Интуитивное объяснение теоремы байеса. Формула полной вероятности

При выводе формулы полной вероятности предполагалось, что вероятности гипотез известны до опыта. Формула Байеса позволяет производить переоценку первоначальных гипотез в свете новой информации, состоящей в том, что событие произошло. Поэтому формулу Байеса называют формулой уточнения гипотез.

Теорема (Формула Байеса). Если событие может происходить только с одной из гипотез
, которые образуют полную группу событий, то вероятность гипотез при условии, что событие произошло, вычисляется по формуле

,
.

Доказательство.

Формула Байеса или байесовский подход к оценке гипотез играет важную роль в экономике, т.к. дает возможность корректировать управленческие решения, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и.т.п.

Пример. Электролампы изготовляются на двух заводах. Первый завод производит 60% общего количества электроламп, второй – 40%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%. В магазин поступает продукция обоих заводов. Лампочка купленная в магазине оказалась стандартной. Найти вероятность того, что лампа изготовлена на первом заводе.

Запишем условие задачи, вводя соответствующие обозначения.

Дано: событие состоит в том, что лампа стандартная.

Гипотеза
состоит в том, что лампа изготовлена на первом заводе

Гипотеза
состоит в том, что лампа изготовлена на втором заводе

Найти
.

Решение.

5. Повторные независимые испытания. Формула Бернулли

Рассмотрим схему независимых испытаний или схему Бернулли , которая имеет важное научное значение и разнообразные практические применения.

Пусть производится независимых испытаний, в каждом из которых может произойти некоторое событие.

Определение. Испытания называются независимыми , если в каждом из них событие

, не зависящей от того появилось или не появилось событие
в других испытаниях.

Пример. На испытательный стенд поставлены 20 ламп накаливания, которые испытываются под нагрузкой в течении 1000 часов. Вероятность того, что лампа выдержит испытание, равна 0,8 и не зависит от того, что случилось с другими лампами.

В этом примере под испытанием понимается проверка лампы на ее способность выдержать нагрузку в течении 1000 часов. Поэтому число испытаний равно
. В каждом отдельном испытании возможны только два исхода:


Определение. Серия повторных независимых испытаний, в каждом из которых событие
наступает с одной и той же вероятностью
, не зависящей от номере испытания, называется
схемой Бернулли.

Вероятность противоположного события обозначают
, причем, как было доказано выше,

Теорема. В условиях схемы Бернулли вероятность того, что при независимых испытаниях событиепоявится
раз, определяется по формуле

где
число проведенных независимых испытаний;

число появлений события
;

вероятность наступления события
в отдельном испытании;

вероятность не наступления события
в отдельном испытании;

Подробно теорема Байеса излагается в отдельной статье . Это замечательная работа, но в ней 15 000 слов. В этом же переводе статьи от Kalid Azad кратко объясняется самая суть теоремы.

  • Результаты исследований и испытаний – это не события. Существует метод диагностики рака, а есть само событие - наличие заболевания. Алгоритм проверяет, содержит ли письмо спам, но событие (на почту действительно пришел спам) нужно рассматривать отдельно от результата его работы.
  • В результатах испытаний бывают ошибки. Часто наши методы исследований выявляют то, чего нет (ложноположительный результат), и не выявляют то, что есть (ложноотрицательный результат).
  • С помощью испытаний мы получаем вероятности определенного исхода. Мы слишком часто рассматриваем результаты испытания сами по себе и не учитываем ошибки метода.
  • Ложноположительные результаты искажают картину. Предположим, что вы пытаетесь выявить какой-то очень редкий феномен (1 случай на 1000000). Даже если ваш метод точен, вероятнее всего, его положительный результат будет на самом деле ложноположительным.
  • Работать удобнее с натуральными числами. Лучше сказать: 100 из 10000, а не 1%. При таком подходе будет меньше ошибок, особенно при умножении. Допустим, нам нужно дальше работать с этим 1%. Рассуждения в процентах неуклюжи: «в 80% случаев из 1% получили положительный исход». Гораздо легче информация воспринимается так: «в 80 случаях из 100 наблюдали положительный исход».
  • Даже в науке любой факт - это всего лишь результат применения какого-либо метода. С философской точки зрения научный эксперимент – это всего лишь испытание с вероятной ошибкой. Есть метод, выявляющий химическое вещество или какой-нибудь феномен, и есть само событие - присутствие этого феномена. Наши методы испытаний могут дать ложный результат, а любое оборудование обладает присущей ему ошибкой.
Tеорема Байеса превращает результаты испытаний в вероятность событий.
  • Если нам известна вероятность события и вероятность ложноположительных и ложноотрицательных результатов, мы можем исправить ошибки измерений.
  • Теорема соотносит вероятность события с вероятностью определенного исхода. Мы можем соотнести Pr(A|X): вероятность события А, если дан исход X, и Pr(X|A): вероятность исхода X, если дано событие А.

