотопами. Поскольку 234 U является сильным γ-излучателем, имеются ограничения на его концентрацию в уране, предназначенном для переработки в топливо. В принципе, повышенный уровень 234 U приемлем для современных реакторов, но подвергнутое переработке отработанное топливо содержит уже неприемлемые уровни этого изотопа.

Сечение поглощения 234 U тепловых нейтронов 100 барн, а для резонансного интеграла, усреднённого по различным промежуточным нейтронам 700 барн. Поэтому в реакторах на

тепловых нейтронах он конвертируется в делящийся 235 U с большей скоростью, чем намного большее количество 238 U (с поперечным сечением 2,7 барн) конвертируется в 239 Pu. В результате, отработанное ядерное топливо содержит меньше 234 U, чем свежее.


U-235


Уран-235 (актиноуран) – изотоп, способный давать быстроразвивающуюся цепную реакцию деления. Открыт Демпстером (Arthur Jeffrey Dempster) в 1935.

Это – первый изотоп, на котором была открыта реакция вынужденного деления ядер под действием нейтронов. Поглощая нейтрон, 235 U переходит в 236 U, который делится на две части, выделяя энергию и испуская несколько нейтронов. Делящийся нейтронами любых энергий, способный к самопроизвольному делению, изотоп 235 U входит в состав природного урана (0,72%), α-излучатель (энергия 4.679 МэВ), Т=7,038⋅10 8 лет, материнские нуклиды 235 Pa, 235 Np и 239 Pu, дочерний - 231 Th. Интенсивность спонтанного деления 235 U 0.16 делений/с⋅кг. При делении одного ядра 235 U выделяется 200 МэВ энергии=3,2⋅10 -11 Дж, т.е. 18 ТДж/моль=77 ТДж/кг. Однако 5% этой энергии уносится виртуально недектируемыми нейтронами. Ядерное сечение тепловыми нейтронами составляет примерно 1000 барн, а быстрыми нейтронами – около 1 барна.

Чистая 60-килограмовая масса 235 U производит всего 9.6 делений/с, делая достаточно простой для изготовления атомной бомбы по пушечной схеме. 238 U создает в 35 раз больше нейтронов на килограмм, так что даже маленький процент этого изотопа поднимает этот показатель в несколько раз. 234 U создает в 22 раза больше нейтронов и имеет похожее с 238 U нежелательное действие. Удельная активность 235 U всего 2.1 микрокюри/г; загрязнение его 0.8% 234 U поднимают ее до 51 микрокюри/г. Критическая масса оружейного урана. (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара – около 50 кг, для шара с отражателем – 15 – 23 кг.

В природном уране только один, относительно редкий, изотоп подходит для изготовления ядра атомной бомбы или поддержания реакции в энергетическом реакторе. Степень обогащения по 235 U в ядерном топливе для АЭС колеблется в пределах 2-4.5%, для оружейного использования - минимум 80%, а более предпочтительно 90%. В США 235 U оружейного качества обогащен до 93.5% (промышленность способна выдать 97.65%). Такой уран используется в реакторах для военно-морского флота.

Замечание . Уран с содержанием 235 U более 85% называется оружейным ураном, с содержанием более 20% и менее 85% - ураном, годным к оружейному применению, поскольку из него можно приготовить «плохую» (неэффективную бомбу). Но из него можно изготовить и «хорошую» бомбу, если применить имплозию, нейтронные отражатели и некоторые дополненные ухищрения. К счастью, реализовать такие ухищрения на практике пока могут только 2-3 страны в мире. Сейчас, бомбы из урана, по-видимому, нигде не производятся (плутоний вытеснил уран из ядерного оружия), но перспективы урана-235 сохраняются благодаря простоте пушечной схемы урановой бомбы и возможности расширенного производства таких бомб при неожиданно возникшей необходимости.

Будучи более легким, 234 U пропорционально обогащается даже ещё в большей степени, чем 235 U во всех процессах разделения природных изотопов урана, основанных на разнице в массах, что представляет определённую проблему при производстве зарядов атомных бомб. Высокообогащенный 235 U обычно содержит 1.5-2.0% 234 U.

Деление 235 U используется в атомном оружии, для производства энергии и для синтеза важных актинидов. Уран природного состава используется в ядерных реакторах для производства нейтронов. Цепная реакция поддерживается благодаря избытку нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, невостребованные цепной реакцией, захватываются другим природным изотопом, 238 U, что приводит к получению плутония, также способного делиться под действием нейтронов.


U-236


Встречается в природе в примесных количествах, α-излучатель, Т=2,3415⋅10 7 лет, распадается на 232 Th. Образуется при бомбардировке нейтронами 235 U, затем делится на изотоп бария и изотоп криптона с выделением двух нейтронов, гамма-лучей и высвобождением энергии.

В незначительных количествах входит в состав свежего топлива; накапливается при облучении урана нейтронами в реакторе, и потому используется как «сигнализатор» отработанного уранового ядерного топлива. 236 U образуется как побочный продукт при сепарации изотопов методом газовой диффузии в случае регенерации использованного ядерного горючего. Этот изотоп имеет определённое значение как материал для мишени в ядерных реакторах. При использовании рециклированного (переработанного) урана в атомном реакторе возникает важное отличие по сравнению с использованием природного урана. Выделенный из ОЯТ уран содержит изотоп 236 U (0,5%), который при его использовании в свежем топливе стимулирует наработку изотопа 238 Pu. Это приводит к ухудшению качества энергетического плутония, но может быть положительным фактором в контексте проблемы ядерного нераспространения.

Образующийся в энергетическом реакторе 236 U - нейтронный яд, его присутствие в ядерном топливе приходится компенсировать более высоким уровнем обогащения 235 U.


U-238


Уран-238 (уран I) - делящийся нейтронами высоких энергий (более 1 МэВ), способный к самопроизвольному делению, составляет основу природного урана (99,27%), α-излучатель, Т=4,468⋅10 9 лет, непосредственно распадается на 234 Th, образует ряд генетически связных радионуклидов, и через 18 продуктов превращается в 206 Pb. Постоянная скорость распада ряда даёт возможность использования отношения концентраций материнского нуклида к дочернему в радиометрическом датировании. Период полураспада урана-238 по спонтанному делению точно не установлен, но он очень большой – порядка 10 16 лет, так что вероятность деления по отношению к основному процессу - испусканию альфа-частицы - составляет всего 10 -7 . Один килограмм урана дает всего 10 спонтанных делений в секунду, а за это же время α-частицы излучают 20 миллионов ядер. Материнские нуклиды: 242 Pu(α), 238 Pa(β-) 234 Th, дочерний - 234 Th.

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли. Имея высокую плотность и атомный вес, 238 U пригоден для изготовления из него оболочек заряда/рефлектора в атомной и водородной бомбах. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов или непосредственно при делении ядер оболочки заряда быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления 238 U энергиями. 238 U имеет интенсивность спонтанного деления в 35 раз более высокую, чем 235 U, 5.51 делений/с⋅кг. Это делает невозможным применение его в качестве оболочки заряда/рефлектора в бомбах пушечной схемы, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон. Чистый 238 U имеет удельную радиоактивность 0.333 микрокюри/г. Важная область применения этого изотопа урана - производство 239 Pu. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом 238 U нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.


