Нестабильный изотоп урана. Уран: факты и фактики

В последние несколько все большей актуальности набирает тема ядерной энергетики. Для производства атомной энергии принято использовать такой материал, как уран. Он представляет собой химический элемент, относящийся к семейству актинидов.

Химическая активность этого элемента обуславливает тот факт, что он не содержится в свободном виде. Для его производства используются минеральные образования под названием урановые руды. В них концентрируется такое количество топлива, которое позволяет считать добычу этого химического элемента экономически рациональной и выгодной. На данный момент в недрах нашей планеты содержание этого металла превышает запасы золота в 1000 раз (см. ). В целом залежи данного химического элемента в грунте, водной среде и горной породе оцениваются в более чем 5 миллионов тонн .

В свободной состоянии уран представляет собой серо-белый металл, которому свойственно 3 аллотропических модификации: ромбическая кристаллическая, тетрагональная и объемно центрированная кубическая решетки . Температура кипения этого химического элемента составляет 4200 °C .

Уран является химическим активным материалом. На воздухе этот элемент медленно окисляется, легко растворяется в кислотах, реагирует с водой, но при этом не взаимодействует с щелочами.

Урановые руды в России принято классифицировать по различным признакам. Чаще всего они различаются условиями образования. Так, существуют эндогенные, экзогенные и метаморфогенные руды . В первом случае они представляют собой минеральные образования, сформировавшиеся под воздействием высоких температур, влажности и пегматитовых расплавов. Экзогенные урановые минеральные образования возникают в поверхностных условиях. Они могут формироваться непосредственно на поверхности земли. Это происходит из-за циркуляции подземных вод и накопления осадков. Метаморфогенные минеральные образования появляются, как результат перераспределения первично разнесенного урана.

В соответствии с уровнем содержания урана, эти природные образования могут быть:

  • супербогатыми (свыше 0,3%);
  • богатыми (от 0,1 до 0,3%);
  • рядовыми (от 0,05 до 0,1%);
  • убогими (от 0,03 до 0,05%);
  • забалансовыми (от 0,01 до 0,03%).

Современное применение урана

Сегодня уран чаще всего используется в качестве топлива для ракетных двигателей и ядерных реакторов. Учитывая свойства этого материала, он также предназначен для повышения мощности ядерного орудия. Этот химический элемент также нашел свое применение в живописи. Его активно применяют в качестве желтого, зеленого, бурого и черного пигментов. Уран также используется для производства сердечников для бронебойных снарядов.

Добыча урановой руды в России: что для этого необходимо?

Добыча радиоактивных руд осуществляется тремя основными технологиями. Если залежи руды сконцентрированы максимально близко к поверхности земли, то для их добычи принято использовать открытую технологию. Она предусматривает использование бульдозеров и экскаваторов, которые роют ямы большого размера и грузят полученные полезные ископаемые в самосвалы. Далее она отправляется в перерабатывающий комплекс.

При глубоком залегании этого минерального образования принято использовать подземную технологию добычи, предусматривающую создание шахты глубиной до 2-х километров. Третья технология существенно отличается от предыдущих. Подземное выщелачивание для разработки месторождений урана предполагает бурение скважин, через которые в залежи закачивается серная кислота. Далее осуществляется бурение еще одной скважины, которая необходима для выкачивания полученного раствора на поверхность земли. Затем он проходит процесс сорбции, позволяющий собрать соли этого металла на специальной смоле. Последний этап технологии СПВ – циклическая обработка смолы серной кислотой. Благодаря такой технологии концентрация этого металла становится максимальной.

Месторождения урановых руд в России

Россия считается одним из мировых лидеров по добыче урановых руд. На протяжении последних нескольких десятков лет Россия стабильно входит в топ-7 стран-лидеров по этому показателю.

Наиболее крупными месторождениями этих природных минеральных образований являются:

Крупнейшие месторождения по добыче урана в мире – страны лидеры

Мировым лидером по добыче урана считается Австралия. В этом государстве сконцентрировано более 30% всех мировых запасов. Наиболее крупными австралийскими месторождениями являются Олимпик Дам, Биверли, Рейнджер и Хонемун.

Главным конкурентом Австралии считается Казахстан, на территории которого содержится практически 12% мировых запасов топлива. На территории Канады и ЮАР сконцентрировано по 11% мировых запасов урана, в Намибия – 8%, Бразилии – 7%. Россия замыкает семерку лидеров с 5%. В список лидеров также входят такие страны, как Намибия, Украина и Китай.

Крупнейшими мировыми урановыми месторождениями являются:

Месторождение Страна Начало обработки
Олимпик-Дэм Австралия 1988
Россинг Намибия 1976
МакАртур-Ривер Канада 1999
Инкай Казахстан 2007
Доминион ЮАР 2007
Рейнджер Австралия 1980
Харасан Казахстан 2008

Запасы и объемы добычи урановой руды в России

Разведанные запасы урана в нашей стране оцениваются в более чем 400 тысяч тонн. При этом показатель прогнозируемых ресурсов составляет более 830 тысяч тонн. По состоянию на 2017 год в России действует 16 урановых месторождений. Причем 15 из них сосредоточены в Забайкалье. Главным месторождением урановой руды считается Стрельцовское рудное поле. В большинстве отечественных месторождениях добыча осуществляется шахтным способом.

  • Уран был открыт еще в XVIII веке. В 1789 году немецкий ученый Мартин Клапрот сумел произвести из руды металлоподобный уран. Что интересно, этот ученый также является первооткрывателем титана и циркония.
  • Соединения урана активно используют в сфере фотодела. Этот элемент применяется для окрашивания позитивов и усиления негативов.
  • Главным отличием урана от других химических элементов является естественная радиоактивность. Атомы урана имеют свойство самостоятельно изменяться с течением времени. При этом они испускают лучи, невидимые глазу человека. Эти лучи делятся на 3 вида – гамма-, бета- альфа-излучения (см. ).
Электронная конфигурация 5f 3 6d 1 7s 2 Химические свойства Ковалентный радиус 142 пм Радиус иона (+6e) 80 (+4e) 97 пм Электроотрицательность
(по Полингу) 1,38 Электродный потенциал U←U 4+ -1,38В
U←U 3+ -1,66В
U←U 2+ -0,1В Степени окисления 6, 5, 4, 3 Термодинамические свойства простого вещества Плотность 19,05 /см ³ Молярная теплоёмкость 27,67 Дж /( ·моль) Теплопроводность 27,5 Вт /( ·) Температура плавления 1405,5 Теплота плавления 12,6 кДж /моль Температура кипения 4018 Теплота испарения 417 кДж /моль Молярный объём 12,5 см ³/моль Кристаллическая решётка простого вещества Структура решётки орторомбическая Параметры решётки 2,850 Отношение c/a n/a Температура Дебая n/a
U 92
238,0289
5f 3 6d 1 7s 2
Уран

Уран (старое название Ураний ) — химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (Uranium ), относится к семейству актиноидов.

История

Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики. Исследования урана развивались, подобно порождаемой им цепной реакции. Вначале сведения о его свойствах, как и первые импульсы цепной реакции, поступали с большими перерывами, от случая к случаю. Первая важная дата в истории урана — 1789 год, когда немецкий натурфилософ и химик Мартин Генрих Клапрот восстановил извлечённую из саксонской смоляной руды золотисто-жёлтую «землю» до чёрного металлоподобного вещества. В честь самой далёкой из известных тогда планет (открытой Гершелем восемью годами раньше) Клапрот, считая новое вещество элементом, назвал его ураном.

Пятьдесят лет уран Клапрота числился металлом. Только в 1841 г. Эжен Мелькиор Пелиго — французский химик (1811—1890)] доказал, что, несмотря на характерный металлический блеск, уран Клапрота не элемент, а окисел UO 2 . В 1840 г. Пелиго удалось получить настоящий уран — тяжёлый металл серо-стального цвета и определить его атомный вес. Следующий важный шаг в изучении урана сделал в 1874 г. Д. И. Менделеев. Опираясь на разработанную им периодическую систему, он поместил уран в самой дальней клетке своей таблицы. Прежде атомный вес урана считали равным 120. Великий химик удвоил это значение. Через 12 лет предвидение Менделеева было подтверждено опытами немецкого химика Циммермана.

Изучение урана началось с 1896: французский химик Антуан Анри Беккерель случайно открыл Лучи Беккереля, которые позже Мария Кюри переименовала в радиоактивность. В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. В 1899 г. Резерфорд обнаружил, что излучение урановых препаратов неоднородно, что есть два вида излучения — альфа- и бета-лучи. Они несут различный электрический заряд; далеко не одинаковы их пробег в веществе и ионизирующая способность. Чуть позже, в мае 1900 г., Поль Вийар открыл третий вид излучения — гамма-лучи.

Эрнест Резерфорд провёл в 1907 г. первые опыты по определению возраста минералов при изучения радиоактивных урана и тория на основе созданной им совместно с Фредериком Содди (Soddy, Frederick, 1877—1956; Нобелевская премия по химии, 1921) теории радиоактивности. В 1913 г. Ф. Содди ввёл понятие об изотопах (от греч. ισος — «равный», «одинаковый», и τόπος — «место»), а в 1920 г.предсказал, что изотопы можно использовать для определения геологического возраста горных пород. В 1928 г. Ниггот реализовал, а в 1939 г. A.O.К.Нир (Nier,Alfred Otto Carl,1911 — 1994) создал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1939 Фредерик Жолио-Кюри и немецкие физики Отто Фриш и Лиза Мейтнер открыли неизвестное явление, происходящем с ядром урана при облучении его нейтронами. Происходило взрывное разрушения этого ядра с образованием новых элементов намного более лёгких, чем уран. Это разрушение носило взрывообразный характер, осколки продуктов разлетались в разные стороны с громадными скоростями. Таким образом было открыто явление, названное ядерной реакцией.