Разберемся в методе

В статье, на которую дана ссылка в начале этого эссе, разбирается метод диагностики (маммограмма), выявляющий рак груди. Рассмотрим этот метод подробно.
  • 1% всех женщин болеют раком груди (и, соответственно, 99% не болеют)
  • 80% маммограмм выявляют заболевание, когда оно действительно есть (и, соответственно, 20% не выявляют)
  • 9,6% исследований выявляют рак, когда его нет (и, соответственно, 90,4% верно определяют отрицательный результат)
Теперь оформим такую таблицу:

Как работать с этим данными?
  • 1% женщин болеют раком груди
  • если у пациентки выявили заболевание, смотрим в первую колонку: есть 80% вероятность того, что метод дал верный результат, и 20% вероятность того, что результат исследования неправильный (ложноотрицательный)
  • если у пациентки заболевание не выявили, смотрим на вторую колонку. С вероятностью 9,6% можно сказать, что положительный результат исследования неверен, и с 90,4% вероятностью можно сказать, что пациентка действительно здорова.

Насколько метод точен?

Теперь разберем положительный результат теста. Какова вероятность того, что человек действительно болен: 80%, 90%, 1%?

Давайте подумаем:

  • Есть положительный результат. Разберем все возможные исходы: полученный результат может быть как истинным положительным, так и ложноположительным.
  • Вероятность истинного положительного результата равна: вероятность заболеть, умноженная на вероятность того, что тест действительно выявил заболевание. 1% * 80% = .008
  • Вероятность ложноположительного результата равна: вероятность того, что заболевания нет, умноженная на вероятность того, что метод выявил заболевание неверно. 99% * 9.6% = .09504
Теперь таблица выглядит так:

Какова вероятность, что человек действительно болен, если получен положительный результат маммограммы? Вероятность события - это отношение количества возможных исходов события к общему количеству всех возможных исходов.

Вероятность события = исходы события / все возможные исходы

Вероятность истинного положительного результата – .008. Вероятность положительного результата - это вероятность истинного положительного исхода + вероятность ложноположительного.

(.008 + 0.09504 = .10304)

Итак, вероятность заболевания при положительном результате исследования рассчитывается так: .008/.10304 = 0.0776. Эта величина составляет около 7.8%.

То есть положительный результат маммограммы значит только то, что вероятность наличия заболевания – 7,8%, а не 80% (последняя величина - это лишь предполагаемая точность метода). Такой результат кажется поначалу непонятным и странным, но нужно учесть: метод дает ложноположительный результат в 9,6% случаев (а это довольно много), поэтому в выборке будет много ложноположительных результатов. Для редкого заболевания большинство положительных результатов будут ложноположительными.

Давайте пробежимся глазами по таблице и попробуем интуитивно ухватить смысл теоремы. Если у нас есть 100 человек, только у одного из них есть заболевание (1%). У этого человека с 80% вероятностью метод даст положительный результат. Из оставшихся 99% у 10% будут положительные результаты, что дает нам, грубо говоря, 10 ложноположительных исходов из 100. Если мы рассмотрим все положительные результаты, то только 1 из 11 будет верным. Таким образом, если получен положительный результат, вероятность заболевания составляет 1/11.

Выше мы посчитали, что эта вероятность равна 7,8%, т.е. число на самом деле ближе к 1/13, однако здесь с помощью простого рассуждения нам удалось найти приблизительную оценку без калькулятора.