Обедненный уран



После извлечения 235 U из природного урана, оставшийся материал носит название «обедненный уран», т.к. он обеднен изотопам 235 U и 234 U. Уменьшенное содержание 234 U (порядка 0,001%) снижает радиоактивность почти вдвое по сравнению с природным ураном, при этом уменьшение содержания 235 U практически не сказывается на радиоактивности обеднённого урана.

В мире практически весь обеднённый уран хранится в виде гексафторида. США располагают 560000 тонн обедненного гексафторида урана (UF6) на трех газодиффузионных обогатительных производствах, в России – сотни тысяч тонн. Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него 234 U. Из-за того, что основное использование урана - производство энергии, на атомных реакторах тепловыми нейтронами, обедненный уран бесполезный продукт с низкой экономическое ценностью.

С точки зрения безопасности, общепринято переводить газообразный гексафторид обеднённого урана в оксид урана, который является твердым веществом. Оксид урана либо подлежит захоронению, как вид радиоактивных отходов, либо может быть использован в реакторах на быстрых нейтронах для наработки плутония.

Решение о способе утилизации оксида урана зависит от того, как та или иная страна рассматривает обедненный уран: как радиоактивные отходы, подлежащие захоронению, или как материал, пригодный для дальнейшего использования. Например, в США обедненный уран до недавнего времени рассматривался как сырье для дальнейшего использования. Но с 2005 года такая точка зрения начала меняться и сейчас в США возможно захоронение обедненного оксида урана. Во Франции обедненный уран не рассматривается как радиоактивные отходы, но предполагается к хранению в форме оксида урана. В России руководство Федерального агентства по атомной энергии считает отвальный гексафторид урана ценным материалом, не подлежащим захоронению. Начаты работы по созданию промышленной установки по переводу отвального гексафторида урана в оксид урана. Получаемые оксиды урана предполагается хранить длительное время для дальнейшего их использования в реакторах на быстрых нейтронах или дообогащение его 235 U с последующим сжиганием в тепловых реакторах.

Нахождение путей использования обедненного урана представляет собой большую проблему для обогатительных предприятий. В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Две важнейшие сферы использования обедненного урана: в качестве радиационной защиты и как балластной массы в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете Боинг-747 содержится 1500 кг обедненного урана для этих целей. Обедненный уран в значительной степени применяется при бурении нефтяных скважин в виде ударных штанг (при канатном бурении), его вес погружает инструмент в скважины, наполненные буровым раствором. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах.

Но самое известное применение урана - в качестве сердечников для бронебойных снарядов. При определенном сплаве с другими металлами и термической обработке (сплавление с 2% Mo или 0.75% Ti, быстрая закалка разогретого до 850° металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становиться тверже и прочнее стали (прочность на разрыв > 1600 МПа). В сочетании с большой плотностью, это делает закаленный уран чрезвычайно эффективным для пробивания брони, аналогичным по эффективности существенно более дорогому монокристаллическому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль основной части урана, проникновением пыли внутрь защищенного объекта и воспламенением его там. 300 тонн обедненного урана остались на поле боя во время Бури в Пустыне (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава). Обедненный уран используется в танковой броне, например, танка M-1 "Абрамс" (США). -4 % по массе (2-4 ppm в зависимости от региона), в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Количество урана в слое литосферы толщиной 20 км оценивают в 1.3⋅10 14 т. Он входит в состав всех пород, слагающих земную кору, а также присутствует в природных водах и живых организмах. Мощных месторождений не образует. Основная масса урана содержится в кислых, с высоким содержанием кремния, породах. Наименьшая концентрация урана имеет место в ультраосновных породах, максимальная – в осадочных породах (фосфоритах и углистых сланцах). В океанах содержится 10 10 т урана. Концентрация урана в почвах варьируется в интервале 0,7 – 11 ppm (15 ppm в сельскохозяйственных почвах, удобряемыми фосфорными удобрениями), в морской воде 0,003 ррm.

В свободном виде уран в земле не встречается. Известно 100 минералов урана с содержанием U более 1%. Примерно в одной трети этих минералов уран четырёхвалентен, в остальных – шестивалентен. 15 из этих урановых минералов являются простыми оксидами или гидроксилами, 20 – комплексными титанатами и ниобатами, 14 – силикатами, 17 – фосфатами, 10 – карбонатами, 6 – сульфатами, 8 – ванадатами, 8 – арсенатами. Неопределённые формы урановых соединений встречаются в некоторых углистых сланцах морского происхождения, лигните и угле, а также в межзёрновых плёнках в изверженных породах. Промышленное значение имеют 15 минералов урана.

Главные урановые минералы в крупных рудных месторождениях представлены оксидами (урановая смолка, уранинит, коффинит), ванадатами (карнотит и тюямунит) и комплексными титанатами (браннерит и давидит). Промышленное значение имеют также титанаты, например, браннерит UTi 2 O 6 , силикаты - коффинит U 1-x (OH) 4x , танталониобаты и гидритированные фосфаты и арсенаты уранила - урановые слюдки. Уран не встречается в природе как самородный элемент. Вследствие того, что уран может находиться в нескольких стадиях окисления, он встречается в весьма разнообразной геологической обстановке.


Применение урана


В развитых странах производство урана в основном направлено на генерацию делящихся нуклидов ( 235 U и 233 U, 239 Pu) - топлива промышленных реакторов, предназначенных для наработки как оружейных нуклидов, так и компонентов ядерного оружия (атомные бомбы и снаряды стратегического и тактического назначения, нейтронные бомбы, триггеры водородных бомб и т.д.). В атомной бомбе концентрация 235 U превышает 75%. В остальных странах мира металлический уран или его соединения используются в качестве ядерного горючего в энергетических и исследовательских ядерных реакторах. Природная или малообогащённая смесь изотопов урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения – в ядерных силовых установках (источниках тепловой, электрической и механической энергии, излучения или света) или в реакторах, работающих на быстрых нейтронах. В реакторах часто используют металлический уран, легированный и нелегированный. Однако в некоторых типах реакторов применяют горючее в форме твердых соединений (например, UO 2 ), а также водных соединений урана или жидкого сплава урана с другим металлом.

Основное применение урана – производство ядерного топлива для АЭС. Для ядерного реактора с водой под давлением установленной мощностью 1400 МВт требуется в год 225 тонн природного урана для изготовления 50 новых топливных элементов, которые обмениваются на соответствующее число использованных ТВЭЛов. Для загрузки данного реактора необходимо около 130 тонн ЕРР (единица работы разделения) и уровень затрат в 40 млн долл. в год. Концентрация урана-235 в топливе для атомного реактора 2–5%.

По-прежнему определённый интерес урановые руды представляют с точки зрения извлечения из них радия (содержание которого примерно 1 г в 3 т руды) и некоторых других природных радионуклидов. Урановые соединения применяются в стекольной промышленности, для окраски стёкол в красный или зелёный цвет, или придания им красивого зеленовато-жёлтого оттенка. Используют их и в производстве флуоресцентных стёкол: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу.