В 1939—1940 гг. Ю. Б. Харитон и Я. Б. Зельдович впервые теоретически показали, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Нахождение в природе

Уранинитовая руда

Уран широко распространён в природе. Кларк урана составляет 1·10 -3 % (вес.). Количество урана в слое литосферы толщиной 20 км оценивается в 1,3·10 14 т.

Основная масса урана находится в кислых породах с высоким содержанием кремния . Значительная масса урана сконцентрирована в осадочных породах, особенно обогащённых органикой. В больших количествах как примесь уран присутствует в ториевых и редкоземельных минералах (ортит, сфен CaTiO 3 , монацит (La,Ce}PO 4 , циркон ZrSiO 4 , ксенотим YPO4 и др.). Важнейшими урановыми рудами являются настуран (урановая смолка), уранинит и карнотит. Основными минералами — спутниками урана являются молибденит MoS 2 , галенит PbS, кварц SiO 2 , кальцит CaCO 3 , гидромусковит и др.

Минерал Основной состав минерала Содержание урана, %
Уранинит UO 2 , UO 3 + ThO 2 , CeO 2 65-74
Карнотит K 2 (UO 2) 2 (VO 4) 2 ·2H 2 O ~50
Казолит PbO 2 ·UO 3 ·SiO 2 ·H 2 O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn) 2 O 6 3.15-14
Браннерит (U, Ca, Fe, Y, Th) 3 Ti 5 O 15 40
Тюямунит CaO·2UO 3 ·V 2 O 5 ·nH 2 O 50-60
Цейнерит Cu(UO 2) 2 (AsO 4)2·nH 2 O 50-53
Отенит Ca(UO 2) 2 (PO 4) 2 ·nH 2 O ~50
Шрекингерит Ca 3 NaUO 2 (CO 3) 3 SO 4 (OH)·9H 2 O 25
Уранофан CaO·UO 2 ·2SiO 2 ·6H 2 O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O 4 0.2-8
Торбернит Cu(UO 2) 2 (PO 4) 2 ·nH 2 O ~50
Коффинит U(SiO 4) 1-x (OH) 4x ~50

Основными формами нахождений урана в природе являются уранинит, настуран (урановая смолка) и урановые черни. Они отличаются только формами нахождения; имеется возрастная зависимость: уранинит присутствует преимущественно в древних (докембрийских породах), настуран — вулканогенный и гидротермальный — преимущественно в палеозойских и более молодых высоко- и среднетемпературных образованиях; урановые черни — в основном в молодых — кайнозойских и моложе образованиях — преимущественно в низкотемпературных осадочных породах.

Содержание урана в земной коре составляет 0,003 %, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции . Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра , а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии . Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США . Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции . Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии

Изотопы урана

Природный уран состоит из смеси трёх изотопов : 238 U — 99,2739 % (период полураспада T 1/2 = 4,468×10 9 лет), 235 U — 0,7024 % (T 1/2 = 7,038×10 8 лет) и 234 U — 0,0057 % (T 1/2 = 2,455×10 5 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и 234 U, в равновесии их удельные активности равны. Удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U.

Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233 U (T 1/2 = 1,62×10 5 лет) получается при облучении тория нейтронами и способен к спонтанному делению тепловыми нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206 Pb и 207 Pb.

В природных условиях распространены в основном изотопы 234 U : 235 U : 238 U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234 U . Изотоп 234 U образуется за счёт распада 238 U . Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношения . Величина этого отношения зависит о возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях — 0,996 — 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 — 138,51; причём различие между формами U IV и U VI не установлено; в сфене — 138,4. В отдельных метеоритах выявлен недостаток изотопа 235 U . Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235 U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в Лос-Анджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

Получение

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия ).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние — в один из оксидов или в тетрафторид UF 4 . Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора , кадмия , гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO 2 (NO 3) 2 , который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO 3 , которую восстанавливают водородом до UO 2 .

На диоксид урана UO 2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF 4 . Из этого соединения восстанавливают металлический уран с помощью кальция или магния .

Физические свойства

Уран — очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667,7 °C), бета (четырёхугольная, стабильна от 667,7 °C до 774,8 °C), гамма (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).

Радиоактивные свойства некоторых изотопов урана (выделены природные изотопы):

Химические свойства

Уран может проявлять степени окисления от +III до +VI. Соединения урана(III) образуют неустойчивые растворы красного цвета и являются сильными восстановителями:

4UCl 3 + 2H 2 O → 3UCl 4 + UO 2 + H 2

Соединения урана(IV) являются наиболее устойчивыми и образуют водные растворы зелёного цвета.

Соединения урана(V) неустойчивы и легко диспропорционируют в водном растворе:

2UO 2 Cl → UO 2 Cl 2 + UO 2

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150—175 °C, образуя U 3 O 8 . При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана. Уран растворяется в соляной, азотной и других кислотах, образуя четырёхвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов, как ртуть , серебро , медь , олово , платина и золото . При сильном встряхивании металлические частицы урана начинают светиться. Уран имеет четыре степени окисления — III—VI. Шестивалентные соединения включают в себя триокись урана (окись уранила) UO 3 и уранилхлорид урана UO 2 Cl 2 . Тетрахлорид урана UCl 4 и диоксид урана UO 2 — примеры четырёхвалентного урана. Вещества, содержащие четырёхвалентный уран, обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид, распадаются в присутствии яркого света или органики.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа U 235 из природного урана — сложная технологическая проблема, (см. разделение изотопов).

Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).

В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Геология

Основная отрасль использования урана — определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимаются Геохронология и Теоретическая геохронология. Существенное значение имеет также решение задачи о смешении и источниках вещества.

В основе решения задачи лежат уравнения радиоактивного распада, описываемых уравнениями.

где 238 U o , 235 U o — современные концентрации изотопов урана; ; —постоянные распада атомов соответственно урана 238 U и 235 U .

Весьма важным является их комбинация:

.

В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин, в этот комплекс входит, в частности, γ — каротаж или нейтронный гамма-каротаж, гамма-гамма-каротаж и т. д. С их помощью происходт выделение коллекторов и флюидоупоров.

Другие сферы применения

Небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу (Урановое стекло).

Уранат натрия Na 2 U 2 O 7 использовался как жёлтый пигмент в живописи.

Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Некоторые соединения урана светочувствительны.

В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).

Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Обеднённый уран

Обеднённый уран

После извлечения 235 U и 234 U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF 6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Наконечник (вкладыш) снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана.

Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0,75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость.

Подобные сплавы типа «Стабилла» применяются в стреловидных оперенных снарядах танковых и противотанковых артиллерийских орудий.

Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе.

Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».

Физиологическое действие

В микроколичествах (10 −5 —10 −8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 −7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Добыча по странам в тоннах по содержанию U на 2005—2006 гг.

Добыча по компаниям в 2006 г.:

Cameco — 8,1 тыс. тонн

Rio Tinto — 7 тыс. тонн

AREVA — 5 тыс. тонн

Казатомпром — 3,8 тыс.тонн

ОАО ТВЭЛ — 3,5 тыс. тонн

BHP Billiton — 3 тыс. тонн

Навоийский ГМК — 2,1 тыс. тонн (Узбекистан , Навои )

Uranium One — 1 тыс. тонн

Heathgate — 0,8 тыс. тонн

Denison Mines — 0,5 тыс. тонн

Добыча в России

В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный — Балкашинское рудное поле и др.; Южный — Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана.

Добыча на Украине

Основное предприятие — Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

Стоимость

Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не очень высока — необогащённая окись урана U 3 O 8 стоит меньше 100 американских долларов за килограмм. Связано это с тем, что для запуска атомного реактора на необогащённом уране нужны десятки или даже сотни тонн топлива, а для изготовления ядерного оружия следует обогатить большое количество урана для получения пригодных для создания бомбы концентраций

Когда были открыты радиоактивные элементы таблицы Менделеева, человек со временем придумал им применение. Так произошло и с ураном. Его использовали и для военных, и для мирных целей. Урановая руда перерабатывалась, полученный элемент применялся в лакокрасочной и стекольной промышленности. После того как была обнаружена его радиоактивность, его стали использовать в Насколько чистым и экологичным является данное топливо? Об этом спорят до сих пор.

Природный уран

В природе урана в чистом виде не существует - он является компонентом руды и минералов. Основная урановая руда - это карнотит и настуран. Также значительные залежи этого стратегического обнаружены в редкоземельных и торфиевых минералах - ортите, титаните, цирконе, монаците, ксенотиме. Залежи урана можно обнаружить в породах с кислой средой и высокими концентрациями кремния. Его спутники - кальцит, галенит, молибденит и др.

