Максимальное число всех множеств являющихся векторными пространствами. Векторное пространство


Определение Векторное пространство Для векторов трёхмерного пространства указаны правила сложения векторов и умножения их на действительные числа (см. Векторное исчисление ). В применении к любым векторам х, у, z и любым числам a, b эти правила удовлетворяют следующим условиям (условия А):

1) х + у = у + х (перестановочность сложения);

2)(х + у ) + z = x + (y + z ) (ассоциативность сложения);

3) имеется нулевой вектор 0 (или нуль-вектор), удовлетворяющий условию x + 0 = x: для любого вектора x ;

4) для любого вектора х существует противоположный ему вектор у такой, что х + у = 0 ,

5) 1 · х = х,

6) a (bx ) = (ab ) х (ассоциативность умножения);

7) (a + b ) х =+ (распределительное свойство относительно числового множителя);

8) a (х + у ) =+(распределительное свойство относительно векторного множителя).

Векторным (или линейным) пространством называется множество R, состоящее из элементов любой природы (называемых векторами), в котором определены операции сложения элементов и умножения элементов на действительные числа, удовлетворяющие условиям А (условия 1-3 выражают, что операция сложения, определённая в Векторное пространство , превращает его в коммутативную группу). Выражение

a 1 e 1 + a 2 e 2 ++ a n e n (1)

Называется линейной комбинацией векторов e 1 , e 2 ,..., e n с коэффициентами a 1 , a 2 ,..., a n . Линейная комбинация (1) называется нетривиальной, если хотя бы один из коэффициентов a 1 , a 2 ,..., a n отличен от нуля. Векторы e 1 , e 2 ,..., e n называются линейно зависимыми, если существует нетривиальная комбинация (1), представляющая собой нулевой вектор. В противном случае (то есть если только тривиальная комбинация векторов e 1 , e 2 ,..., e n равна нулевому вектору) векторы e 1 , e 2 ,..., e n называется линейно независимыми.

Векторы (свободные) трёхмерного пространства удовлетворяют следующему условию (условие В): существуют три линейно независимых вектора; любые четыре вектора линейно зависимы (любые три ненулевых вектора, не лежащие в одной плоскости, являются линейно независимыми).

Векторное пространство называется n-мepным (или имеет «размерность ), если в нём существуют n линейно независимых элементов e 1 , e 2 ,..., e n , а любые n + 1 элементов линейно зависимы (обобщённое условие В). Векторное пространство называются бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мepного Векторное пространство образуют базис этого пространства. Если e 1 , e 2 ,..., e n - базис Векторное пространство , то любой вектор х этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:

x = a 1 e 1 + a 2 e 2 +... + a n e n .

При этом числа a 1 , a 2, ..., a n называются координатами вектора х в данном базисе.

Примеры Векторное пространство Множество всех векторов трёхмерного пространства образует, очевидно, Векторное пространство Более сложным примером может служить так называемое n-мерное арифметическое пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел: l 1 , l 2 ,..., l n . Сумма двух векторов и произведение на число определяются соотношениями:

(l 1 , l 2 , …, l n ) + (m 1 , m 2 , …, m n ) = (l 1 + m 1 , l 2 + m 2 , …, l n + m n );

a (l 1 , l 2 , …, l n ) = (al 1 , al 2 , …, al n ).

Базисом в этом пространстве может служить, например, следующая система из n векторов e 1 = (1, 0,..., 0), e 2 = (0, 1,..., 0),..., e n = (0, 0,..., 1).

Множество R всех многочленов a 0 + a 1 u ++ a n u n (любых степеней n ) от одного переменного с действительными коэффициентами a 0 , a 1 ,..., a n с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует Векторное пространство Многочлены 1, u, u 2 ,..., u n (при любом n ) линейно независимы в R, поэтому R - бесконечномерное Векторное пространство

Многочлены степени не выше n образуют Векторное пространство размерности n + 1 ; его базисом могут служить многочлены 1, u, u 2 ,..., u n .