До 1980-ых, естественный уран широко применяли дантисты, включая его в состав керамики, что позволяло добиться естественного цвета и вызвать оригинальную флуоресценцию зубных протезов и коронок. (Урановая челюсть делает вашу улыбку ярче!) Оригинальный патент от 1942 рекомендует содержание урана 0.1%. Впоследствии естественный уран заменили обеднённым. Это дало два преимущества – дешевле и менее радиоактивно. Уран также использовался в нитях ламп, и в кожевенной и деревообрабатывающей промышленности в составе красителей. Соли урана применяют в растворах протравы и морения шерсти и кожи. Уранилацетат и уранилформиат используются как поглощающие электроны декорирующие вещества в просвечивающей электронной микроскопии, для увеличения контраста тонких срезов биологических объектов, а также для окрашивания вирусов, клеток и макромолекул.

Уранаты типа Na 2 U 2 O 7 («желтый уранил») нашли применение в качестве пигментов для керамических глазурей и эмалей (окрашивают в цвета жёлтый, зелёный и чёрный, в зависимости от степени окисления). Na 2 U 2 O 7 используется также как жёлтая краска в живописи. Некоторые соединения урана светочувствительны. В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для усиления негативов и получения тонированных фотографических отпечатков (окрашивание позитивов в коричневый или бурый цвет). Уранилацетат UO 2 (H 3 COOH) 2 используется в аналитической химии – он образует нерастворимую соль с натрием. Фосфорные удобрения содержат довольно большие количества урана. Металлический уран используется в качестве мишени в рентгеновской трубке, предназначенной для генерации высокоэнергетичного рентгеновского излучения.

Некоторые соли урана используются в качестве катализаторов при химических реакциях, таких, как окисление ароматических углеводородов, обезвоживание растительных масел, и др. Карбид 235 U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород + гексан). Сплавы железа и обедненного урана ( 238 U) применяются как мощные магнитострикционные материалы.

В народном хозяйстве обедненный уран используется при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры. Из обедненного урана изготавливают транспортные контейнеры для перевозки радиоактивных грузов и ядерных отходов, а также изделия надежной биологической защиты (например, защитные экраны). С точки зрения поглощения γ-излучения, уран в пять раз эффективнее свинца, что позволяет существенно снизить толщину защитных экранов и уменьшить объём контейнеров, предназначенных для транспортировки радионуклидов. Бетон на основе оксида обеднённого урана используют вместо гравия для создания сухих хранилищ радиоактивных отходов.

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Его используют для легирования броневой стали, в частности, для улучшения бронебойных характеристик снарядов. При сплавлении с 2% Mo или 0,75% Ti и термической обработке (быстрая закалка разогретого до 850°C металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость. При попадании в броню такой снаряд (например, сплав урана с титаном) не ломается, а как бы самозатачивается, чем и достигается большая пробиваемость. Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе внутри танка. Обеднённый уран используется в современной танковой броне.

Добавление небольших количеств урана к стали увеличивает её твёрдость, не сообщая ей хрупкости и повышая её кислотоустойчивость. Особенно кислотоустойчивым, даже по отношению к царской водке, является сплав урана с никелем (66% урана и 33% никеля) с точкой плавления 1200 о . Обеднённый уран используется и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Как уже упоминалось, в наше время урановые атомные бомбы не изготавливаются. Однако в современных плутониевых бомбах 238 U (в том числе – обеднённый уран) всё же применяется. Он составляет оболочку заряда, отражая нейтроны и добавляя инерцию в сжатие плутониевого заряда в имплозивной схеме подрыва. Это существенно повышает эффективность оружия и уменьшает критическую массу (т.е. уменьшает количество плутония, необходимого для создания цепной реакции деления). Применяют обеднённый уран и в водородных бомбах, запаковывая им термоядерный заряд, направляя сильнейший поток сверхбыстрых нейтронов на деление ядер и увеличивая тем самым энергетический выход оружия. Такая бомба называется оружием деление-синтез-деление в честь трёх стадий взрыва. Большая часть энергетического выхода при взрыве подобного оружия приходится как раз на деление 238 U, производящее значительное количество радиоактивных продуктов. Например, 77% энергии при взрыве водородной бомбы в испытании Ivy Mike (1952) мощностью 10,4 мегатонн пришлось именно на процессы деления в урановой оболочке. Поскольку обеднённый уран не имеет критической массы, его можно добавлять в бомбу в неограниченных количествах. В советской водородной бомбе (Царь Бомба – Кузькина мать), взорванной на Новой Земле в 1961 мощностью «только» 50 мегатонн 90% выхода пришлось на реакцию термоядерного синтеза, поскольку оболочку из 238 U на конечной стадии взрыва заменили на свинец. Если бы оболочку изготовили (как и собирались в начале) из 238 U, то мощность взрыва превыcила 100 мегатонн и выпадения радиоактивных осадков составило 1/3 от суммы всех мировых испытаний ядерного оружия.

Природные изотопы урана нашли применение в геохронологии для измерения абсолютного возраста горных пород и минералов. Еще в 1904 Эрнест Резерфорд обратил внимание на то, что возраст Земли и древнейших минералов – величина того же порядка, что и период полураспада урана. Тогда же он предложил по количеству гелия и урана, содержащихся в плотной породе, определять её возраст. Но вскоре выяснились недостаток метода: крайне подвижные атомы гелия легко диффундируют даже в плотных породах. Они проникают в окружающие минералы, а вблизи материнских урановых ядер остается значительно меньше гелия, чем следует по законам радиоактивного распада. Поэтому возраст пород вычисляют по соотношению урана и радиогенного свинца – конечного продукта распада урановых ядер. Возраст некоторых объектов, например, слюд, определить ещё проще: возраст материала пропорционален числу распавшихся в нём атомов урана, которое определяется числом следов – треков, оставляемых осколками в веществе. По отношению концентрации урана к концентрации треков можно вычислить возраст любого древнего сокровища (вазы, украшения и т.п.). В геологии даже изобрели специальный термин «урановые часы». Урановые часы – весьма универсальный инструмент. Изотопы урана содержатся во многих породах. Концентрация урана в земной коре в среднем равна трем частям на миллион. Этого достаточно, чтобы измерить соотношение урана и свинца, а затем по формулам радиоактивного распада рассчитать время, прошедшее с момента кристаллизации минерала. Урано-свинцовым способом удалось измерить возраст древнейших минералов, а по возрасту метеоритов определили дату рождения планеты Земля. Известен и возраст лунного грунта. Самые молодые куски лунного грунта старее древнейших земных минералов.

Деление ядер урана было открыто в 1938 г. немецкими учеными О. Ганом и Ф. Штрассманом. Им удалось установить, что при бомбардировке ядер урана нейтронами образуются элементы средней части периодической системы: барий, криптон и др. Правильное толкование этому факту дали австрийский физик Л. Мейтнер и английский физик О. Фриш. Они объяснили появление этих элементов распадом ядер урана, захватившего нейтрон, на две примерно равные части. Это явление получило название деления ядер, а образующиеся ядра - осколков деления.

См. также

  1. Васильев А. Деление урана: от Клапрота до Гана //Квант. - 2001. - № 4. - С. 20-21,30 .