Мировые месторождения и запасы

На сегодняшний день разведано множество месторождений в 20-километровом слое земной поверхности. Во всех них содержится огромное число тонн урана. Это количество способно обеспечить человечество энергией на много сотен лет вперед. Странами-лидерами, в которых урановая руда находится в наибольшем объеме, являются Австралия, Казахстан, Россия, Канада, ЮАР, Украина, Узбекистан, США, Бразилия, Намибия.

Виды урана

Радиоактивность обуславливает свойства химического элемента. Природный уран составляют три его изотопа. Два из них являются родоначальниками радиоактивных рядов. Природные изотопы урана используют при создании топлива для ядерных реакций и оружия. Также уран-238 служит сырьем для получения плутония-239.

Изотопы урана U234 являются дочерними нуклидами U238. Именно они признаны наиболее активными и обеспечивают сильную радиацию. Изотоп U235 в 21 раз слабее, хотя его успешно применяют для вышеуказанных целей - он обладает способностью поддерживать без дополнительных катализаторов.

Кроме природных существуют и искусственные изотопы урана. Сегодня таковых известно 23, самый важных из них - U233. Его выделяет способность активизироваться под воздействием медленных нейтронов, тогда как для остальных требуются быстрые частицы.

Классификация руды

Хотя уран можно обнаружить практически везде - даже в живых организмах - пласты, в которых он содержится, могут быть различными по своему типу. От этого зависят и способы добычи. Урановая руда классифицируется по следующим параметрам:

  1. Условия образования - эндогенные, экзогенные и метаморфогенные руды.
  2. Характер урановой минерализации - первичные, окисленные и смешанные руды урана.
  3. Размер агрегатов и зерен минералов - крупнозернистые, среднезернистые, мелкозернистые, тонкозернистые и дисперсные фракции руды.
  4. Полезность примесей - молибденовые, ванадиевые, и т.д.
  5. Состав примесей - карбонатные, силикатные, сульфидные, железоокисные, каустобиолитовые.

В зависимости от того, как классифицируется урановая руда, находится способ извлечения из нее химического элемента. Силикатная обрабатывается различными кислотами, карбонатные - содовыми растворами, каустобиолитовые обогащают сжиганием, а железоокисные плавят в домне.

Как добывают урановую руду

Как и в любом горнодобывающем деле, существует определенная технология и способы по извлечению урана из породы. Все зависит еще и от того, какой именно изотоп находится в пласте литосферы. Добыча урановой руды осуществляется тремя способами. Экономически обоснованным выделение элемента из скальной породы является при содержании его в объеме 0,05-0,5%. Существует шахтный, карьерный и выщелачивающий способ добычи. Применение каждого из них зависит от состава изотопов и глубины залегания породы. Карьерная добыча урановой руды возможна при неглубоком залегании. Риск облучения минимальный. Нет проблем с техникой - широко применяются бульдозеры, погрузчики, самосвалы.

Шахтная добыча - более сложная. Этот способ применяется при залегании элемента на глубине до 2 километров и экономической рентабельности. Порода должна содержать высокую концентрацию урана, для того чтобы добывать ее было целесообразно. В штольне обеспечивают максимальную безопасность, это связано с тем, как добывают урановую руду под землей. Рабочие обеспечиваются спецодеждой, режим работы -строго лимитированный. Шахты оборудуются лифтами, усиленной вентиляцией.

Выщелачивание - третий способ - наиболее чистый с экологической точки зрения и безопасности сотрудников добывающего предприятия. Через систему пробуренных скважин закачивается специальный химический раствор. Он растворяется в пласте и насыщается урановыми соединениями. Затем раствор выкачивается и отправляется на обрабатывающие предприятия. Этот метод более прогрессивный, он позволяет уменьшить экономические затраты, хотя для его применения есть целый ряд ограничений.

Месторождения в Украине

Страна оказалась счастливой обладательницей месторождений элемента, из которого производят По прогнозам, урановые руды Украины содержат до 235 тонн сырья. В настоящее время получили подтверждение только месторождения, в которых содержится порядка 65 тонн. Определенный объем уже выработан. Часть урана использована внутри страны, часть отправлена на экспорт.

Основным месторождением считается Кировоградской урановорудный район. Содержание урана невелико - от 0,05 до 0,1 % на тонну породы, поэтому высока себестоимость материала. В итоге полученное сырье обменивают в России на готовые твэлы для электростанций.

Вторым крупным месторождением является Новоконстантиновское. Содержание урана в породе позволило снизить себестоимость по сравнению с Кировоградским почти в 2 раза. Однако с 90-х годов разработки не проводятся, все шахты затоплены. В связи с обострением политических отношений с Россией Украина может остаться без топлива для

Российская урановая руда

По добыче урана Российская Федерация находится на пятом месте среди прочих стран мира. Самые известные и мощные - это Хиагдинское, Количканское, Источное, Кореткондинское, Намарусское, Добрынское (республика Бурятия), Аргунское, Жерловое В Читинской области производится добыча 93% от всего добываемого российского урана (в основном карьерным и шахтным способами).

Немного по-другому обстоит дело с месторождениями в Бурятии и Кургане. Урановая руда в России в этих регионах залегает таким образом, что позволяет добывать сырье методом выщелачивания.

Всего в России прогнозируются залежи в 830 тонн урана, подтвержденных запасов имеется около 615 тонн. Это еще месторождения в Якутии, Карелии и других регионах. Поскольку уран является стратегическим мировым сырьем, цифры могут быть неточными, так как многие данные являются засекреченными, доступ к ним имеет только определенная категория людей.

Уран (U) — элемент с атомным номером 92 и атомным весом 238,029. Является радиоактивным химическим элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Уран — очень тяжёлый (в 2,5 раза тяжелее железа, более чем в 1,5 раза тяжелее свинца), серебристо-белый глянцевитый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами.

Природный уран состоит из смеси трех изотопов: 238U (99,274 %) с периодом полураспада 4,51∙109 лет; 235U (0,702 %) с периодом полураспада 7,13∙108 лет; 234U (0,006 %) с периодом полураспада 2,48∙105 лет. Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U. Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206Pb и 207Pb.

В настоящее время известно 23 искусственных радиоактивных изотопов урана с массовыми числами от 217 до 242. «Долгожителем» среди них является 233U с периодом полураспада 1,62∙105 лет. Он получается в результате нейтронного облучения тория, способен к делению под воздействием тепловых нейтронов.

Уран открыт в 1789 году немецким химиком Мартином Генрихом Клапротом в результате его опытов с минералом настуран — «урановая смолка». Название новый элемент получил в честь недавно открытой (1781) Уильямом Гершелем планеты — Уран. Последующие полвека полученное Клапротом вещество считалось металлом, однако в 1841 году это опроверг французский химик Эжен Мелькиор Пелиго, который доказал окисную природу урана (UO2), полученного немецким химиком. Самому Пелиго удалось получить металлический уран при восстановлении UCl4 металлическим калием, а так же определить атомный вес нового элемента. Следующим в развитии знаний об уране и его свойствах был Д. И. Менделеев — в 1874 году, опираясь на разработанную им теорию о периодизации химических элементов, он поместил уран в самой дальней клетке своей таблицы. Определенный ранее Пелиго атомный вес урана (120) русский химик удвоил, верность таких предположений была подтверждена через двенадцать лет опытами немецкого химика Циммермана.

На протяжении многих десятилетий уран представлял интерес лишь для узкого круга химиков и естествоиспытателей, применение его также было ограничено — производство стекла и красок. Только с открытием радиоактивности этого металла (в 1896 году Анри Беккерелем) началась промышленная переработка урановых руд с 1898 года. Гораздо позже (1939 год) было открыто явление деления ядер, и с 1942 года уран стал основным ядерным топливом.

Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов, в результате такого процесса выделяется громадное количество энергии. Это свойство элемента № 92 используется в ядерных реакторах, служащих источниками энергии, а также лежит в основе действия атомной бомбы. Уран используют в геологии для определения возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов (геохронология). В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин. Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления), например уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи.

Биологические свойства

Уран довольно распространенный элемент в биологической среде, концентраторами этого металла считаются некоторые виды грибов и водорослей, которые входят в цепочку биологического круговорота урана в природе по схеме: вода — водные растения - рыба - человек. Таким образом, с пищей и водой уран попадает в организм человека и животных, а точнее в желудочно-кишечный тракт, где всасывается около процента от поступивших легкорастворимых соединений и не более 0,1 % труднорастворимых. В дыхательные пути и легкие, а также в слизистые оболочки и кожные покровы этот элемент попадает с воздухом. В дыхательных путях, а особенно легких усвоение происходит гораздо интенсивнее: легкорастворимые соединения всасываются на 50 %, а труднорастворимые на 20 %. Таким образом, уран обнаруживается в небольших количествах (10-5 - 10-8 %) в тканях животных и человека. В растениях (в сухом остатке) концентрация урана зависит от его содержания в почве, так при почвенной концентрации 10-4 % в растении содержится 1,5∙10-5 % и менее. Распределение урана по тканям и органам неравномерно, основные места скопления - это костные ткани (скелет), печень, селезенка, почки, а также легкие и бронхо-легочные лимфатические узлы (при попадании в легкие труднорастворимых соединений). Из крови уран (карбонаты и комплексы с белками) довольно быстро выводится. В среднем содержание 92-го элемента в органах и тканях животных и человека составляет 10-7 %. К примеру, в крови крупнорогатого скота содержится 1∙10-8 г/мл урана, в человеческой крови 4∙10-10 г/г. Печень КРС содержит 8∙10-8 г/г, у человека в том же органе 6∙10-9 г/г; селезенка КРС содержит 9∙10-8 г/г, у человека - 4,7∙10-7 г/г. В мышечных тканях крупнорогатого скота накапливается до 4∙10-11 г/г. Кроме того, в человеческом организме уран содержится в легких в пределах 6∙10-9 - 9∙10-9 г/г; в почках 5,3∙10-9 г/г (корковый слой) и 1,3∙10-8 г/г (мозговой слой); в костной ткани 1∙10-9 г/г; в костном мозге 1∙10-8 г/г; в волосах 1,3∙10-7 г/г. Находящийся в костях уран обуславливает постоянное облучение костной ткани (период полного выведения урана из скелета 600 суток). Менее всего этого металла в головном мозге и сердце (около 10-10 г/г). Как говорилось ранее основные пути поступления урана в организм - вода, пища и воздух. Суточная доза поступающего в организм металла с пищей и жидкостями составляет 1,9∙10-6 г, с воздухом - 7∙10-9 г. Однако, каждые сутки уран выводится из организма: с мочой от 0,5∙10-7 г до 5∙10-7 г; с калом от 1,4∙10-6 г до 1,8∙10-6 г. Потери с волосами, ногтями и отмершими чешуйками кожи - 2∙10-8 г.