Подпространства Векторное пространство В. п. R" называется подпространством R, если R" Í R (то есть каждый вектор пространства R" есть и вектор пространства R ) и если для каждого вектора v Î r" и для каждых двух векторов v 1 и v 2 (v 1 , v 2 Î R" ) вектор lv (при любом l ) и вектор v 1 + v 2 один и тот же независимо от того, рассматриваются ли векторы v, v 1 , v 2 как элементы пространства R" или R. Линейной оболочкой векторов x 1 , x 2 ,... x p называется множество всевозможных линейных комбинаций этих векторов, то есть векторов вида a 1 x 1 + a 2 x 2 ++ a p x p . В трёхмерном пространстве линейной оболочкой одного ненулевого вектора x 1 будет, очевидно, совокупность всех векторов, лежащих на прямой, определяемой вектором x 1 . Линейной оболочкой двух не лежащих на одной прямой векторов x 1 и x 2 будет совокупность всех векторов, расположенных в плоскости, которую определяют векторы x 1 и x 2 . В общем случае произвольного Векторное пространство R линейная оболочка векторов x 1 , x 2 ,..., x p этого пространства представляет собой подпространство пространства R размерности р. В n-мерном Векторное пространство существуют подпространства всех размерностей, меньших р. Всякое конечномерное (данной размерности k ) подпространство R" Векторное пространство R есть линейная оболочка любых k линейно независимых векторов, лежащих в R". Пространство, состоящее из всех многочленов степени £ n (линейная оболочка многочленов 1, u, u 2 ,..., u n ), есть (n + 1 )- мepное подпространство пространства R всех многочленов.

Евклидовы пространства. Для развития геометрических методов в теории Векторное пространство нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у ) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:

1) (х, у ) = (у, х ) (перестановочность);

2) (x 1 + x 2 , y ) = (x 1 , y ) + (x 2 , y ) (распределительное свойство);

3) (ax, у ) = a (х, у ),

4) (х, х ) ³ 0 для любого х , причем (х, х ) = 0 только для х = 0 .

Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. Векторное пространство , в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством . Длина |x | вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами

Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство E n получим, определяя в n -мepном арифметическом Векторное пространство скалярное произведение векторов x = (l 1 , …, l n ) и y = (m 1 , …, m n ) соотношением

(x, y ) = l 1 m 1 + l 2 m 2 ++ l n m n . (2)

При этом требования 1)-4), очевидно, выполняются.

В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у ) = 0. В рассмотренном пространстве E n условие ортогональности векторов x = (l 1 , …, l n ) и y = (m 1 , …, m n ), как это следует из соотношения (2), имеет вид:

l 1 m 1 + l 2 m 2 ++ l n m n = 0. (3)

Применение В. п . Понятие Векторное пространство (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R - множество всех решений линейного однородного дифференциального уравнения y n + a 1 (x ) y (n + 1 ) ++ a n (x ) y = 0 . Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является Векторное пространство Любой базис в рассмотренном Векторное пространство называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений:

Рассмотрим в евклидовом пространстве E n векторы a i = (a i1 , a i2 , …, a in ), i = 1, 2,..., n и вектор-решение u = (u 1 , u 2 ,..., u n ). Пользуясь формулой (2) для скалярного произведения векторов E n , придадим системе (4) следующий вид:

(a i , u ) = 0, i = 1, 2, …, m . (5)

Из соотношений (5) и формулы (3) следует, что вектор-решение u ортогонален всем векторам a i . Иными словами, этот вектор ортогонален линейной оболочке векторов a i , то есть решение u есть любой вектор из ортогонального дополнения линейной оболочки векторов a i . Важную роль в математике и физике играют и бесконечномерные линейные пространства . Примером такого пространства может служить пространство С непрерывных функций на отрезке с обычной операцией сложения и умножения на действительные числа. Упомянутое выше пространство всех многочленов является подпространством пространства С .

Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Гельфанд И, М., Лекции по линейной алгебре, М. - Л., 1948.

Э. Г. Позняк.