Капельная модель ядра

Объяснить эту реакцию деления можно основываясь на капельной модели ядра. В этой модели ядро рассматривается как капля электрически заряженной несжимаемой жидкости. Кроме ядерных сил, действующих между всеми нуклонами ядра, протоны испытывают дополнительное электростатическое отталкивание, вследствие которого они располагаются на периферии ядра. В невозбужденном состоянии силы электростатического отталкивания скомпенсированы, поэтому ядро имеет сферическую форму (рис. 1, а).

После захвата ядром \(~^{235}_{92}U\) нейтрона образуется промежуточное ядро \(~(^{236}_{92}U)^*\), которое находится в возбужденном состоянии. При этом энергия нейтрона равномерно распределяется между всеми нуклонами, а само промежуточное ядро деформируется и начинает колебаться. Если возбуждение невелико, то ядро (рис. 1, б), освобождаясь от излишка энергии путем испускания γ -кванта или нейтрона, возвращается в устойчивое состояние. Если же энергия возбуждения достаточно велика, то деформация ядра при колебаниях может быть настолько большой, что в нем образуется перетяжка (рис. 1, в), аналогичная перетяжке между двумя частями раздваивающейся капли жидкости. Ядерные силы, действующие в узкой перетяжке, уже не могут противостоять значительной кулоновской силе отталкивания частей ядра. Перетяжка разрывается, и ядро распадается на два "осколка" (рис. 1, г), которые разлетаются в противоположные стороны.

uran.swf Flash: Деление урана Увеличить Flash Рис. 2.

В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

\(~^{235}_{92}U + \ ^1_0n \ ^{\nearrow}_{\searrow} \ \begin{matrix} ^{144}_{56}Ba + \ ^{89}_{36}Kr + \ 3^1_0n \\ ^{140}_{54}Xe + \ ^{94}_{38}Sr + \ 2^1_0n \end{matrix}\) .

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

При делении ядер тяжелых атомов (\(~^{235}_{92}U\)) выделяется очень большая энергия - около 200 МэВ при делении каждого ядра. Около 80 % этой энергии выделяется в виде кинетической энергии осколков; остальные 20 % приходятся на энергию радиоактивного излучения осколков и кинетическую энергию мгновенных нейтронов.

Оценку выделяющей при делении ядра энергии можно сделать с помощью удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90 – 145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

См. также

  1. Варламов А.А. Капельная модель ядра //Квант. - 1986. - № 5. - С. 23-24

Цепная реакция

Цепная реакция - ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 3.

reakcia.swf Flash: цепная реакция Увеличить Flash Рис. 4.

Уран встречается в природе в виде двух изотопов\[~^{238}_{92}U\] (99,3 %) и \(~^{235}_{92}U\) (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления \(~^{235}_{92}U\) наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра \(~^{238}_{92}U\) вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ. Иначе энергия возбуждения образовавшихся ядер \(~^{239}_{92}U\) оказывается недостаточной для деления, и тогда вместо деления происходят ядерные реакции:

\(~^{238}_{92}U + \ ^1_0n \to \ ^{239}_{92}U \to \ ^{239}_{93}Np + \ ^0_{-1}e\) .

Изотоп урана \(~^{238}_{92}U\) β -радиоактивен, период полураспада 23 мин. Изотоп нептуния \(~^{239}_{93}Np\) тоже радиоактивен, период полураспада около 2 дней.

\(~^{239}_{93}Np \to \ ^{239}_{94}Pu + \ ^0_{-1}e\) .

Изотоп плутония \(~^{239}_{94}Np\) относительно стабилен, период полураспада 24000 лет. Важнейшее свойство плутония состоит в том, что он делится под влиянием нейтронов так же, как \(~^{235}_{92}U\). Поэтому с помощью \(~^{239}_{94}Np\) может быть осуществлена цепная реакция.

Рассмотренная выше схема цепной реакции представляет собой идеальный случай. В реальных условиях не все образующиеся при делении нейтроны участвуют в делении других ядер. Часть их захватывается неделящимися ядрами посторонних атомов, другие вылетают из урана наружу (утечка нейтронов).

Поэтому цепная реакция деления тяжелых ядер возникает не всегда и не при любой массе урана.

Коэффициент размножения нейтронов

Развитие цепной реакции характеризуется так называемым коэффициентом размножения нейтронов К , который измеряется отношением числа N i нейтронов, вызывающих деление ядер вещества на одном из этапов реакции, к числу N i-1 нейтронов, вызвавших деление на предыдущем этапе реакции:

\(~K = \dfrac{N_i}{N_{i - 1}}\) .

Коэффициент размножения зависит от ряда факторов, в частности от природы и количества делящегося вещества, от геометрической формы занимаемого им объема. Одно и то же количество данного вещества имеет разное значение К . К максимально, если вещество имеет шарообразную форму, поскольку в этом случае потеря мгновенных нейтронов через поверхность будет наименьшей.

Масса делящегося вещества, в котором цепная реакция идет с коэффициентом размножения К = 1, называется критической массой. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу.

Значение критической массы определяется геометрией физической системы, ее структурой и внешним окружением. Так, для шара из чистого урана \(~^{235}_{92}U\) критическая масса равна 47 кг (шар диаметром 17 см). Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D 2 O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.

При коэффициенте размножения К = 1 число делящихся ядер поддерживается на постоянном уровне. Такой режим обеспечивается в ядерных реакторах.

Если масса ядерного топлива меньше критической массы, то коэффициент размножения К < 1; каждое новое поколение вызывает все меньшее и меньшее число делений, и реакция без внешнего источника нейтронов быстро затухает.

Если же масса ядерного топлива больше критической, то коэффициент размножения К > 1 и каждое новое поколение нейтронов вызывает все большее число делений. Цепная реакция лавинообразно нарастает и имеет характер взрыва, сопровождающегося огромным выделением энергии и повышением температуры окружающей среды до нескольких миллионов градусов. Цепная реакция такого рода происходит при взрыве атомной бомбы.

Ядерная бомба

В обычном состоянии ядерная бомба не взрывается потому, что ядерный заряд в ней разделен на несколько небольших частей перегородками, поглощающими продукты распада урана, – нейтроны. Цепная ядерная реакция, являющаяся причиной ядерного взрыва, не может поддерживаться в таких условиях. Однако, если фрагменты ядерного заряда соединить вместе, то их суммарная масса станет достаточной для того, чтобы начала развиваться цепная реакция деления урана. В результате происходит ядерный взрыв. При этом мощность взрыва, развиваемая ядерной бомбой сравнительно небольших размеров, эквивалентна мощности, выделяющейся при взрыве миллионов и миллиардов тонн тротила.

Рис. 5. Атомная бомба

Трудно сказать, какое имя дал бы немецкий ученый Мартин Генрих Клапрот открытому в 1789 году химическому элементу, если бы за несколько лет до этого не произошло событие, взволновавшее все круги общества: в 1781 году английский астроном Вильям Гершель, наблюдая с помощью самодельного телескопа звездное небо, обнаружил светящееся облачко, которое он поначалу принял за комету, но в дальнейшем убедился, что видит новую, неизвестную дотоле седьмую планету солнечной системы. В честь древнегреческого бога неба Гершель назвал ее Ураном. Находившийся под впечатлением этого события, Клапрот дал новорожденному элементу имя новой планеты.