Теорема Байеса

Теперь опишем ход наших мыслей формулой, которая и называется теоремой Байеса. Эта теорема позволяет исправить результаты исследования в соответствии с искажением, которое вносят ложноположительные результаты:
  • Pr(A|X) = вероятность заболевания (А) при положительном результате (X). Это как раз то, что мы хотим знать: какова вероятность события в случае положительного исхода. В нашем примере она равна 7,8%.
  • Pr(X|A) = вероятность положительного результата (X) в случае, когда больной действительно болен (А). В нашем случае это величина истинных положительных – 80%
  • Pr(A) = вероятность заболеть (1%)
  • Pr(not A) = вероятность не заболеть (99%)
  • Pr(X|not A) = вероятность положительного исхода исследования в случае, если заболевания нет. Это величина ложноположительных – 9,6 %.
Можно сделать заключение: чтобы получить вероятность события, нужно вероятность истинного положительного исхода разделить на вероятность всех положительных исходов. Теперь мы можем упростить уравнение:
Pr(X) – это константа нормализации. Она сослужила нам хорошую службу: без нее положительный исход испытаний дал бы нам 80% вероятность события.
Pr(X) – это вероятность любого положительного результата, будет ли это настоящий положительный результат при исследовании больных (1%) или ложноположительный при исследовании здоровых людей (99%).

В нашем примере Pr(X) – довольно большое число, потому что велика вероятность ложноположительных результатов.

Pr(X) создает результат 7,8%, который на первый взгляд кажется противоречащим здравому смыслу.

Смысл теоремы

Мы проводим испытания, чтоб выяснить истинное положение вещей. Если наши испытания совершенны и точны, тогда вероятности испытаний и вероятности событий совпадут. Все положительные результаты будут действительно положительными, а отрицательные - отрицательными. Но мы живем в реальном мире. И в нашем мире испытания дают неверные результаты. Теорема Байеса учитывает искаженные результаты, исправляет ошибки, воссоздает генеральную совокупность и находит вероятность истинного положительного результата.

Спам-фильтр

Теорема Байеса удачно применяется в спам-фильтрах.

У нас есть:

  • событие А - в письме спам
  • результат испытания - содержание в письме определенных слов:

Фильтр берет в расчет результаты испытаний (содержание в письме определенных слов) и предсказывает, содержит ли письмо спам. Всем понятно, что, например, слово «виагра» чаще встречается в спаме, чем в обычных письмах.

Фильтр спама на основе черного списка обладает недостатками - он часто выдает ложноположительные результаты.

Спам-фильтр на основе теоремы Байеса использует взвешенный и разумный подход: он работает с вероятностями. Когда мы анализируем слова в письме, мы можем рассчитать вероятность того, что письмо - это спам, а не принимать решения по типу «да/нет». Если вероятность того, что письмо содержит спам, равна 99%, то письмо и вправду является таковым.

Со временем фильтр тренируется на все большей выборке и обновляет вероятности. Так, продвинутые фильтры, созданные на основе теоремы Байеса, проверяют множество слов подряд и используют их в качестве данных.

Дополнительные источники:

Теги: Добавить метки

Начнем с примера. В урне, стоящей перед вами, с равной вероятностью могут быть (1) два белых шара, (2) один белый и один черный, (3) два черных. Вы тащите шар, и он оказывается белым. Как теперь вы оцените вероятность этих трех вариантов (гипотез)? Очевидно, что вероятность гипотезы (3) с двумя черными шарами = 0. А вот как подсчитать вероятности двух оставшихся гипотез!? Это позволяет сделать формула Байеса, которая в нашем случае имеет вид (номер формулы соответствует номеру проверяемой гипотезы):

