Какие вам известны формы представления зависимостей. §36 Моделирование зависимостей между величинами

Две величины называются прямо пропорциональными , если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз.

Зависимость между такими величинами — прямая пропорциональная зависимость. Примеры прямой пропорциональной зависимости:

1) при постоянной скорости пройденный путь прямо пропорционально зависит от времени;

2) периметр квадрата и его сторона — прямо пропорциональные величины;

3) стоимость товара, купленного по одной цене, прямо пропорционально зависит от его количества.

Чтобы отличить прямую пропорциональную зависимость от обратной можно использовать пословицу: «Чем дальше в лес, тем больше дров».

Задачи на прямо пропорциональные величины удобно решать с помощью пропорции.

1) Для изготовления 10 деталей нужно 3,5 кг металла. Сколько металла пойдет на изготовление 12 таких деталей?

(Рассуждаем так:

1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем больше деталей, тем больше металла нужно для их изготовления. Значит, это прямо пропорциональная зависимость.

Пусть х кг металла нужно для изготовления 12 деталей. Составляем пропорцию (в направлении от начала стрелки к ее концу):

12:10=х:3,5

Чтобы найти , надо произведение крайних членов разделить на известный средний член:

Значит, потребуется 4,2 кг металла.

Ответ: 4,2 кг.

2) За 15 метров ткани заплатили 1680 рублей. Сколько стоят 12 метров такой ткани?

(1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем меньше ткани покупают, тем меньше за нее надо заплатить. Значит, это прямо пропорциональная зависимость.

3. Поэтому вторая стрелка одинаково направлена с первой).

Пусть х рублей стоят 12 метров ткани. Составляем пропорцию (от начала стрелки к ее концу):

15:12=1680:х

Чтобы найти неизвестный крайний член пропорции, произведение средних членов делим на известный крайний член пропорции:

Значит, 12 метров стоят 1344 рубля.

Ответ: 1344 рубля.

Разработка урока математики в 6 классе

Тема урока «Зависимость между величинами».

Цели урока:

1.Дать понятие зависимости между величинами, выяснить способы их задания.

2.Развивать способность учащихся анализировать и синтезировать учебный материал.

3.Воспитывать творческое отношение к учебному труду.

4.Преподнести учебный материал через эмоционально - переживательную сферу ученика.

А теперь опишем по технологию построения учителем методики урока по технологии деятельностного метода.

1. Этап самоопределения нормы N

На этом этапе определяется тема и обучающая цель урока: «На уроке мы рассмотрим зависимость между различными величинами», то есть объявляется операция без уточнения условий ее применения.

2. Этап актуализации знаний и фиксация затруднения в деятельности.

На этом этапе учитель предлагает список заданий, выполнение которых предполагает выполнение известной ранее нормы.

Как найти:

Площадь прямоугольника?

Периметр прямоугольника?

Объем прямоугольного параллелепипеда?

Скорость по течению?

Скорость против течения?

Последним вопросом на этапе актуализации знаний должен быть вопрос, который фиксирует затруднения в деятельности учащихся, то есть, ранее изученных знаний не хватает, возникает учебная проблема. В данном случае это вопрос: «Для чего нужны эти правила и соответствующие формулы?».

3. Этап постановки учебной задачи.

Учитель ставит перед учащимися проблему: Как измерить площадь участка прямоугольной формы, если мы не знаем формулу S =ав? Можно разбить участок на прямоугольники размером в 1 кв. метр и сосчитать их количество. Удобно ли это?

Учащиеся отвечают, что это возможно, но неудобно. Значит, формулы нужны для вычисления величин, измерение которых затруднительно.

Учитель ставит еще более убедительную проблему: как измерить расстояние от Земли до Солнца? Итак, налицо кризис ранее известной нормы N .

4. Этап построения проекта выхода из затруднения.

Ученые установили, что расстояние от Земли до Солнца 150 млн. км. А как они узнали об этом? Совместно с детьми выясняется формула вычисления расстояния от Земли до Солнца s = ct , где с=300000км, t =8 мин, время, за которое свет доходит до Земли. Вычисления показывают, что s =2400000 км. Почему у нас получилось расхождение с известным фактом?

Вывод: Формулу можно применить только в том случае, когда единицы измерения входящих в нее величин согласованы между собой.

На этом этапе уместно воздействие на эмоционально – переживательную сферу ученика с помощью небольшой воспитательной беседы. « Свет от Земли до Солнца идет в течение 8 минут, значит, мы видим Солнце таким, каким оно было 8 минут назад. Есть звезды, свет от которых идет до нас миллионы лет: звезда может уже погасла, а свет от нее идет до сих пор. Так же бывают и люди: человека уже нет с нами, а его тепло, свет согревают нас всю жизнь. Таким человеком был народный поэт Башкортостана Мустай Карим, день памяти которого мы отмечаем сегодня. Его духовная энергия, тепло его сердца будет нам служить нравственным ориентиром многие годы».

На данном этапе урока учащимся предлагаются различные способы задания зависимостей между величинами: табличный, графический и с помощью формулы.

Дети на этом этапе включаются в ситуацию выбора метода решения учебной задачи: они сравнивают различные способы задания зависимостей между величинами. Результаты сравнения фиксируются на опорно – узловой матрице.

1 2

Способы задания Формула график таблица

1-универсальность, 2-точность, 3-наглядность;

(Условные обозначения «Д»- да, «Н»- нет)

На основе анализа опорно – узловой матрицы учащиеся делают вывод о том, что наиболее лучшим является задание зависимости между величинами с помощью формулы, потому что он обладает свойством универсальности: из формулы можно получить таблицу зависимости и построить график зависимости между величинами.

5. Этап первичного закрепления во внешней речи.