Ученые предполагают, что уран в мизерных количествах необходим для нормального функционирования организма человека, животных и растений. Однако его роль в физиологии до сих пор не выяснена. Установлено, что среднее содержание 92-го элемента в организме человека составляет порядка 9∙10-5 г (Международная комиссия по радиационной защите). Правда, эта цифра несколько колеблется для различных районов и территорий.

Несмотря на свою пока еще не известную, но определенную биологическую роль в живых организмах, уран остается одним из опаснейших элементов. В первую очередь это проявляется в токсическом действии данного металла, что обусловлено его химическими свойствами, в частности от растворимости соединений. Так, например, более токсичны растворимые соединения (уранил и другие). Чаще всего отравления ураном и его соединениями происходят на обогатительных фабриках, предприятиях по добыче и переработке уранового сырья и других производственных объектах, где уран участвует в технологических процессах.

Проникая в организм, уран поражает абсолютно все органы и их ткани, ведь действие происходит на уровне клетки: он подавляет активность ферментов. Первично поражаются почки, что проявляется в резком увеличении сахара и белка в моче, впоследствии развивается олигурия. Поражению подвергается ЖКТ и печень. Отравления ураном подразделяются на острые и хронические, причем последние развиваются постепенно и могут протекать бессимптомно или со слабо выраженными проявлениями. Однако в последствии хронические отравления приводят к нарушениям кроветворения, нервной системы и прочим серьезным нарушениям здоровья.

В тонне гранитной породы содержится примерно 25 грамм урана. Энергия, способная выделиться при сгорании в реакторе этих 25 грамм, сравнима с энергией, которая выделяется при сгорании 125 тонн каменного угля в топках мощных тепловых котлов! Исходя из этих данных, можно предположить, что в недалеком будущем гранит станут считать одним из видов минерального топлива. Всего же в относительно тонком двадцатикилометровом поверхностном слое земной коры содержится примерно 1014 тонн урана, при переводе в энергетический эквивалент получается просто колоссальная цифра — 2,36.1024 киловатт-часов. Даже все вместе взятые разрабатываемые, разведанные и предполагаемые месторождения горючих ископаемых не способны дать и миллионной доли этой энергии!

Известно, что урановые сплавы, подвергнутые термической обработке, отличаются большими пределами текучести, ползучести и повышенной коррозионной стойкостью, меньшей склонностью к формоизменению изделий при колебаниях температуры и под воздействием облучения. Исходя из этих принципов, в начале XX века и вплоть до тридцатых годов уран в виде карбида применяли в производстве инструментальных сталей. Кроме того, он шел на замену вольфрама в некоторых сплавах, что было дешевле и доступнее. В производстве ферроурана доля U составляла до 30 %. Правда во второй трети XX века такое применение урана сошло на нет.

Как известно в недрах нашей Земли идет постоянный процесс распада изотопов урна. Так вот, учеными было подсчитано, что мгновенное высвобождении энергии всей массы этого металла, заключенного в земную оболочку, разогрело бы нашу планету до температуры в несколько тысяч градусов! Однако такое явление, к счастью, невозможно - ведь выделение тепла идет постепенно - по мере того, как ядра урана и его производных проходят ряд радиоактивных длительных превращений. О продолжительности таких преобразований можно судить по периодам полураспадов природных изотопов урана, например, для 235U он равен 7 108 лет, а для 238U - 4,51 109 лет. Тем не менее, урановое тепло значительно подогревает Землю. Если бы во всей массе Земли было бы столько же урана, как в верхнем двадцатикилометровом слое, то температура на планете была бы значительно выше, чем сейчас. Однако при продвижении к центру Земли концентрация урана снижается.

В ядерных реакторах отрабатывается лишь незначительная часть загруженного урана, связано это с зашлаковыванием топлива продуктами деления: 235U выгорает, цепная реакция постепенно затухает. Однако ТВЭЛы по-прежнему заполнены ядерным горючим, которое необходимо снова употребить. Для этого старые тепловыделяющие элементы демонтируют и отправляют на переработку - их растворяют в кислотах, а уран извлекают из получившегося раствора методом экстракции, осколки деления, от которых нужно избавиться, остаются в растворе. Таким образом, получается, что урановая промышленность практически безотходное химическое производство!

Заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров, примерно такого же порядка и площадь пористых перегородок в разделительных каскадах завода. Это связано со сложностью диффузионного метода разделения изотопов урана - ведь для того чтобы повысить концентрацию 235U от 0,72 до 99 % необходимо несколько тысяч диффузионных ступеней!

Ураново-свинцовым методом геологам удалось узнать возраст самых древних минералов, при исследовании метеоритных пород удалось определить примерную дату зарождения нашей планеты. Благодаря «урановым часам» определили возраст лунного грунта. Что интересно, оказалось, что уже в течение 3 млрд лет на Луне нет вулканической деятельности и естественный спутник Земли остается пассивным телом. Ведь даже самые молодые куски лунного вещества прожили срок больше возраста древнейших земных минералов.

История

Использование урана началось очень давно — еще в I веке до нашей эры природная окись урана использовалась для изготовления жёлтой глазури, использовавшейся при окраске керамики.

В новое время изучение урана происходило постепенно - несколькими этапами, с непрерывным нарастанием. Началом послужило открытие этого элемента в 1789 году немецким натурфилософом и химиком Мартином Генрихом Клапротом, который восстановил добытую из саксонской смоляной руды («урановая смолка») золотисто-жёлтую «землю» до чёрного металлоподобного вещества (оксид урана - UO2). Название было дано в честь самой далёкой из известных в те времена планет - Урана, которую в свою очередь открыл в 1781 году Уильям Гершель. На этом первый этап в изучении нового элемента (Клапрот был уверен в том, что он открыл новый металл) заканчивается, наступает перерыв более чем на пятьдесят лет.

1840 год можно считать началом новой вехи в истории изучения урана. Именно с этого года проблемой получения металлического урана занялся молодой химик из Франции Эжен Мелькиор Пелиго (1811-1890), вскоре (1841) ему это удалось - металлический уран был получен при восстановлении UCl4 металлическим калием. Кроме того, он доказал, что открытый Клапротом уран на самом деле всего лишь его оксид. Также француз определил предположительный атомный вес нового элемента - 120. Затем вновь наступает длительный перерыв в изучении свойств урана.

Лишь в 1874 году появляются новые предположения о природе урана: Дмитрий Иванович Менделеев, следуя разработанной им теории о периодизации химических элементов, находит место новому металлу в своей таблице, размещая уран в последней клетке. Кроме того, Менделеев увеличивает ранее предполагаемый атомный вес урана в двое, не ошибившись и в этом, что подтвердили опыты немецкого химика Циммермана 12 лет спустя.

С 1896 года открытия в области изучения свойств урана «посыпались» одно за другим: в упомянутом выше году совершенно случайно (при исследовании фосфоресценции кристаллов уранилсульфата калия) 43-летний профессор физики Антуан Анри Беккерель открывает «Лучи Беккереля», впоследствии переименованные в радиоактивность Марией Кюри. В том же году Анри Муассан (вновь химик из Франции) разрабатывает способ получения чистого металлического урана.

В 1899 году Эрнестом Резерфордом была обнаружена неоднородность излучения урановых препаратов. Выяснилось, что есть два вида излучения - альфа- и бета-лучи, различные по своим свойствам: они несут различный электрический заряд, имеют различную длину пробега в веществе и ионизирующая способность их также различна. Годом позже были обнаружены и гамма-лучи Полем Вийаром.