Скачать заметку в формате или

х случайная величина (гипотеза), принимающая значения: х 1 – два белых, х 2 – один белый, один черный; х 3 – два черных; у – случайная величина (событие), принимающая значения: у 1 – вытащен белый шар и у 2 – вытащен чёрный шар; Р(х 1) – вероятность первой гипотезы до вытаскивания шара (априорная вероятность или вероятность до опыта) = 1/3; Р(х 2) – вероятность второй гипотезы до вытаскивания шара = 1/3; Р(х 3) – вероятность третьей гипотезы до вытаскивания шара = 1/3; Р(у 1 |х 1) условная вероятность вытащить белый шар, в случае, если верна первая гипотеза (шары белые) = 1; Р(у 1 |х 2) вероятность вытащить белый шар, в случае, если верна вторая гипотеза (один шар белый, второй – черный) = ½; Р(у 1 |х 3) вероятность вытащить белый шар, в случае, если верна третья гипотеза (оба черных) = 0; Р(у 1) – вероятность вытащить белый шар = ½; Р(у 2) – вероятность вытащить черный шар = ½; и, наконец, то, что мы ищем – Р(х 1 |у 1) вероятность того, что верна первая гипотеза (оба шара белых), при условии, что мы вытащили белый шар (апостериорная вероятность или вероятность после опыта); Р(х 2 |у 1) вероятность того, что верна вторая гипотеза (один шар белый, второй – черный), при условии, что мы вытащили белый шар.

Вероятность того, что верна первая гипотеза (два белых), при условии, что мы вытащили белый шар :

Вероятность того, что верна вторая гипотеза (один белый, второй – черный), при условии, что мы вытащили белый шар :

Вероятность того, что верна третья гипотеза (два черных), при условии, что мы вытащили белый шар :

Что делает формула Байеса? Она дает возможность на основании априорных вероятностей гипотез – Р(х 1), Р(х 2) , Р(х 3) – и вероятностей наступления событий – Р(у 1), Р(у 2) – подсчитать апостериорные вероятности гипотез, например, вероятность первой гипотезы, при условии, что вытащили белый шар – Р(х 1 |у 1) .

Вернемся еще раз к формуле (1). Первоначальная вероятность первой гипотезы была Р(х 1) = 1/3. С вероятностью Р(у 1) = 1/2 мы могли вытащить белый шар, и с вероятностью Р(у 2) = 1/2 – черный. Мы вытащили белый. Вероятность вытащить белый при условии, что верна первая гипотеза Р(у 1 |х 1) = 1. Формула Байеса говорит, что так как вытащили белый, то вероятность первой гипотезы возросла до 2/3, вероятность второй гипотезы по-прежнему равна 1/3, а вероятность третьей гипотезы обратилась в ноль.

Легко проверить, что вытащи мы черный шар, апостериорные вероятности изменились бы симметрично: Р(х 1 |у 2) = 0, Р(х 2 |у 2) = 1/3, Р(х 3 |у 2) = 2/3.

Вот что писал Пьер Симон Лаплас о формуле Байеса в работе , вышедшей в 1814 г.:

Это основной принцип той отрасли анализа случайностей, которая занимается переходами от событий к причинам.

Почему формула Байеса так сложна для понимания!? На мой взгляд, потому, что наш обычный подход – это рассуждения от причин к следствиям. Например, если в урне 36 шаров из которых 6 черных, а остальные белые. Какова вероятность вытащить белый шар? Формула Байеса позволяет идти от событий к причинам (гипотезам). Если у нас было три гипотезы, и произошло событие, то как именно это событие (а не альтернативное) повлияло на первоначальные вероятности гипотез? Как изменились эти вероятности?

Я считаю, что формула Байеса не просто о вероятностях. Она изменяет парадигму восприятия. Каков ход мыслей при использовании детерминистской парадигмы? Если произошло событие, какова его причина? Если произошло ДТП, чрезвычайное происшествие, военный конфликт. Кто или что явилось их виной? Как думает байесовский наблюдатель? Какова структура реальности, приведшая в данном случае к такому-то проявлению… Байесовец понимает, что в ином случае результат мог быть иным…

Немного иначе разместим символы в формулах (1) и (2):

Давайте еще раз проговорим, что же мы видим. С равной исходной (априорной) вероятностью могла быть истинной одна из трех гипотез. С равной вероятностью мы могли вытащить белый или черный шар. Мы вытащили белый. В свете этой новой дополнительной информации следует пересмотреть нашу оценку гипотез. Формула Байеса позволяет это сделать численно. Априорная вероятность первой гипотезы (формула 7) была Р(х 1) , вытащили белый шар, апостериорная вероятность первой гипотезы стала Р(х 1 |у 1). Эти вероятности отличаются на коэффициент .

Событие у 1 называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим гипотезу х 1 . Указанный коэффициент иногда называют мощностью свидетельства. Чем мощнее свидетельство (чем больше коэффициент отличается от единицы), тем больше факт наблюдения у 1 изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое (коэффициент ~ 1), апостериорная вероятность почти равна априорной.