Статья про слово "Векторное пространство " в Большой Советской Энциклопедии была прочитана 20502 раз

ВЕКТОРНОЕ ПРОСТРАНСТВО, линейное пространство, над полем K, - аддитивно записанная абелева группа Е, в которой определено умножение элементов на скаляры, т. е. отображение

К × Е → Е: (λ, х) → λх,

удовлетворяющее следующим аксиомам (х, y ∈ Е, λ, μ, 1 ∈ K):

1) λ(х + у) = λх + λу,

2) (λ + μ)x = λx + μx,

3) (λμ)x = λ(μx),

4) 1 ⋅ x = х.

Из аксиом 1)-4) вытекают следующие важные свойства векторного пространства (0 ∈ Е):

5) λ ⋅ 0 = 0,

6) 0 ⋅ х = 0,

Элементы В. п. наз. точками В. п., или векторами, а элементы поля K - скалярами.

Наибольшее применение в математике и приложениях имеют В. п. над полем ℂ комплексных чисел или над полем ℝ действительных чисел; они наз. соответственно комплексными В. п. или действительными В. п.

Аксиомы В. п. выявляют нек-рые алгебраич. свойства многих классов функций, часто встречающихся в анализе. Из примеров В. п. самыми фундаментальными и наиболее ранними являются n-мерные евклидовы пространства. Почти столь же важными примерами являются многие функциональные пространства: пространство непрерывных функций, пространство измеримых функций, пространство суммируемых функций, пространство аналитич. функций, пространство функций ограниченной вариации.

Понятие В. п. есть частный случай понятия модуля над кольцом, а именно, В. п. есть унитарный модуль над полем. Унитарный модуль над некоммутативным телом также наз. векторным пространством над телом; теория таких В. п. во многом сложнее теории В. п. над полем.

Одной из важных задач, связанных с В. п., является изучение геометрии В. п., т. е. изучение прямых в В. п., плоских и выпуклых множеств в В. п., подпространств В. п. и базисов в В. п.

Векторным подпространством, или просто подпространством, В. п. Е над полем К наз. подмножество F ⊂ E, замкнутое относительно действий сложения и умножения на скаляр. Подпространство, рассматриваемое отдельно от вмещающего его пространства, есть В. п. над тем же полем.

Прямой линией, проходящей через две точки х и y В. п. Е, наз. множество элементов z ∈ E вида z = λx + (1 - λ)y, λ ∈ K. Множество G ∈ E наз. плоским множеством, если вместе с любыми двумя точками оно содержит прямую, проходящую через эти точки. Каждое плоское множество получается из нек-рого подпространства с помощью сдвига (параллельного переноса): G = x + F; это означает, что каждый элемент z ∈ G представим единственным образом в виде z = x + y, y ∈ F, причем это равенство осуществляет взаимно однозначное соответствие между F и G.

Совокупность всех сдвигов F x = x + F данного подпространства F образует В. п. над K, наз. фактор-пространством E/F, если определить операции следующим образом:

F x F y = F x+y ; λF x = F λx , λ ∈ К.

Пусть М = {х α } α∈A - произвольное множество векторов из Е; линейной комбинацией векторов х α ∈ Е наз. вектор х, определенный формулой

х = ∑ α λ α x α , λ α ∈ K,

в к-рой лишь конечное число коэффициентов отлично от нуля. Совокупность всех линейных комбинаций векторов данного множества М является наименьшим подпространством, содержащим М, и наз. линейной оболочкой множества М. Линейная комбинация наз. тривиальной, если все коэффициенты λ α равны нулю. Множество М наз. линейно независимым множеством, если все нетривиальные линейные комбинации векторов из М отличны от нуля.

Любое линейно независимое множество содержится в нек-ром максимальном линейно независимом множестве М 0 , т. е. в таком множестве, к-рое перестает быть линейно независимым после присоединения к нему любого элемента из Е.

Каждый элемент х ∈ Е может быть единственным образом представлен в виде линейной комбинации элементов максимального линейно независимого множества:

х = ∑ α λ α x α , x α ∈ M 0 .