Спустя примерно полвека, в 1841 году французский химик Эжен Мельхиор Пелиго сумел впервые получить металлический уран. Промышленный мир остался равнодушным к тяжелому, сравнительно мягкому металлу, каким оказался уран. Его механические и химические свойства не привлекли ни металлургов, ни машиностроителей. Лишь стеклодувы Богемии да саксонские мастера фарфоровых и фаянсовых дел охотно применяли оксид этого металла, чтобы придать бокалам красивый желто-зеленый цвет или украсить блюда затейливым бархатно-черным узором.

О "художественных способностях" урановых соединений знали еще древние римляне. При раскопках, проведенных близ Неаполя, удалось найти стеклянную мозаичную фреску удивительной красоты. Археологи были поражены: за два тысячелетия стекла почти не потускнели. Когда образцы стекол подвергли химическому анализу, оказалось, что в них присутствует оксид урана, которому мозаика и была обязана своим долголетием. Но если оксиды и соли урана занимались "общественно полезным трудом", то сам металл в чистом виде почти никого не интересовал.

Даже ученые, и те были лишь весьма поверхностно знакомы с этим элементом. Сведения о нем были скудны, а порой совершенно неправильны. Так, считалось, что его атомная масса равна приблизительно 120. Когда Д. И. Менделеев создавал свою Периодическую систему, эта величина путала ему все карты: уран по своим свойствам никак не хотел вписываться в ту клетку таблицы, которая была забронирована за элементом с этой атомной массой. И тогда ученый, вопреки мнению многих своих коллег, решил принять новое значение атомной массы урана - 240 и перенес элемент в конец таблицы. Жизнь подтвердила правоту великого химика: атомная масса урана равна 238,03.

Но гений Д. И. Менделеева проявился не только в этом. Еще в 1872 году, когда большинство ученых считало уран на фоне многих ценных элементов своего рода балластом, создатель Периодической системы сумел предвидеть его поистине блестящее будущее: "Между всеми известными химическими элементами уран выделяется тем, что обладает наивысшим атомным весом... Наивысшая, из известных, концентрация массы весомого вещества... существующая в уране... должна влечь за собою выдающиеся особенности...

Убежденный в том, что исследование урана, начиная с его природных источников, поведет еще ко многим новым открытиям, я смело рекомендую тем, кто ищет предметов для новых исследований, особо тщательно заниматься урановыми соединениями".

Предсказание великого ученого сбылось менее чем через четверть века: в 1896 году французский физик Антуан Анри Беккерель, проводя эксперименты с солями урана, совершил открытие, которое по праву относится к величайшим научным открытиям, когда-либо сделанным человеком. Вот как это произошло. Беккерель давно интересовался явлением фосфоресценции (т. е. свечения), присущей некоторым веществам. Однажды ученый решил воспользоваться для своих опытов одной из солей урана. На обернутую черной бумагой фотопластинку он поместил вырезанную из металла узорчатую фигуру, покрытую слоем урановой соли, и выставил ее на яркий солнечный свет, чтобы фосфоресценция была как можно более интенсивной. Через четыре часа Беккерель проявил пластинку и увидел на ней отчетливый силуэт металлической фигуры. Еще и еще раз повторил он свои опыты - результат был тот же. И вот 24 февраля 1896 года на заседании французской Академии наук ученый доложил, что исследованное им фосфоресцирующее соединение урана на свету испускает невидимые лучи, которые проходят через черную непрозрачную бумагу и восстанавливают соли серебра на фотопластинке.

Спустя два дня Беккерель решил продолжить эксперименты, но как на грех погода была пасмурной, а без солнца какая же фосфоресценция? Досадуя на непогоду, ученый спрятал уже приготовленные, но так и не подвергшиеся освещению диапозитивы вместе с образцами солей урана в ящик своего стола, где они пролежали несколько дней. Наконец, в ночь на 1 марта ветер очистил парижское небо от туч и солнечные лучи с утра засверкали над городом. Беккерель, с нетерпением ожидавший этого, поспешил в свою лабораторию и извлек из ящика стола диапозитивы, чтобы выставить их на солнце. Но, будучи очень педантичным экспериментатором, он в последний момент все же решил проявить диапозитивы, хотя логика, казалось бы, подсказывала, что за прошедшие дни с ними ничего не могло произойти: ведь они лежали в темном ящике, а без света не фосфоресцирует ни одно вещество. В этот миг ученый не подозревал, что через несколько часов обычным фотографическим пластинкам ценой в несколько франков, суждено стать бесценным научным сокровищем, а день 1 марта 1896 года навсегда войдет в историю мировой науки.

То, что Беккерель увидел на проявленных пластинках, буквально поразило его: черные силуэты образцов резко и четко обозначились на светочувствительном слое. Значит, фосфоресценция здесь ни при чем. Но тогда что же это за лучи испускает соль урана? Ученый снова и снова проделывает аналогичные опыты с другими соединениями урана, в том числе и с теми, которые не обладали способностью фосфоресцировать или годами лежали в темном месте, и каждый раз на пластинках появлялось изображение.

У Беккереля возникает пока еще не вполне ясная мысль, что уран представляет собой "первый пример металла, обнаруживающего свойство, подобное невидимой фосфоресценции".

В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. Беккерель попросил у Муассана немного уранового порошка и установил, что излучение чистого урана значительно интенсивнее, чем его соединений, причем это свойство урана оставалось неизменным при самых различных условиях опытов, в частности при сильном нагревании и при охлаждении до низких температур.

С публикацией новых данных Беккерель не спешил: он ждал, когда Муассан сообщит о своих весьма интересных исследованиях. К этому обязывала научная этика. И вот 23 ноября 1896 года на заседании Академии наук Муассан сделал доклад о работах по получению чистого урана, а Беккерель рассказал о новом свойстве, присущем этому элементу, которое заключалось в самопроизвольном превращении его атомов, сопровождающемся выделением лучистой энергии. Это свойство было названо радиоактивностью.

Открытие Беккереля ознаменовало собой начало новой эры в физике - эры превращения элементов. Отныне атом уже не мог считаться единым и неделимым - перед наукой открывался путь в глубины этого "кирпичика" материального мира.

Естественно, что теперь уран приковал к себе внимание ученых. Вместе с тем их интересовал и такой вопрос: только ли урану присуща радиоактивность? Быть может, в природе существуют и другие элементы, обладающие этим свойством?

Ответ на этот вопрос смогли дать выдающиеся физики супруги Пьер Кюри и Мария Склодовская-Кюри. С помощью прибора, сконструированного мужем, Мария Кюри исследовала огромное количество металлов, минералов, солей. Работа велась в неимоверно тяжелых условиях. Лабораторией служил заброшенный деревянный сарай, который супруги подыскали в одном из парижских дворов. "Это был барак из досок, с асфальтовым полом и стеклянной крышей, плохо защищавшей от дождя, без всяких приспособлений, - вспоминала впоследствии М. Кюри. - В нем были только старые деревянные столы, чугунная печь, не дававшая достаточно тепла, и классная доска, которой так любил пользоваться Пьер. Там не было вытяжных шкафов для опытов с вредными газами, поэтому приходилось делать эти операции на дворе, когда позволяла погода, или же в помещении при открытых окнах". В дневнике П. Кюри есть запись о том, что порой работы проводились при температуре всего шесть градусов выше нуля.