Свидетельство у 1 в = 2 раза изменило априорную вероятность гипотезы х 1 (формула 4). В то же время свидетельство у 1 не изменило вероятность гипотезы х 2 , так как его мощность = 1 (формула 5).

В общем случае формула Байеса имеет следующий вид:

х – случайная величина (набор взаимоисключающих гипотез), принимающая значения: х 1 , х 2 , … , х n . у – случайная величина (набор взаимоисключающих событий), принимающая значения: у 1 , у 2 , … , у n . Формула Байеса позволяет найти апостериорную вероятность гипотезы х i при наступлении события y j . В числителе – произведение априорной вероятности гипотезы х i Р(х i ) на вероятность наступления события y j , если верна гипотеза х i Р(y j i ). В знаменателе – сумма произведений того же, что и в числителе, но для всех гипотез. Если вычислить знаменатель, то получим суммарную вероятность наступления события у j (если верна любая из гипотез) – Р(y j ) (как в формулах 1–3).

Еще раз о свидетельстве. Событие y j дает дополнительную информацию, что позволяет пересмотреть априорную вероятность гипотезы х i . Мощность свидетельства – – содержит в числителе вероятность наступления события y j , если верна гипотеза х i . В знаменателе – суммарная вероятность наступления события у j (или вероятность наступления события у j усредненная по всем гипотезам). у j выше для гипотезы x i , чем в среднем для всех гипотез, то свидетельство играет на руку гипотезе x i , увеличивая ее апостериорную вероятность Р(y j i ). Если вероятность наступления события у j ниже для гипотезы x i , чем в среднем для всех гипотез, то свидетельство понижает, апостериорную вероятность Р(y j i ) для гипотезы x i . Если вероятность наступления события у j для гипотезы x i такая же, как в среднем для всех гипотез, то свидетельство не изменяет апостериорную вероятность Р(y j i ) для гипотезы x i .

Предлагаю вашему вниманию несколько примеров, которые, надеюсь, закрепят ваше понимание формулы Байеса.

Задача 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку. .

Задача 3. Объект, за которым ведется наблюдение, может быть в одном из двух состояний: Н 1 = {функционирует} и Н 2 = {не функционирует}. Априорные вероятности этих состояний Р(Н 1) = 0,7, Р(Н 2) = 0,3. Имеется два источника информации, которые приносят разноречивые сведения о состоянии объекта; первый источник сообщает, что объект не функционирует, второй - что функционирует. Известно, что первый источник дает правильные сведения с вероятностью 0,9, а с вероятностью 0,1 - ошибочные. Второй источник менее надежен: он дает правильные сведения с вероятностью 0,7, а с вероятностью 0,3 - ошибочные. Найдите апостериорные вероятности гипотез. .

Задачи 1–3 взяты из учебника Е.С.Вентцель, Л.А.Овчаров. Теория вероятностей и ее инженерные приложения, раздел 2.6 Теорема гипотез (формула Байеса).

Задача 4 взята из книги , раздел 4.3 Теорема Байеса.

События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

Отсюда следует, что

Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
– лампа изготовлена третьим заводом.

Искомую вероятность находим по формуле полной вероятности:

Формула Байеса. Пусть – полная группа попарно несовместных событий (гипотезы). А случайное событие. Тогда,

Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .

Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .


Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

По формуле полной вероятности получаем:

По формуле Байеса .

Пример 19. Пусть в урне пять шаров и все предположения о количестве белых шаров равновозможные. Из урны наудачу взят шар, он оказался белым. Какое предположение о начальном составе урны наиболее вероятно?

Решение. Пусть – гипотеза, состоящая в том, что в урне белых шаров , т. е. возможно сделать шесть предположений. Тогда по условию задачи имеем .

Введем событие А – наудачу взятый шар белый. Вычислим . Так как , то по формуле Байеса имеем:

Таким образом, наиболее вероятной является гипотеза , т. к. .

Пример 20. Два из трех независимо работающих элемента вычислительного устройства отказали. Найдите вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие гипотезы:

– отказали первый и второй элементы, а третий элемент исправен. Поскольку элементы работают независимо, применима теорема умножения:



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...