В связи с этим максимальное линейно независимое множество наз. базисом В. п. (алгебраическим базисом). Все базисы данного В. п. имеют одинаковую мощность, к-рая наз. размерностью В. п. Если эта мощность конечна, пространство наз. конечномерным В. п.; в противном случае оно наз. бесконечномерным В. п.

Поле K можно рассматривать как одномерное В. п. над полем K; базис этого В. п. состоит из одного элемента; им может быть любой элемент, отличный от нуля. Конечномерное В. п. с базисом из n элементов наз. n-мерным пространством.

В теории действительных и комплексных В. п. важную роль играет теория выпуклых множеств. Множество М в действительном В. п. наз. выпуклым множеством, если вместе с любыми двумя его точками х, у отрезок tx + (1 - t)y, t ∈ , также принадлежит М.

Большое место в теории В. п. занимает теория линейных функционалов на В. п. n связанная с этим теория двойственности. Пусть Е есть В. п. над полем K. Линейным функционалом на Е наз. аддитивное и однородное отображение f: Е → К:

f(x + y) = f(x) + f(y), f(λx) = λf(x).

Множество Е* всех линейных функционалов на Е образует В. п. над полем K относительно операций

(f 1 + f 2)(x) = f 1 (x) + f 2 (x), (λf)(x) = λf(x), х ∈ Е, Х ∈ К, f 1 , f 2 , f ∈ Е*.

Это В. п. наз. сопряженным (или двойственным) пространством (к Е). С понятием сопряженного пространства связан ряд геометрич. терминов. Пусть D ⊂ E (соответственно Г ⊂ Е*); аннулятором множества D, или ортогональным дополнением множества D (соответственно множества Г) наз. множество

D ⊥ = {f ∈ Е*: f(x) = 0 для всех х ∈ D}

(соответственно Г ⊥ = {х ∈ Е: f(x) = 0 для всех f ∈ Г}); здесь D ⊥ и Г ⊥ - подпространства соответственно пространств Е* и Е. Если f - ненулевой элемент из Е*, то {f} есть максимальное собственное линейное подпространство в Е, наз. иногда гиперподпространством; сдвиг такого подпространства наз. гиперплоскостьюв Е; всякая гиперплоскость имеет вид

{x: f(x) = λ), где f ≠ 0, f ∈ Е*, λ ∈ K.

Если F - подпространство В. п. Е, то существуют естественные изоморфизмы между F* и

E*/F ⊥ и между (E/F)* и F ⊥ .

Подмножество Г ⊂ E* наз. тотальным подмножеством над Е, если его аннулятор содержит лишь нулевой элемент: Г ⊥ = {0}.

Каждому линейно независимому множеству {х α } α∈A ⊂ E можно сопоставить сопряженное множество {f α } α∈A ⊂ E*, т.е. такое множество, что f α (x β) = δ αβ {Кронекера символ) для всех α, β ∈ A. Множество пap {х α , f α } наз. при этом биортогональной системой. Если множество {х α } есть базис в Е, то {f α } тотально над Е.

Значительное место в теории В. п. занимает теория линейных преобразований В. п. Пусть Е 1 , Е 2 - два В. п. над одним и тем же полем К. Линейным отображением, или линейным оператором, Т, отображающим В. п. Е 1 в В. п. Е 2 (или линейным оператором из Е 1 в Е 2), наз. аддитивное и однородное отображение пространства Е 1 в Е 2:

Т(х + у) = Тх + Ту; Т(λх) = λТ(х); х, у ∈ Е 1 .

Частным случаем этого понятия является линейный функционал, или линейный оператор из Е 1 в K. Линейным отображением является, напр., естественное отображение В. п. Е на факторпространство E/F, сопоставляющее каждому элементу х ∈ Е плоское множество F x ∈ E/F. Совокупность ℒ(Е 1 , Е 2) всех линейных операторов Т: Е 1 →Е 2 образует В. п. относительно операций

(Т 1 + Т 2)х = Т 1 х + Т 2 х; (λТ)х = λТх; х ∈ Е 1 ; λ ∈ K; T 1 , T 2 , Т ∈ ℒ(Е 1 , Е 2).