Много проблем возникало и с получением нужных материалов. Урановая руда была очень дорогой, и купить на свои скромные средства достаточное количество ее супруги Кюри не могли. Они решили обратиться к австрийскому правительству с просьбой продать им по невысокой цене отходы этой руды, из которой в Австрии извлекали уран, используемый в виде солей для окрашивания стекла и фарфора. Ученых поддержала венская Академия наук, и несколько тонн отходов было доставлено в их парижскую лабораторию.

Мария Кюри работала с необыкновенным упорством. Изучение разнообразных материалов подтверждало правоту Беккереля, считавшего, что радиоактивность чистого урана больше, чем у любых его соединений. Об этом говорили результаты сотен опытов. Но Мария Кюри подвергала исследованиям все новые и новые вещества. И вдруг... Неожиданность! Два урановых минерала - хальколит и смоляная руда Богемии - гораздо активнее действовали на прибор, чем уран. Вывод напрашивался сам собой: в них содержится какой-то неизвестный элемент, характеризующийся еще более высокой способностью к радиоактивному распаду. В честь Польши - родины М. Кюри - супруги назвали его полонием.

Снова за работу, снова титанический труд - и еще победа: открыт элемент, в сотни раз превосходящий по радиоактивности уран. Этот элемент ученые назвали радием, что по-латыни означает "луч".

Открытие радия в какой-то мере отвлекло научную общественность от урана. В течение примерно сорока лет он не очень волновал умы ученых, да и инженерная мысль редко баловала его своим вниманием. В одном из томов технической энциклопедии, изданном в 1934 году, утверждалось: "Элементарный уран практического применения не имеет". Солидное издание не грешило против истины, но спустя всего несколько лет жизнь внесла существенные коррективы в представления о возможностях урана.

В начале 1939 года появились два научных сообщения. Первое, направленное во французскую Академию наук Фредериком Жолио-Кюри, было озаглавлено "Экспериментальное доказательство взрывного расщепления ядер урана и тория под действием нейтронов". Второе сообщение - его авторами были немецкие физики Отто Фриш и Лиза Мейтнер - опубликовал английский журнал "Природа"; оно называлось: "Распад урана под действием нейтронов: новый вид ядерной реакции". И там, и там речь шла о новом, доселе неизвестном явлении, происходящем с ядром самого тяжелого элемента - урана.

Еще за несколько лет до этого ураном всерьез заинтересовались "мальчуганы" - так дружелюбно называли группу молодых талантливых физиков, работавших под руководством Энрико Ферми в Римском университете. Увлечением этих ученых была нейтронная физика, таившая в себе много нового, неизведанного.

Было обнаружено, что при облучении нейтронами, как правило, ядра одного элемента превращаются в ядра другого, занимающего следующую клетку в Периодической системе. А если облучить нейтронами последний, 92-й элемент - уран? Тогда должен образоваться элемент, стоящий уже на 93-м месте - элемент, который не смогла создать даже природа!

Идея понравилась "мальчуганам". Еще бы, разве не заманчиво узнать, что собой представляет искусственный элемент, как он выглядит, как ведет себя? Итак - уран облучен. Но что произошло? В уране появился не один радиоактивный элемент, как ожидалось, а по меньшей мере десяток. Налицо была какая-то загадка в поведении урана. Энрико Ферми направляет сообщение об этом в один из научных журналов. Возможно, считает он, образовался 93-й элемент, однако точных доказательств этого нет. С другой стороны, есть доказательства, что в облученном уране присутствуют какие-то другие элементы. Какие же?

Попытку дать ответ на этот вопрос предприняла дочь Марии Кюри - Ирен Жолио-Кюри. Она повторила опыты Ферми и тщательно исследовала химический состав урана после облучения его нейтронами. Результат был более чем неожиданным: в уране появился элемент лантан, располагающийся примерно в середине таблицы Менделеева, т.е. очень далеко от урана.

Когда те же эксперименты проделали немецкие ученые Отто Ган и Фридрих Штрассман, они нашли в уране не только лантан, но и барий. Загадка за загадкой!

Ган и Штрассман сообщили о проведенных опытах своему другу известному физику Лизе Мейтнер. Теперь уже урановую проблему пытаются решить сразу несколько крупнейших ученых. И вот сначала Фредерик Жолио-Кюри, а спустя некоторое время Лиза Мейтнер приходят к одному и тому же выводу: при попадании нейтрона ядро урана как бы разваливается на части. Этим и объясняется неожиданное появление лантана и бария - элементов с атомной массой примерно вдвое меньшей, чем у урана.

Американского физика Луиса Альвареса, впоследствии лауреата Нобелевской премии это известие застало в одно январское утро 1939 года в кресле парикмахера. Он спокойно просматривал газету, как вдруг ему бросился в глаза скромный заголовок: "Атом урана разделен на две половины". Через мгновение к изумлению парикмахера и посетителей, ожидавших очереди, странный клиент выбежал из парикмахерской, наполовину подстриженный, с салфеткой, туго завязанной вокруг шеи и развевающейся на ветру. Не обращая внимания на удивленных прохожих, физик мчался в лабораторию Калифорнийского университета, где он работал, чтобы сообщить о потрясающей новости своим коллегам. Те поначалу были ошарашены весьма оригинальным видом размахивающего газетой Алвареса, но, когда услышали о сенсационном открытии, тотчас же забыли о его необычной прическе.


Да, это была подлинная сенсация в науке. Но Жолио-Кюри установил и другой важнейший факт: распад уранового ядра носит характер взрыва, при котором образующиеся осколки разлетаются в стороны с огромной скоростью. Пока удавалось расколоть лишь отдельные ядра, энергия осколков только нагревала кусок урана. Если же число делений будет велико, то при этом выделится огромное количество энергии.

Но где раздобыть такое количество нейтронов, чтобы одновременно бомбардировать ими большое число ядер урана? Ведь известные ученым источники нейтронов давали их во много миллиардов раз меньше, чем требовалось. На помощь пришла сама природа. Жолио-Кюри обнаружил, что при делении ядра урана из него вылетает несколько нейтронов. Попав в ядра соседних атомов, они должны привести к новому распаду - начнется так называемая цепная реакция. А поскольку эти процессы длятся миллионные доли секунды, сразу выделится колоссальная энергия - неизбежен взрыв. Казалось бы, все ясно. Но ведь куски урана уже не раз облучали нейтронами, а они при этом не взрывались, т.е. цепная реакция не возникала. Видимо, нужны еще какие-то условия. Какие же? На этот вопрос Фредерик Жолио-Кюри ответить пока не мог.

И все же ответ был найден. Нашли его в том же 1939 году молодые советские ученые Я.Б. Зельдович и Ю.Б. Харитон. В своих работах они установили, что есть два пути развития цепной ядерной реакции. Первый - увеличить размеры куска урана, так как при облучении маленького куска многие выделившиеся вновь нейтроны могут вылететь из него, не встретив на своем пути ни одного ядра. С ростом массы урана вероятность попадания нейтрона в цель, естественно, возрастает.