Эрнест Резерфорд и Фредерик Содди совместно разработали теорию радиоактивности урана. На основе этой теории в 1907 году Резерфорд предпринял первые опыты по определению возраста минералов при изучении радиоактивных урана и тория. В 1913 году Ф. Содди ввёл понятие об изотопах (от древне-греческого изо - «равный», «одинаковый», и топос - «место»). В 1920 году этот же ученый предположил, что изотопы можно использовать для определения геологического возраста горных пород. Его предположения оказались верны: в 1939 г. Aльфред Oтто Карл Нир оздал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

В 1934 году Энрико Ферми провел ряд опытов по бомбардировке химических элементов нейтронами - частицами, открытыми Дж. Чедвиком в 1932 году. В результате этой операции в уране появлялись неизвестные прежде радиоактивные вещества. Ферми и другие ученые, участвовавшие в его опытах, предположили, что им удалось открыть трансурановые элементы. В течение четырех лет предпринимались попытки обнаружения трансурановых элементов среди продуктов нейтронного обстрела. Закончилось все в 1938 году, когда немецкие химики Отто Ган и Фриц Штрассман установили, что, захватывая свободный нейтрон, ядро изотопа урана 235U делится, при этом выделяется (в расчете на одно ядро урана) достаточно большая энергия, в основном, за счёт кинетической энергии осколков и излучения. Продвинутся дальше, немецким химикам не удалось. Обосновать их теорию смогли Лиза Мейтнер и Отто Фриш. Это открытие было истоком использования внутриатомной энергии, как в мирных, так и в военных целях.

Нахождение в природе

Среднее содержание урана в земной коре (кларк) 3∙10-4 % по массе, это означает, что его больше в недрах земли, чем серебра, ртути, висмута. Уран характерный элемент для гранитного слоя и осадочной оболочки земной коры. Так, в тонне гранита — около 25 грамм элемента № 92. Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено более 1000 тонн урана. В кислых изверженных породах 3,5∙10-4 %, в глинах и сланцах 3,2∙10-4 %, особенно обогащённых органикой, в основных породах 5∙10-5 %, в ультраосновных породах мантии 3∙10-7 %.

Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в виде простых и комплексных ионов, особенно в форме карбонатных комплексов. Немаловажную роль в геохимии урана играют окислительно-восстановительные реакции, все потому, что соединения урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (сероводородах).

Известно более сотни минеральных руд урана, они различны по химическому составу, происхождению, концентрации урана, из всего многообразия лишь дюжина представляет практический интерес. Основными представителями урана, имеющими наибольшее промышленное значение, в природе можно считать окислы - уранинит и его разновидности (настуран и урановая чернь), а также силикаты - коффинит, титанаты - давидит и браннерит; водные фосфаты и арсенаты уранила - урановые слюдки.

Уранинит - UO2 присутствует преимущественно в древних - докембрийских породах в виде четких кристаллических форм. Уранинит образует изоморфные ряды с торианитом ThO2 и иттро-церианитом (Y,Ce)O2. Кроме того, все ураниниты содержат продукты радиогенного распада урана и тория: K, Po, He, Ac, Pb, а также Ca и Zn. Собственно уранинит - высокотемпературный минерал, характерен для гранитных и сиенитовых пегматитов в ассоциации со сложными ниобо-тантало-титанатами урана (колумбит, пирохлор, самарскит и другие), цирконом, монацитом. Кроме того, уранинит встречается в гидротермальных, скарновых и осадочных породах. Крупные месторождения уранинита известны в Канаде, Африке, Соединенных Штатах Америки, Франции и Австралии.

Настуран (U3O8), он же урановая смолка или смоляная обманка, образующий скрытокристаллические колломорфные агрегаты - вулканогенный и гидротермальный минерал, представлен в палеозойских и более молодых высоко- и среднетемпературных образованиях. Постоянные спутники настурана – сульфиды, арсениды, самородные висмут, мышьяк и серебро, карбонаты и некоторые другие элементы. Эти руды очень богаты ураном, но крайне редко встречаются, зачастую в сопровождении радия, это легко объяснимо: радий является прямым продуктом изотопного распада урана.

Урановые черни (рыхлые землистые агрегаты) представлены в основном в молодых - кайнозойских и моложе образованиях, характерны для гидротермальных сульфидно-урановых и осадочных месторождений.

Также уран извлекается в виде побочного продукта из руд, содержащих менее 0,1 %, например, из золотоносных конгломератов.

Основные месторождения урановых руд расположены в США (Колорадо, Северная и Южная Дакота), Канаде (провинции Онтарио и Саскачеван), ЮАР (Витватерсранд), Франции (Центральный массив), Австралии (Северная территория) и многих других странах. В России основным урановорудным регионом является Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана.

Применение

Современная атомная энергетика просто немыслима без элемента № 92 и его свойств. Хотя еще не так давно — до пуска первого ядерного реактора урановые руды добывались в основном для извлечения из них радия. Небольшие количества урановых соединений использовали в некоторых красителях и катализаторах. По сути дела, уран считался элементом, который не имеет почти никакого промышленного значения, и как кардинально изменилась ситуация после открытия способности изотопов урана к делению! Этот металл мгновенно получил статус стратегического сырья № 1.

В наше время основная область применения металлического урана, так же как и его соединений - топливо для ядерных реакторов. Так в стационарных реакторах АЭС применяется малообогащенная (природная) смесь изотопов урана, а в силовых ядерных установках и в реакторах на быстрых нейтронах используется уран высокой степени обогащения.

Наибольшее применение имеет изотоп урана 235U, ведь в нем возможна самоподдерживающаяся цепная ядерная реакция, что не характерно для других изотопов урана. Благодаря именно этому свойству 235U используется как топливо в ядерных реакторах, а также в ядерном оружии. Однако выделение изотопа 235U из природного урана - сложная и дорогостоящая технологическая проблема.

Самый распространенный в природе изотоп урана 238U может делиться, если его бомбардируют высокоэнергетическими нейтронами. Такое свойство данного изотопа используют для увеличения мощности термоядерного оружия - используются нейтроны, порождённые термоядерной реакцией. Кроме того, из изотопа 238U получают изотоп плутония 239Pu, который в свою очередь также может использоваться в ядерных реакторах и в атомной бомбе.

В последнее время большое применение находит искусственно получаемый в реакторах из тория изотоп урана 233U, его получают, облучая в нейтронном потоке ядерного реактора торий:

23290Th + 10n → 23390Th -(β–)→ 23391Pa –(β–)→ 23392U

233U делится тепловыми нейтронами, кроме того, в реакторах с 233U может происходить расширенное воспроизводство ядерного горючего. Так при выгорании в ториевом реакторе килограмма 233U в нем же должно накопиться 1,1 кг нового 233U (в результате захвата нейтронов ядрами тория). В ближайшем будущем уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах. Уже сейчас существуют и работают реакторы, использующие этот нуклид в качестве топлива (KAMINI в Индии). 233U также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Другие искусственные изотопы урана не играют заметной роли.

После того, как из природного урана извлекают «нужные» изотопы 234U и 235U, оставшееся сырье (238U) носит название «обеднённый уран», он в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Так как основное использование урана - производство энергии, по этой причине обедненный уран - малополезный продукт с низкой экономической ценностью. Однако из-за своей низкой цены, а также большой плотности и чрезвычайно высокого сечения захвата он используется для радиационной защиты, и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Кроме того, обедненный уран применяется как балласт в космических спускаемых аппаратах и гоночных яхтах; в высокоскоростных роторах гироскопов, больших маховиках, при бурении нефтяных скважин.

Однако самое известное применение обедненного урана - это использование его в военных целях - в качестве сердечников для бронебойных снарядов и современной танковой броне, например, танка M-1 «Абрамс».

Менее известные области применения урана в основном связаны с его соединениями. Так малая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу, некоторые соединения урана светочувствительны, по этой причине уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.

Карбид 235U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей. Сплавы железа и обеднённого урана (238U) применяются как мощные магнитострикционные материалы. Уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи, ранее соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).

Производство

Уран получают из урановых руд, которые значительно различаются по ряду признаков (по условиям образования, по «контрастности», по содержанию полезных примесей и др.), основным из которых является процентное содержание урана. Согласно этому признаку различают пять сортов руд: очень богатые (содержат свыше 1 % урана); богатые (1-0,5 %); средние (0,5-0,25 %); рядовые (0,25-0,1 %) и бедные (менее 0,1 %). Однако даже из руд, содержащих 0,01-0,015 % урана, этот металл извлекается в качестве побочного продукта.

За годы освоения уранового сырья разработано немало способов выделения урана из руд. Это связано и со стратегическим значением урана в некоторых областях, и с разнообразием его природных проявлений. Однако, несмотря на все разнообразие методов, и сырьевой базы, любое урановое производство состоит из трех стадий: предварительное концентрирование урановой руды; выщелачивание урана и получение достаточно чистых соединений урана осаждением, экстракцией или ионным обменом. Далее в зависимости от назначения получаемого урана, следует обогащение продукта изотопом 235U или сразу же восстановление элементарного урана.

Итак, первоначально происходит концентрирование руды — порода измельчается и заливается водой. При этом более тяжелые элементы смеси осаждаются быстрее. В породах, содержащих первичные минералы урана, происходит их быстрое осаждение, так как они весьма тяжелы. При концентрировании руд, содержащих вторичные минералы урана, происходит осаждение пустой породы, которая гораздо тяжелее вторичных минералов, но может содержать весьма полезные элементы.

Урановые руды почти не обогащаются, исключением является органический способ радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану.

Следующая стадия в урановом производстве - это выщелачивание, таким образом, происходит переход урана в раствор. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом урана в кислый раствор в виде UO2SO4 или комплексных анионов , а в содовый раствор - в виде 4- комплексного аниона. Метод, при котором применяется серная кислота - дешевле, однако, он не всегда применим - если сырье содержит четырехвалентный уран (урановая смолка), который не растворяется в серной кислоте. В таких случаях используют щелочное выщелачивание или окисляют четырехвалентный уран до шестивалентного состояния. Использование каустической соды (едкого натра) целесообразно при выщелачивании руды, содержащей магнезит или доломит, на растворение которых требуется слишком много кислоты.