Два В. п. Е 1 и Е 2 наз. изоморфными В. п., если существует линейный оператор («изоморфизм»), осуществляющий взаимно однозначное соответствие между их элементами. Е 1 и Е 2 изоморфны тогда и только тогда, когда их базисы имеют одинаковую мощность.

Пусть Т - линейный оператор, отображающий Е 1 в Е 2 . Сопряженным линейным оператором, или двойственным линейным оператором, по отношению к Т, наз. линейный оператор Т* из E* 2 в Е* 1 , определенный равенством

(Т*φ)х = φ(Тх) для всех х ∈ Е 1 , φ ∈ Е* 2 .

Имеют место соотношения Т* -1 (0) = ⊥ , Т*(Е* 2) = [Т -1 (0)] ⊥ , откуда следует, что Т* является изоморфизмом тогда и только тогда, когда Т является изоморфизмом.

С теорией линейных отображений В. п. тесно связана теория билинейных отображений и полилинейных отображений В. п.

Важную группу задан теории В. п. образуют задачи продолжения линейных отображений. Пусть F - подпространство В. п. Е 1 , Е 2 - линейное пространство над тем же полем, что и Е 1 , и пусть Т 0 - линейное отображение F в Е 2 ; требуется найти продолжение Т отображения T 0 , определенное на всем Е 1 и являющееся линейным отображением Е 1 в Е 2 . Такое продолжение всегда существует, но дополнительные ограничения на функции (связанные с дополнительными структурами в В. п., напр., топологией или отношением порядка) могут сделать задачу неразрешимой. Примерами решения задачи продолжения являются Хана-Банаха теорема и теоремы о продолжении положительных функционалов в пространствах с конусом.

Важным разделом теории В. п. является теория операций над В. п., т. е. способов построения новых В. п. по известным. Примеры таких операций - известные операции взятия подпространства и образования факторпространства по подпространству. Другие важные операции - построение прямой суммы, прямого произведения и тензорного произведения В. п.

Пусть {Е α } α∈I - семейство В. п. над полем К. Множество Е - произведение множеств Е α - можно превратить в В. п. над полем К, введя операции

(x α) + (y α) = (x α + y α); λ(x α) = (λx α); λ ∈ K; x α , y α ∈ E α , α ∈ I;

полученное В. п. Е наз. прямым произведением В. п. Е α и обозначается П α∈I Е α . Подпространство В. п. Е, состоящее из всех тех наборов (х α), для каждого из к-рых множество {α: х α ≠ 0} конечно, наз. прямой суммой В. п. Е α и обозначается Σ α E α или Σ α + E α ; Для конечного числа слагаемых эти определения совпадают; в этом случае используются обозначения:

Пусть Е 1 , Е 2 - два В. п. над полем K; Е" 1 , Е" 2 -тотальные подпространства В. п. E* 1 , Е* 2 , и Е 1 □ Е 2 -В. п., имеющее своим базисом совокупность всех элементов пространства Е 1 × Е 2 . Каждому элементу x □ y ∈ E 1 □ E 2 сопоставляется билинейная функция b = Т(х, у) на Е" 1 × Е 2 по формуле b(f, g) = f(x)g(y), f ∈ E" 1 , g ∈ E" 2 . Это отображение базисных векторов x □ y ∈ E 1 □ E 2 можно продолжить до линейного отображения Т В. п. Е 1 □ Е 2 в В. п. всех билинейных функционалов на Е" 1 × Е" 2 . Пусть E 0 = T -1 (0). Тензорным произведением В. п. Е 1 и Е 2 наз. факторпространство Е 1 ○ Е 2 = (E 1 □ E 2)/E 0 ; образ элемента x □ y обозначается х ○ у. В. п. Е 1 ○ Е 2 изоморфно В. п. билинейных функционалов на Е 1 × Е 2 (см. Тензорное произведение векторных пространств).

Лит.: Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; Райков Д. А., Векторные пространства, М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961; , Эдварде Р., Функциональный анализ, пер. с англ., М., 1969; Халмош П., Конечномерные векторные пространства, пер. с англ., М., 1963; Глазман И. М., Любич Ю. И., Конечномерный линейный анализ в задачах, М., 1969.