Разбирается задача №90

По одной формуле зависимости ширины прямоугольника от его длины при постоянной площади: b =12/а составить таблицу этой зависимости и построить её график.

1 ,5

1,5

График зависимости длины прямоугольника от ширины

Итак, мы связали 3 способа задания зависимостей между величинами:

С помощью формулы,

Графический,

Табличный.

6. Этап самостоятельной работы с самопроверкой по эталону.

Учащиеся самостоятельно решают задания на новый способ действий, выполняют самопроверку по эталону и сами оценивают свои результаты. Создаётся ситуация успеха, снова задействована эмоционально-переживательная сфера ученика. На одном этапе учащимся предлагают задания №133, №140. Для реализации принципа минимакса деятельностной технологии обучения учащимся предлагают задания двух уровней: М, А и В.

Уровень М: №133, А: №140. Уровень В: № 145

7. Включение новых знаний в знаний.

На данном этапе учащиеся убеждаются, что вновь приобретённые знания имеют ценность для дальнейшего обучения. Выполняя упражнение №139, они устанавливают зависимость между

Объёмом V куба и его ребром а;

Площадью S прямоугольного треугольника и катетами а и b

Диаметром D и радиусом R этой окружности;

Длиной стороны а прямоугольника, его периметром Р и площадью S ;

S куба и его ребром а

Площадью полной поверхности S прямоугольного параллелепипеда и его измерениями а, b и с.

8. Рефлексия деятельности (итог урока)

Учащиеся выполняют самооценку собственной деятельности (что нового узнали, какой метод использовали, успешность выполненных шагов). Происходит фиксация успешности деятельности и вывод о следующих шагах. Выявляются ученики, выполнившие задания уровня А и В.

Примечание.

Урок проведён по учебнику Г.В.Дорофеева, Л.Г.Петерсон. Математика, учебник для 6 класса. Часть 2. Ювента. 2011г

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Моделирование зависимостей между величинами, Величины и зависимости между ними, Различные методы представления зависимостей, Математические модели, Табличные и графические модели

Величины и зависимости между ними
Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:
1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.
Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.
С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.
Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14259... . Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.
А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.
1) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.
2) Р (н/м 2) — давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °С — температура газа. Давление при нуле градусов Ро будем считать константой для данного газа.
3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С (мг/м 3). Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города — Р (бол./тыс.).
Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным, поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.
Математические модели
Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.
Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.
В еще более сложных задачах (пример 3 — одна из них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.
Табличные и графические модели
Рассмотрим примеры двух других, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?)
В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 6.1. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.
Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.
Система основных понятий

Моделирование зависимостей между величинами

Величина -

количественная характеристика исследуемого объекта

Характеристики величины

Значение

отражает смысл величины

определяет возможные значения величины

константа

Виды зависимостей:

Функциональные

Способы отображения зависимостей

Математическая

Табличная модель

Графическая

Описание развития систем во времени - динамическая модель

Зависимость одной случайной величины от значений, которые прини- мает другая случайная величина (физическая характеристика), в статистике называется регрессией. Если этой зависимости придан аналитический вид, то такую форму представления изображают уравнением регрессии.

Процедура поиска предполагаемой зависимости между различными числовыми совокупностями обычно включает следующие этапы:

установление значимости связи между ними;

возможность представления этой зависимости в форме математиче- ского выражения (уравнения регрессии).

Первый этап в указанном статистическом анализе касается выявления так называемой корреляции, или корреляционной зависимости. Корреляция рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. Если это касается взаимосвязи двух числовых массивов xi и yi, то такую корреляцию называют парной.

При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диапазона ее изменения, например от x1 до xn) с другой измеренной величиной y (также изменяющейся в каком-то интервале y1 … yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая – аргументом. Отыскание количественной зависимости между ними в форме конкретного аналитического выражения y = f(x) - это задача уже другого анализа, регрессионного.

Таким образом, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями.

Строго говоря, принято различать два вида связи между числовыми совокупностями – это может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определенная величина другого показателя (функции), т.е. изменение результативного признака всецело обусловлено действием факторного признака.

Аналитически функциональная зависимость представляется в следую-щем виде: y = f(x).

В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, поэтому получаемые показатели оказываются случайными величинами. Это значит, что изме-нение результативного признака у обусловлено влиянием факторного признака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как є: y = ф(x) + є.



По своему характеру корреляционные связи – это соотносительные связи. Примером корреляционной связи показателей коммерческой деятельности является, например, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад є.

Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель – коэффициент корреляции r.

Если предполагается, что эту связь можно описать линейным уравне- нием типа y=a+bx (где a и b - константы), то принято говорить о существовании линейной корреляции.

Коэффициент r - это безразмерная величина, она может меняться от 0 до ±1. Чем ближе значение коэффициента к единице (неважно, с каким знаком), тем с большей уверенностью можно утверждать, что между двумя рассматриваемыми совокупностями переменных существует линейная связь. Иными словами, значение какой-то одной из этих случайных величин (y) существенным образом зависит от того, какое значение принимает другая (x).

Если окажется, что r = 1 (или -1), то имеет место классический случай чисто функциональной зависимости (т.е. реализуется идеальная взаимосвязь).

При анализе двумерной диаграммы рассеяния можно обнаружить различные взаимосвязи. Простейшим вариантом является линейная взаимосвязь, которая выражается в том, что точки размещаются случайным образом вдоль прямой линии. Диаграмма свидетельствует об отсутствии взаимосвязи, если точки расположены случайно, и при перемещении слева направо невозможно обнаружить какой-либо уклон (ни вверх, ни вниз).

Если точки на ней группируются вдоль кривой линии, то диаграмма рассеяния характеризуется нелинейной взаимосвязью. Такие ситуации вполне возможны



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...