Есть и другой путь - обогащение урана изотопом 235. Дело в том, что природный уран имеет два основных изотопа, атомные массы которых равны 238 и 235. В ядре первого из них, на долю которого приходится в сотни раз больше атомов, имеется на три нейтрона больше. "Бедный" нейтронами уран-235 жадно их поглощает - гораздо сильней, чем его "зажиточный" брат, который при определенных условиях, поглотив нейтрон, не делится на части, а превращается в другой элемент. Это свойство изотопа ученые в дальнейшем использовали для получения искусственных трансурановых элементов. Для цепной же реакции равнодушие урана-238 к нейтронам оказывается губительным: процесс превращается, не успев набрать силу. Зато чем больше в уране "жадных" до нейтронов атомов изотопа 235, тем энергичнее пойдет реакция.

Но, чтобы начался процесс, нужен еще и первый нейтрон - та "спичка", которая должна вызвать атомный "пожар". Конечно, для этой цели можно воспользоваться обычными нейтронными источниками, которые ученые и ранее применяли в своих исследованиях, не очень удобно, но можно. А нет ли более подходящей "спички"?

Есть. Ее нашли другие советские ученые - К. А. Петржак и Г. Н. Флеров. Исследуя в 1939-1940 годах поведение урана, они пришли к выводу, что его ядра способны распадаться самопроизвольно. Это подтвердили результаты опытов, проведенных ими в одной из ленинградских лабораторий.

Но, может быть, уран распадался не сам, а, например, под действием космических лучей: ведь Земля непрерывно находится под их обстрелом. Значит, опыты нужно повторить глубоко под землей, куда не проникают эти космические гости. Посоветовавшись с крупнейшим советским ученым-атомником И.В. Курчатовым, молодые исследователи решили провести эксперименты на какой-нибудь станции Московского метрополитена. В Наркомате путей сообщения это не встретило препятствий, и вскоре в кабинет начальника станции метро "Динамо", находившейся на глубине 50 метров, на плечах научных работников была доставлена аппаратура, которая весила около трех тонн.

Как всегда, мимо проходили голубые поезда, тысячи пассажиров спускались и поднимались по эскалатору, и никто из них не предполагал, что где-то совсем рядом ведутся опыты, значение которых трудно переоценить. И вот, наконец, получены результаты, аналогичные тем, которые наблюдались в Ленинграде. Сомнения не было: ядрам урана присущ самопроизвольный распад. Чтобы заметить его, нужно было проявить незаурядное экспериментаторское мастерство: за час из каждых 60000000000000 атомов урана распадается лишь один. Поистине - капля в море!

К. А. Петржак и Г. Н. Флеров вписали заключительную страницу в ту часть биографии урана, которая предшествовала проведению первой в мире цепной реакции. Ее осуществил 2 декабря 1942 года Энрико Ферми.

В конце 30-х годов Ферми, как и многие другие крупные ученые, спасаясь от гитлеровской чумы, вынужден был эмигрировать в Америку. Здесь он намеревался продолжить свои важнейшие эксперименты. Но для этого требовалось немало денег. Нужно было убедить американское правительство в том, что опыты Ферми позволят получить мощное атомное оружие, которое можно будет использовать для борьбы с фашизмом. Эту миссию взял на себя ученый с мировым именем Альберт Эйнштейн. Он пишет письмо президенту США Франклину Рузвельту, которое начинается словами: "Сэр! Последняя работа Э. Ферми и Л. Сцилларда, с которой я ознакомился в рукописи, позволяет надеяться, что элемент уран в ближайшем будущем может быть превращен в новый важный источник энергии...". В письме ученый призывал правительство начать финансирование работ по исследованию урана. Учитывая огромный авторитет Эйнштейна и серьезность международной обстановки, Рузвельт дал свое согласие.

В конце 1941 года жители Чикаго могли заметить на территории одного из стадионов необычное оживление, которое не имело к спорту ни малейшего отношения. К воротам его то и дело подъезжали машины с грузом. Многочисленная охрана не разрешала посторонним даже приближаться к ограде стадиона. Здесь, на теннисных кортах, расположенных под западной трибуной, Энрико Ферми готовил свой опаснейший эксперимент - осуществление контролируемой цепной реакции деления ядер урана. Работы по сооружению первого в мире ядерного реактора велись днем и ночью в течение года.

Наступило утро 2 декабря 1942 года. Всю ночь ученые не смыкали глаз, снова и снова проверяя расчеты. Шутка ли сказать: стадион находится в самом центре многомиллионного города, и хотя расчеты убеждали в том, что реакция в атомном котле будет замедленной, т.е. не будет носить взрывного характера, рисковать жизнью сотен тысяч людей никто не имел права. День уже давно начался, пора было завтракать, но об этом все забыли - не терпелось как можно скорее приступить к штурму атома. Однако Ферми не торопится: надо дать уставшим людям отдохнуть, нужна разрядка, чтобы затем снова все тщательно взвесить и обдумать. Осторожность и еще раз осторожность. И вот, когда все ждали команду начать эксперимент, Ферми произнес свою знаменитую фразу, вошедшую в историю покорения атома, - всего два слова: "Идемте-ка завтракать!".

Завтрак позади, все вновь на своих местах - опыт начинается. Взгляды ученых прикованы к приборам. Томительны минуты ожидания. И, наконец, счетчики нейтронов защелкали, как пулеметы. Они словно захлебывались от огромного количества нейтронов, не успевая их считать! Цепная реакция началась! Это произошло в 15 часов 25 минут по чикагскому времени. Атомному огню позволили гореть 28 минут, а затем по команде Ферми цепная реакция была прекращена.

Один из участников эксперимента подошел к телефону и заранее условленной шифрованной фразой сообщил начальству: "Итальянский мореплаватель добрался до Нового Света!" Это означало, что выдающийся итальянский ученый Энрико Ферми освободил энергию атомного ядра и доказал, что человек может контролировать и использовать ее по своей воле.

Но воля воле рознь. В те годы, когда происходили описываемые события, цепная реакция рассматривалась прежде всего как этап на пути к созданию атомной бомбы. Именно в этом направлении и были продолжены в Америке работы ученых-атомников.

Обстановка в научных кругах, связанных с этими работами, была крайне напряженной. Но и здесь не обходилось без курьезов.

Осенью 1943 года было решено вывезти из оккупированной немцами Дании в Америку крупнейшего физика Нильса Бора, чтобы использовать его громадные знания и талант. Темной ночью" на рыбацком суденышке, тайно охраняемом английскими подводными лодками, ученый под видом рыбака был доставлен в Швецию, откуда его на самолете должны были переправить в Англию, а уж затем в США. Весь багаж Бора состоял из одной бутылки. Эту обычную зеленую бутылку из-под датского пива, в которой он тайком от немцев хранил бесценную тяжелую воду, физик берег как зеницу ока: по мнению многих ученых-атомников, именно тяжелая вода могла служить замедлителем нейтронов для ядерной реакции. Бор очень тяжело перенес утомительный полет и, как только пришел в себя, первым делом проверил, цела ли бутылка с тяжелой водой. И тут, к своему великому огорчению, ученый обнаружил, что стал жертвой собственной рассеянности: в его руках была бутылка с самым настоящим датским пивом, а сосуд с тяжелой водой остался дома в холодильнике.