После стадии выщелачивания раствор содержит не только уран, но и другие элементы, которые так же, как и уран экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. В такой ситуации для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, дабы на разных стадиях исключать нежелательный элемент. Одно из преимуществ методов ионного обмена и экстракции - достаточно полно извлекается уран из бедных растворов.

После всех перечисленных операций уран переводят в твердое состояние - в один из окислов или в тетрафторид UF4. Такой уран содержит примеси с большим сечением захвата тепловых нейтронов - литий, бор, кадмий, редкоземельные металлы. В конечном продукте их содержание не должно превышать стотысячных и миллионных долей процента! Для этого снова уран растворяется, в этот раз уже в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2. При температуре от 430 до 600° C окись урана реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Уже из этого соединения обычно получают металлический уран с помощью кальция или магния обычным восстановлением.

Физические свойства

Металлический уран — очень тяжелый, он тяжелее железа в два с половиной раза, а свинца - в полтора! Это один из самых тяжелых элементов, которые хранятся в недрах Земли. Своим серебристо-белым цветом и блеском уран напоминает сталь. Чистый металл пластичен, мягок, имеет высокую плотность, но в тоже время легко поддается обработке. Уран электроположителен, обладает незначительными парамагнитными свойствами - удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 , имеет малую электропроводность, но высокую реакционную способность. Этот элемент имеет три аллотропических модификации: α, β и γ. α-форма имеет ромбическую кристаллическую решетку со следующими параметрами: a = 2,8538 Å, b = 5,8662 Å, с = 4б9557 Å. Эта форма стабильна в температурном коридоре от комнатных температур до 667,7° C. Плотность урана в α-форме при температуре 25° C составляет 19,05 ±0,2 г/см 3 . β-форма имеет тетрагональную кристаллическую решетку, стабильна в интервале температур от 667,7° C до 774,8° C. Параметры четырехугольной решетки: a = 10,759 Å, b = 5,656 Å. γ-форма с объемно-центрированной кубической структурой, стабильна от 774,8° C до точки плавления (1132° C).

Увидеть все три фазы можно в процессе восстановления урана. Для этого используется специальный аппарат, который представляет собой стальную бесшовную трубу, которая футеруется оксидом кальция, это необходимо, чтобы сталь трубы не взаимодействовала с ураном. В аппарат загружают смесь тетрафторида урана и магния (или кальция), после чего нагревают до 600° C. При достижении этой температуры включают электрический запал, мгновенно протекает экзотермическая реакция восстановления, при этом загруженная смесь полностью плавится. Жидкий уран (температура 1132° C) за счет своего веса полностью опускается на дно. После полного осаждения урана на дно аппарата начинается охлаждение, уран кристаллизуется, его атомы выстраиваются в строгом порядке, образуя кубическую решетку - это и есть γ-фаза. Следующий переход происходит при 774° C - кристаллическая решетка остывающего металла становится тетрагональной, что соответствует β-фазе. Когда температура слитка падает до 668° C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях - α-фаза. Далее никаких изменений уже не происходит.

Основные параметры урана всегда относятся к α-фазе. Температура плавления (tпл) 1132° С, температура кипения урана (tкип) 3818° С. Удельная теплоемкость при комнатной температуре 27,67 кдж/(кг·К) или 6,612 кал/(г·° С). Удельное электрическое сопротивление при температуре 25° С примерно 3·10 -7 ом·см, а уже при 600° С 5,5·10 -7 ом·см. Теплопроводность урана также меняется в зависимости от температуры: так в интервале 100-200° С она равна 28,05 вт/(м·К) или 0,067 кал/(см·сек·° С), а при повышении до 400° С увеличивается до 29,72 вт/(м·К) 0,071 кал/(см·сек·° С). Уран обладает сверхпроводимостью при при 0,68 К. Средняя твердость по Бринеллю 19,6 - 21,6·10 2 Мн/м 2 или 200-220 кгс/мм 2 .

Многие механические свойства 92-го элемента зависят от его чистоты, от режимов термической и механической обработки. Так для литого урана предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 или 38-48 кгс/мм 2 , среднее значение модуля упругости 20,5·10 -2 Мн/м2 или 20,9·10 -3 кгс/мм 2 . Прочность урана повышается после закалки из β- и γ-фаз.

Облучение урана потоком нейтронов, взаимодействие с водой, охлаждающей топливные элементы из металлического урана, другие факторы работы в мощных реакторах на тепловых нейтронах - все это приводит к изменениям физико-механических свойства урана: металл становится хрупким, развивается ползучесть, происходит деформация изделий из металлического урана. По этой причине в ядерных реакторах используются урановые сплавы, например с молибденом, такой сплав устойчив к действию воды, упрочняет металл, сохраняя высокотемпературную кубическую решетку.

Химические свойства

В химическом отношении уран весьма активный металл. На воздухе он окисляется с образованием на поверхности радужной пленки двуокиси UO2, которая не предохраняет металл от дальнейшего окисления, как это происходит с титаном, цирконием и рядом других металлов. С кислородом уран образует двуокись UO2, трехокись UO3 и большое количество промежуточных окислов, важнейшим из которых является U3O8, по свойствам эти окислы сходны с UO2 и UO3. В порошкообразном состоянии уран пирофорен и может воспламениться при незначительном нагреве (150 °C и выше), горение сопровождается ярким пламенем, в итоге образуется U3O8. При температуре 500-600 °C уран взаимодействует с фтором с образованием малорастворимых в воде и кислотах игольчатой формы кристаллов зеленого цвета — тетрафторида урана UF4, а также UF6 - гексафторида (белые кристаллы, возгоняемые без плавления при температуре 56,4 °C). UF4, UF6 - примеры взаимодействия урана с галогенами с образованием галогенидов урана. Уран легко соединяется с серой, образуя ряд соединений, из которых наибольшее значение имеет US - ядерное горючее. С водородом уран взаимодействует при 220 °C с образованием гидрида UH3, который химически очень активен. При дальнейшем нагреве UH3 разлагается на водород и порошкообразный уран. Взаимодействие с азотом происходит при более высоких температурах - от 450 до 700 °C и атмосферном давлении получается нитрид U4N7, с повышением давления азота при тех же температурах можно получить UN, U2N3 и UN2. При более высоких температурах (750-800 °C) уран взаимодействует с углеродом с образованием монокарбида UC, дикарбида UC2, а также U2C3. Уран взаимодействует с водой с образованием UO2 и H2, причем с холодной водой медленнее, а с горячей активнее. Кроме того, реакция протекает и с водяным паром при температурах от 150 до 250 °C. Этот металл растворяется в соляной HCl и азотной HNO3 кислотах, менее активно в сильно концентрированной плавиковой кислоте, медленно реагирует с серной H2SO4 и ортофосфорной H3PO4 кислотами. Продуктами реакций с кислотами являются четырехвалентные соли урана. Из неорганических кислот и солей некоторых металлов (золото, платина, медь, серебро, олово и ртуть) уран способен вытеснять водород. Со щелочами уран не взаимодействует.

В соединениях уран способен проявлять следующие степени окисления: +3, +4, +5, +6, иногда +2. U3+ в природных условиях не существует и может быть получен только в лаборатории. Соединения пятивалентного урана по большей части не устойчивы и довольно легко разлагаются на соединения четырех и шестивалентного урана, которые являются наиболее устойчивыми. Для шестивалентного урана характерно образование иона уранила UO22+, соли которого окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах. Примером соединений шестивалентного урана может послужить триоксид урана или урановый ангидрид UO3 (оранжевый порошок), имеющий характер амфотерного оксида. При растворении которого в кислотах образуются соли, например уранилхлорид урана UO2Cl2. При действии щелочей на растворы солей уранила получаются соли урановой кислоты H2UO4 - уранаты и двуурановой кислоты H2U2O7 - диуранаты, например, уранат натрия Na2UO4 и диуранат натрия Na2U2O7. Соли четырехвалентного урана (тетрахлорид урана UCl4) окрашены в зеленый цвет и менее растворимы. При длительном нахождении на воздухе соединения, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики . Первая важная дата в истории урана - 1789 год , когда немецкий натурфилософ и химик Мартин Генрих Клапрот восстановил извлечённую из саксонской смоляной руды золотисто-жёлтую «землю» до чёрного металлоподобного вещества. В честь самой далёкой из известных тогда планет (открытой Гершелем восемью годами раньше) Клапрот, считая новое вещество элементом , назвал его ураном (этим он хотел поддержать предложение Иоганна Боде назвать новую планету «Уран» вместо «Звезда Георга», как предложил Гершель). Пятьдесят лет уран Клапрота числился металлом . Только в 1841 г. французский химик Эжен Мелькиор Пелиго (англ. ) (1811-1890)) доказал, что, несмотря на характерный металлический блеск, уран Клапрота не элемент, а оксид UO 2 . В 1840 г. Пелиго удалось получить настоящий уран - тяжёлый металл серо-стального цвета - и определить его атомный вес. Следующий важный шаг в изучении урана сделал в 1874 г. Д. И. Менделеев . Опираясь на разработанную им периодическую систему , он поместил уран в самой дальней клетке своей таблицы . Прежде атомный вес урана считали равным 120. Великий химик удвоил это значение. Через 12 лет предвидение Менделеева было подтверждено опытами немецкого химика Циммермана .