М. И. Кадец.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.

Пусть Р – поле. Элементы a, b, ... ÎР будем называть скалярами .

Определение 1. Класс V объектов (элементов) , , , ... произвольной природы называется векторным пространством над полем Р , а элементы класса V называются векторами , если V замкнуто относительно операции «+» и операции умножения на скаляры из Р (т.е. для любых , ÎV +ÎV ;"aÎ Р aÎV), и выполняются следующие условия:

А 1: алгебра - абелева группа;

А 2: для любых a, bÎР, для любого ÎV выполняется a(b)=(ab)- обобщенный ассоциативный закон;

А 3: для любых a, bÎР, для любого ÎV выполняется (a+b)= a+ b;

А 4: для любого a из Р, для любых , из V выполняется a(+)=a+a(обобщённые дистрибутивные законы);

А 5: для любого из V выполняется 1 = , где 1 – единица поля Р - свойство унитарности.

Элементы поля Р будем называть скалярами, а элементы множества V - векторами.

Замечание. Умножение вектора на скаляр не является бинарной операцией на множестве V, так как это отображение P´V®V.

Рассмотрим примеры векторных пространств.

Пример 1. Нулевое (нуль-мерное) векторное пространство - пространство V 0 ={} - состоящее из одного нуль-вектора.

И для любого aÎР a=. Проверим выполнимость аксиом векторного пространства.

Заметим, что нулевое векторное пространство существенно зависит от поля Р. Так, нульмерные пространства над полем рациональных чисел и над полем действительных чисел считаются различными, хоть и состоят из единственного нуль-вектора.

Пример 2. Поле Р само является векторным пространством над полем Р. Пусть V=P. Проверим выполнимость аксиом векторного пространства. Так как Р - поле, то Р является аддитивной абелевой группой и А 1 выполняется. В силу выполнимости в Р ассоциативности умножения выполняется А 2 . Аксиомы А 3 и А 4 выполняются в силу выполнимости в Р дистрибутивности умножения относительно сложения. Так как в поле Р существует единичный элемент 1, то выполняется свойство унитарности А 5 . Таким образом, поле Р является векторным пространством над полем Р.

Пример 3. Арифметическое n-мерное векторное пространство.

Пусть Р - поле. Рассмотрим множество V= P n ={(a 1 , a 2 , … , a n) ½ a i Î P, i=1,…, n}. Введём на множестве V операции сложения векторов и умножения вектора на скаляр по следующим правилам:

"= (a 1 , a 2 , … , a n), = (b 1 , b 2 , … , b n) Î V, "aÎ P += (a 1 + b 1 , a 2 + b 2 , … , a n + b n) (1)

a=(aa 1 , aa 2 , … , aa n) (2)

Элементы множества V будем называть n-мерными векторами . Два n-мерных вектора называются равными, если их соответствующие компоненты (координаты) равны. Покажем, что V является векторным пространством над полем Р. Из определения операций сложения векторов и умножения вектора на скаляр следует, что V замкнуто относительно этих операций. Так как сложение элементов из V сводится к сложению элементов поля Р, а Р является аддитивной абелевой группой, то и V является аддитивной абелевой группой. Причём, = , где 0 - ноль поля Р, -= (-a 1 , -a 2 , … , -a n). Таким образом, А 1 выполняется. Так как умножение элемента из V на элемент из Р сводится к умножению элементов поля Р, то:


А 2 выполняется в силу ассоциативности умножения на Р;

А 3 и А 4 выполняются в силу дистрибутивности умножения относительно сложения на Р;

А 5 выполняется, так как 1 Î Р - нейтральный элемент относительно умножения на Р.

Определение 2. Множество V= P n с операциями, определёнными формулами (1) и (2) называется арифметическим n-мерным векторным пространством над полем Р.

Рассмотрим последовательность, состоящую из л элементов некоторого простого поля GF(q) {a^, а. .....а п). Такая последовательность называется л-по

следовательностью над полем GF}

Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...