Когда на гигантских заводах Ок-Риджа, расположенных в штате Теннесси, был получен первый небольшой кусочек урана-235, предназначенный для атомной бомбы, его отправили со специальным курьером в скрытый среди кантонов штата Нью-Мексико Лос-Аламос, где создавалось это смертоносное оружие. Курьеру, которому предстояло самому вести машину, не сказали, что находится в переданной ему коробочке, но он не раз слышал жуткие истории о таинственных "лучах смерти", рождаемых в Ок-Ридже. Чем дальше он ехал, тем большее волнение охватывало его. В конце концов он решил, при первом же подозрительном признаке в поведении коробочки, спрятанной позади его, бежать от машины что есть мочи. Проезжая по длинному мосту, шофер внезапно услышал сзади громкий выстрел. Словно катапультированный, он выскочил из автомобиля и побежал так быстро, как не бегал еще никогда в своей жизни. Но вот, пробежав изрядное расстояние, он остановился в изнеможении, убедился, что цел и невредим, и даже отважился оглянуться. А тем временем за его машиной уже вырос длинный хвост нетерпеливо сигналивших автомобилей. Пришлось возвращаться и продолжать путь. Но едва он сел за руль, как снова раздался громкий выстрел, и инстинкт самосохранения опять буквально выбросил беднягу из машины и заставил мчаться прочь от злополучной коробочки. Лишь после того, как разгневанный полисмен догнал его на мотоцикле и увидел правительственные документы, испуганный шофер узнал, что выстрелы доносились с соседнего полигона, где в это время испытывали новые артиллерийские снаряды.


Работы в Лос-Аламосе велись в обстановке строжайшей тайны. Все крупные ученые находились здесь под вымышленными именами. Так, Нильс Бор, например, был известен в Лос-Аламосе как Николас Бейкер, Энрико Ферми был Генри Фармером, Юджин Вигнер - Юджином Вагнером. Однажды, когда Ферми и Вигнер выезжали с территории одного секретного завода, их остановил часовой. Ферми предъявил свое удостоверение на имя Фармера, а Вигнер не смог найти своих документов. У часового был список тех, кому разрешалось входить на завод и выходить из него. "Ваша фамилия?" - спросил он. Рассеянный профессор сначала по привычке пробормотал "Вигнер", но тут же спохватился и поправился: "Вагнер". Это вызвало подозрение у часового. Вагнер был в списке, а Вигнер - нет. Он повернулся к Ферми, которого уже хорошо знал в лицо, и спросил: "Этого человека зовут Вагнер?". - "Его зовут Вагнер. Это так же верно, как и то, что я Фармер", - спрятав улыбку, торжественно заверил часового Ферми, и тот пропустил ученых.

Примерно в середине 1945 года работы по созданию атомной бомбы, на которые было израсходовано два миллиарда долларов, завершились, а 6 августа над японским городом Хиросимой возник гигантский огненный гриб, унесший десятки тысяч жизней. Эта дата стала черным днем в истории цивилизации. Величайшее достижение науки породило величайшую трагедию человечества. Перед учеными, перед всем миром встал вопрос: что же дальше? Продолжать совершенствовать ядерное оружие, создавать еще более ужасные средства уничтожения людей? Нет! Отныне колоссальная энергия, заключенная в ядрах атомов, должна служить человеку.

Первый шаг на этом пути сделали советские ученые под руководством академика И.В. Курчатова. 27 июня 1954 года московское радио передало сообщение исключительной важности: "В настоящее время в Советском Союзе усилиями советских ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт". Впервые по проводам шел ток, который нес энергию, рожденную в недрах атома урана. Пуск первой атомной электростанции положил начало развитию новой отрасли техники - ядерной энергетики. Уран стал мирным горючим XX века.

Прошло еще пять лет, и со стапелей советских судоверфей сошел первый в мире атомный ледокол "Ленин". Чтобы заставить работать его двигатели во всю мощь (44 тысячи лошадиных сил!), нужно было "сжечь" всего несколько десятков граммов урана. Небольшой кусок этого ядерного топлива способен заменить тысячи тонн мазута или каменного угля, которые вынуждены перевозить обычные теплоходы, совершающие, например, рейс Лондон - Нью-Йорк. А атомоход с запасом уранового топлива в несколько десятков килограммов может в течение трех лет сокрушать льды Арктики, не заходя в порт на "заправку". В 1974 году приступил к исполнению своих "обязанностей" еще более могучий атомный ледокол "Арктика": мощность его двигателей - 75 тысяч лошадиных сил! 17 августа 1977 года "Арктика", преодолев казавшийся несокрушимым ледовый панцирь Центрального полярного бассейна Северного Ледовитого океана, достигла Северного полюса. Осуществилась вековая мечта многих поколений моряков и полярных исследователей, и уран внес в решение этой проблемы свою лепту. У самого могучего атомного ледокола появились уже две "сестры" - "Сибирь" и "Россия".

С каждым годом доля ядерного горючего в мировом балансе энергоресурсов становится все ощутимее. Несколько лет назад в СССР начала действовать первая промышленная атомная электростанция с реактором на так называемых быстрых нейтронах. Важной особенностью таких реакторов является то, что в качестве ядерного горючего они могут использовать не дефицитный уран-235, а самый распространенный на земле изотоп этого элемента - уран-238. При этом в реакторе не только выделяется огромное количество энергии, но и образуется искусственный элемент полоний-239, который сам способен делиться, а значит, и быть источником ядерной энергии. "Получается как бы так, - писал И.В. Курчатов, - что сожжешь в топке уголь, а выгребешь вместе с золой еще больше угля".

Достоинства ядерного топлива несомненны. Вместе с тем использование его сопряжено со многими трудностями, из которых едва ли не важнейшая - уничтожение образующихся радиоактивных отходов. Спускать их в специальных контейнерах на дно морей и океанов? Зарывать их глубоко в землю? Вряд ли таким образом можно полностью решить проблему: ведь в конечном счете смертоносные вещества при этом остаются на нашей планете. А не попытаться ли отправить их куда-нибудь подальше - на другие небесные тела? Именно такую идею выдвинул один из американских ученых. Он предложил грузить отходы атомных электростанций на "товарные" космические корабли, следующие по маршруту Земля - Солнце. Разумеется, сегодня подобные "посылки" дороговато обошлись бы отправителям, но, по мнению некоторых оптимистически настроенных специалистов, через какой-нибудь десяток лет эти транспортные операции станут вполне оправданными.

В наше время уже не нужно обладать богатой фантазией, чтобы предсказать урану великое будущее. Уран завтра - это космические ракеты, устремленные в глубь Вселенной, и гигантские подводные города, обеспеченные энергией на десятки лет, это создание искусственных островов и обводнение пустынь, это проникновение к недрам Земли и преобразование климата нашей планеты.

Сказочные перспективы открывает перед человеком уран - один из удивительных металлов природы!



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...