В 1896 г., исследуя уран, французский химик Антуан Анри Беккерель случайно открыл лучи Беккереля, которые позже Мария Кюри переименовала в радиоактивность . В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. В 1899 г. Резерфорд обнаружил, что излучение урановых препаратов неоднородно, что есть два вида излучения - альфа- и бета-лучи . Они несут различный электрический заряд ; далеко не одинаковы их пробег в веществе и ионизирующая способность. Чуть позже, в мае 1900 г., Поль Вийар открыл третий вид излучения - гамма-лучи .

Эрнест Резерфорд провёл в 1907 г. первые опыты по определению возраста минералов при изучении радиоактивных урана и тория на основе созданной им совместно с Фредериком Содди (Soddy, Frederick, 1877-1956; Нобелевская премия по химии, 1921) теории радиоактивности. В 1913 г. Ф. Содди ввёл понятие об изотопах (от др.-греч. ἴσος - «равный», «одинаковый», и τόπος - «место»), а в 1920 г. предсказал, что изотопы можно использовать для определения геологического возраста горных пород . В 1928 г. Ниггот реализовал, а в 1939 г. A. O. К. Нир (Nier, Alfred Otto Carl, 1911-1994) создал первые уравнения для расчёта возраста и применил масс-спектрометр для разделения изотопов.

Месторождения

Содержание урана в земной коре составляет 0,0003 %, он встречается в поверхностном слое земли в виде четырёх разновидностей отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO 2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Демократической Республике Конго , Канаде (Большое Медвежье озеро), Чехии и Франции . Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра , а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии . Третьим источником урана являются осадочные породы и песчаники , богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США . Железоурановые сланцы и фосфатные руды составляют четвёртый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции . Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике ещё более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии .

В слое литосферы толщиной 20 км содержится ~ 10 14 т, в морской воде 10 9 -10 10 т. Россия по запасам урана, с учетом резервных месторождений, занимает третье место в мире (после Австралии и Казахстана). В месторождениях России содержится почти 550 тыс.т запасов урана, или немногим менее 10 % его мировых запасов; около 63 % их сосредоточено в Республике Саха (Якутия). Основными месторождениями урана в России являются: Стрельцовское, Октябрьское, Антей, Мало-Тулукуевское, Аргунское молибден-урановые в вулканитах (Читинская область), Далматовское урановое в песчаниках (Курганская область), Хиагдинское урановое в песчаниках (Республика Бурятия), Южное золото-урановое в метасоматитах и Северное урановое в метасоматитах (Республика Якутия) . Кроме того, выявлено и оценено множество более мелких урановых месторождений и рудопроявлений .

Изотопы

Радиоактивные свойства некоторых изотопов урана (выделены природные изотопы) :

Природный уран состоит из смеси трёх изотопов : 238 U (изотопная распространённость 99,2745 %, период полураспада T 1/2 = 4,468·10 9 лет), 235 U (0,7200 %, T 1/2 = 7,04·10 8 лет) и 234 U (0,0055 %, T 1/2 = 2,455·10 5 лет) . Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U.

В природных условиях распространены в основном изотопы 234 U, 235 U и 238 U с относительным содержанием 234 U: 235 U: 238 U = 0,0054: 0,711: 99,283 . Почти половина радиоактивности природного урана обусловлена изотопом 234 U, который, как уже отмечено, образуется в ходе распада 238 U. Для отношения содержаний 235 U: 238 U в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство: 235 U/ 238 U = 137,88 . Величина этого отношения в природных образованиях не зависит от их возраста. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959-1,0042 , в солях - 0,996-1,005 . В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами U IV и U VI не установлено ; в сфене - 138,4 . В отдельных метеоритах выявлен недостаток изотопа 235 U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке (месторождение в Габоне). Так, в природном уране содержится 0,720 % урана 235 U, тогда как в Окло оно уменьшается до 0,557 % . Это послужило подтверждением гипотезы о существовании природного ядерного реактора , который стал причиной выгорания изотопа 235 U. Гипотеза была высказана Джорджем Ветриллом (George W. Wetherill) из Калифорнийского университета в Лос­-Анджелесе, Марком Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс . Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно 17 природных ядерных реакторов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту . Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит , реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода . При этом из сернистых минералов образуется серная кислота , которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы . Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF 4 . Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора , кадмия , гафния . Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте . При этом образуется уранилнитрат UO 2 (NO 3) 2 , который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO 3 , которую восстанавливают водородом до UO 2 .

На диоксид урана UO 2 при температуре от 430 до 600 °C воздействуют газообразным фтористым водородом для получения тетрафторида UF 4 . Из этого соединения восстанавливают металлический уран с помощью кальция или магния .

Физические свойства

Уран - очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали , ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: (призматическая, стабильна до 667,7 °C), (четырёхугольная, стабильна от 667,7 °C до 774,8 °C), (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).

Химические свойства

Характерные степени окисления

Уран может проявлять степени окисления от +3 до +6.

Кроме того, существует оксид U 3 O 8 . Степень окисления в нём формально дробная, а реально он представляет собой смешанный оксид урана (V) и (VI).

Нетрудно видеть, что по набору степеней окисления и характерных соединений уран близок к элементам VIB подгруппы (хрому , молибдену , вольфраму). Из-за этого его длительное время относили к этой подгруппе („размывание периодичности“).

Свойства простого вещества

Химически уран весьма активен. Он быстро окисляется на воздухе и покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150-175 °C, образуя U 3 O 8 . Реакции металлического урана с другими неметаллами приведены в таблице.

Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана:

В кислотах-неокислителях уран растворяется, образуя UO 2 или соли U 4+ (при этом выделяется водород). С кислотами-окислителями (азотной, концентрированной серной) уран образует соответствующие соли уранила UO 2 2+
С растворами щелочей уран не взаимодействует.

При сильном встряхивании металлические частицы урана начинают светиться.

Соединения урана III

Соли урана(+3) (преимущественно, галогениды) - восстановители. На воздухе при комнатной температуре они обычно устойчивы, однако при нагревании окисляются до смеси продуктов. Хлор окисляет их до UCl 4 Образуют неустойчивые растворы красного цвета, в которых проявляют сильные восстановительные свойства:

Галогениды урана III образуются при восстановлении галогенидов урана (IV) водородом:

(550-590 о C)

или иодоводородом:

(500 о C)

а также при действии галогеноводорода на гидрид урана UH 3 .

Кроме того, существует гидрид урана (III) UH 3 . Его можно получить, нагревая порошок урана в водороде при температурах до 225 о С, а выше 350 о С он разлагается. Большую часть его реакций (например, реакцию с парами воды и кислотами) можно формально рассматривать как реакцию разложения с последующей реакцией металлического урана:

Соединения урана IV

Уран (+4) образует легко растворимые в воде соли зеленого цвета. Они легко окисляются до урана (+6)

Соединения урана V

Соединения урана(+5) неустойчивы и легко диспропорционируют в водном растворе:

Хлорид урана V при стоянии частично диспропорционирует:

а частично отщепляет хлор:

Соединения урана VI

Степени окисления +6 соответствует оксид UO 3 . В кислотах он растворяется с образованием соединений катиона уранила UO 2 2+ :

C основаниями UO 3 (аналогично CrO 3 , MoO 3 и WO 3) образует различные уранат-анионы (в первую очередь, диуранат U 2 O 7 2-). Последние, однако, чаще получают действием оснований на соли уранила:

Из соединений урана (+6), не содержащих кислород, известны только гексахлорид UCl 6 и фторид UF 6 . Последний играет важнейшую роль в разделении изотопов урана.

Соединения урана (+6) наиболее устойчивы на воздухе и в водных растворах.

Ураниловые соли, такие как уранилхлорид, распадаются на ярком свету или в присутствии органических соединений.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235 U , в котором возможна самоподдерживающаяся цепная ядерная реакция . Поэтому этот изотоп используется как топливо в ядерных реакторах , а также в ядерном оружии . Выделение изотопа U 235 из природного урана - сложная технологическая проблема (см. разделение изотопов).

Приведем некоторые цифры для реактора мощностью 1000 МВт, работающего с нагрузкой в 80 %, и вырабатывающего 7000 ГВт·ч в год. Работа одного такого реактора в течение года требует 20 тонн уранового топлива с содержанием 3.5% U-235, который получают после обогащения примерно 153 тонн естественного урана.

Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами , эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).

В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu , который затем используется как ядерное топливо .

Тепловыделяющая способность урана

1 тонна обогащенного урана по тепловыделяющей способности равна 1 миллиону 350 тысячам тонн нефти или природного газа.

Геология

Основное применение урана в геологии - определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимается геохронология . Существенное значение имеет также решение задачи о смешении и источниках вещества.

В основе решения задачи лежат уравнения радиоактивного распада:

где 238 U o , 235 U o - современные концентрации изотопов урана; ; -постоянные распада атомов соответственно урана 238 U и 235 U .

Весьма важным является их комбинация:

.

В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин , в этот комплекс входит, в частности, γ - каротаж или нейтронный гамма-каротаж, гамма-гамма-каротаж и т. д. . С их помощью происходит выделение коллекторов и флюидоупоров .

Другие сферы применения

Обеднённый уран

После извлечения 235 U и 234 U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF 6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно), - используется чрезвычайно высокое сечение захвата, и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747 » содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, болидах формулы-1 , при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение обеднённого урана - в качестве сердечников для бронебойных снарядов . Большая плотность (в три раза тяжелее стали), делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому и ненамного более тяжёлому вольфраму . Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость.

Подобные сплавы типа «Стабилла» применяются в стреловидных оперённых снарядах танковых и противотанковых артиллерийских орудий.

Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне » (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10 , каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии . После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе .

Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс» .

Физиологическое действие

В микроколичествах (10 −5 -10 −8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка , почки , скелет , печень , лёгкие и бронхо-лёгочные лимфатические узлы . Содержание в органах и тканях человека и животных не превышает 10 −7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов . В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Разведанные запасы урана в мире

Количество урана в земной коре примерно в 1000 раз превосходит количество золота, в 30 раз - серебра, при этом, данный показатель приблизительно равен аналогичному показателю у свинца и цинка. Немалая часть урана рассеяна в почвах, горных породах и морской воде. Только относительно небольшая часть концентрируется в месторождениях, где содержание данного элемента в сотни раз превышает его среднее содержание в земной коре. Разведанные мировые запасы урана в месторождениях составляют 5,4 млн тонн.

Добыча урана в мире

10 стран, дающих 94 % мировой добычи урана

Согласно «Красной книге по урану» , выпущенной ОЭСР , в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения и около 60 научных, которые потребляют в год 67 тыс. тонн урана. Это означает, что его добыча из месторождений обеспечивала лишь 60 % объёма его потребления (на 2009 г. эта доля возросла до 79 % ). Остальной уран, потребляемый энергетикой или 17,7 %, поступает из вторичных источников.

Уран для «научных и военных» целей

Большая часть урана для «научных и военных» целей извлекается из старых ядерных боеголовок:

  • по договору СНВ-II 352 тонны - из оговорённых 500 (несмотря на то что договор не вступил в силу, в связи выходом России из договора 14 июня 2002)
  • по договору СНВ-I (вступил в силу 5 декабря 1994 г, истек 5 декабря 2009 года) с российской стороны 500 тонн,
  • по договору СНВ-III (ДСНВ) - договор подписан 8 апреля 2010 года в Праге. Договор сменил истёкший в декабре 2009 года СНВ-I.

Добыча в России

В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук . Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение » (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

По годовому производству урана (около 3,3 тыс. т.) Россия занимает 4 место после Казахстана. Годовое же потребление урана в России сейчас составляет 16 тыс. т и складывается из расходов на собственные АЭС в объёме 5,2 тыс. т, а также на экспорт тепловыделяющих средств (5,5 тыс. т) и низкообогащенного урана (6 тыс. т) .

Добыча в Казахстане

В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн) .

Добыча на Украине

Стоимость

Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не очень высока - необогащённая окись урана U 3 O 8 стоит меньше 100 американских долларов за килограмм .

Разработка урановых руд рентабельна при цене на уран в районе 80 долл./кг. В настоящее время цена урана не позволяет налаживать эффективную разработку его месторождений, поэтому существуют прогнозы, что возможен рост цены на уран до 75-90 долл./кг к 2013-2014 гг.

К 2030 г. будут полностью отработаны крупные и доступные месторождения с запасами до 80 дол./кг и в освоение начнут вовлекаться труднодоступные месторождения с себестоимостью производства более 130 дол./кг урана

Связано это с тем, что для запуска атомного реактора на необогащённом уране нужны десятки или даже сотни тонн топлива, а для изготовления ядерного оружия следует обогатить большое количество урана для получения пригодных для создания бомбы концентраций .

См. также

Ссылки

  • И. Н. Бекман. «Уран». Учебное пособие. Вена, 2008, Москва, 2009. (в формате PDF)
  • Россия продала США значительные запасы оружейного урана

Примечания

  1. Редкол.: Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. - Москва: Большая Российская энциклопедия, 1999. - Т. 5. - С. 41.
  2. WebElements Periodic Table of the Elements | Uranium | crystal structures
  3. Уран в Толковом словаре русского языка под ред. Ушакова
  4. Энциклопедия «Кругосвет»
  5. Уран. Информационно-аналитический центр «Минерал»
  6. Сырьевая база урана. С. С. Наумов, ГОРНЫЙ ЖУРНАЛ, N12,1999
  7. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties
  8. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties ». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 .
  9. В урановых рудах в следовых количествах присутствует уран-236, образующийся из урана-235 при нейтронном захвате; в ториевых рудах имеются следы урана-233 , возникающего из тория-232 после нейтронного захвата и двух последовательных бета-распадов. Однако содержание этих изотопов урана настолько мало, что может быть обнаружено лишь в специальных высокочувствительных измерениях.
  10. Rosholt J.N., et al. Isotopic fractionatio of uranium related to role feature in Sandstone, Shirley Basin, Wyoming.//Economic Geology, 1964, 59, 4, 570-585
  11. Rosholt J.N., et al. Evolution of the isotopic composition of uranium and thorium in Soil profiles.//Bull.Geol.Soc.Am./1966, 77, 9, 987-1004
  12. Чалов П. И. Изотопное фракционирование природного урана. - Фрунзе: Илим, 1975.
  13. Tilton G.R. et al. Isotopic composition and distribution of lead, uranium, and thorium in a precambrian granite.//Bull.Geol.Soc.Am., 1956, 66, 9, 1131-1148
  14. Шуколюков Ю. А. и др. Изотопные исследования „природного ядерного реактора“.//Геохимия, 1977, 7. С. 976-991.
  15. Мешик Алекс. Древний ядерный реактор.//В мире науки. Геофизика. 2006.2
  16. Реми Г. Неорганическая химия. т.2. М., Мир, 1966. С. 206-223
  17. Кац Дж, Рабинович Е. Химия урана. М., Изд-во иностранной литературы, 1954.
  18. Хмелевской В. К. Геофизические методы исследования земной коры. Международный университет природы, общества и человека „Дубна“, 1997.
  19. Справочник по геологии нефти и газа /Под ред. Еременко Н. А. - М.: Недра, 1984
  20. Техническая энциклопедия 1927 года », том 24, столб. 596…597, статья «Уран»
  21. http://www.pdhealth.mil/downloads/Characterisation_of_DU_projectiles.pdf
  22. Добыча урана в мире
  23. NEA, IAEA . - OECD Publishing , 2006. - ISBN 9789264024250
  24. World Nuclear Association. Supply of Uranium. 2011.
  25. Минерально-сырьевая база и производство урана в Восточной Сибири и на Дальнем Востоке. Машковцев Г. А., Мигута А. К., Щеточкин В. Н., Минеральные ресурсы России. Экономика и управление, 1-2008
  26. Добыча урана в Казахстане. Доклад Мухтара Джакишева
  27. Конырова, К . Казахстан вышел на первое место по добыче урана в мире (рус.) , Информационное агентство TREND (30.12.2009). Проверено 30 декабря 2009.
  28. Удо Ретберг; Перевод Александра Полоцкого (рус.) . Перевод (12.08.2009). Архивировано из первоисточника 23 августа 2011. Проверено 12 мая 2010.
  29. Эксперты о прогнозе цен на уран Российское атомное сообщество
  30. http://2010.atomexpo.ru/mediafiles/u/files/Present/9.1_A.V.Boytsov.pdf
  31. Ядерное оружие См. подраздел про урановую бомбу.

Соединения урана

Аммония диуранат ((NH 4) 2 U 2 O 7) Ацетат уранила (UO 2 (CH 3 COO) 2) Боргидрид урана (U(BH 4) 4) Бромид урана(III) (UBr 3) Бромид урана(IV) (UBr 4) Бромид урана(V) (UBr 5) Гидрид урана(III) (UH 3) Гидроксид урана(III) (U(OH) 3) Гидроксид уранила (UO 2 (OH) 2) Диурановая кислота (H 2 U 2 O 7) Иодид урана(III) (UJ 3) Иодид урана(IV) (UJ 4) Карбонат уранила (UO 2 CO 3) Монооксид урана (UO) US UP Натрия диуранат (Na 2 U 2 O 7) Натрия уранат (Na 2 UO 4) Нитрат уранила (UO 2 (NO 3) 2) Нонаоксид тетраурана (U 4 O 9) Оксид урана(IV) (UO 2) Оксид урана(VI)-диурана(V) (U 3 O 8) Пероксид урана (UO 4) Сульфат урана(IV) (U(SO 4) 2) Сульфат уранила (UO 2 SO 4) Тридекаоксид пентаурана (U 5 O 13) Триоксид урана (UO 3) Урановая кислота (H 2 UO 4) Формиат уранила (UO 2 (CHO 2) 2) Фосфат урана(III) (U 2 (PO 4) 3) Фторид урана(III) (UF 3) Фторид урана(IV) (UF 4) Фторид урана(V) (UF 5) Фторид урана(VI) (UF 6) Фторид уранила (UO 2 F 2) Хлорид урана(III) (UCl 3) Хлорид урана(IV) (UCl 4) Хлорид урана(V) (UCl 5) Хлорид урана(VI) (UCl 6) Хлорид уранила (UO 2 Cl 2)



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...