Геологическое летоисчисление история развития земли таблица. Возраст Земли

Геологи давно заметили, что история нашей планеты делится на две неравные части. Древняя более длительная ее часть трудна для изучения палеонтологическими методами, так как не содержит ископаемых остатков и кроме того, довольно часто осадочные толщи сильно изменены метаморфизмом. Хорошо изучена молодая часть каменной летописи, поскольку осадочные напластования в ней содержат многочисленные остатки организмов количество и сохранность которых возрастают по мере приближения к современной эпохе. Эту молодую часть истории земной коры американский геолог Ч. Шухерт назвал фанерозойским эоном, т. е. временем очевидной жизни. Эон -- это промежуток времени, объединяющий несколько геологических эр. Его стратиграфическим эквивалентом является эонотема.

Более древнюю и продолжительную часть геологической истории Ч. Шухерт назвал криптозоем, или временем со скрытым развитием жизни. Довольно часто ее еще называют докембрием. Это название сохранилось с середины XIX в., когда было установлено абсолютное большинство геологических периодов. Все более древние отложения, залегающие под кембрийскими толщами, стали датироваться докембрием. В настоящее время вместо криптозоя выделяют два эона: архейский и протерозойский.

Широкая распространенность, богатство ископаемыми органическими остатками и относительная доступность фанерозойских отложений предопределили их более лучшую изученность. Английский геолог Дж. Филлипс в 1841 г. в составе фанерозоя выделил три эры: палеозойскую -- эру древней жизни; мезозойскую -- эру средней жизни и кайнозойскую -- эру новой жизни. В палеозое господствовали морские беспозвоночные, рыбы, земноводные и споровые растения, в мезозое -- пресмыкающиеся и голосеменные растения, а в кайнозое -- млекопитающие и покрытосеменные растения.

Сформированные в течение геологической эры отложения называются эратемами. Более мелкими стратиграфическими единицами являются системы, отделы и ярусы. Имена системам и ярусам были даны преимущественно по названию местностей, где они были установлены и изучены, или по каким-либо характерным признакам. Так, название юрской системы произошло от Юрских гор в Швейцарии, пермской -- от г. Перми, кембрийской от древнего названия английской провинции Уэльс, меловой -- от широко распространенного писчего мела, каменноугольной -- от каменного угля и т. д.

Если стратиграфическая шкала отражает последовательность отложений и их соподчиненность, то геохронологическая -- определяет длительность и закономерную последовательность этапов исторического развития Земли. На протяжении последних 100 лет геохронологическую и стратиграфическую шкалы фанерозоя многократно пересматривали.

Однако в геологии важно знать не только относительный возраст горных пород, но и, по возможности, точное время их происхождения. Для определения возраста горных пород применяется несколько различных методов, основанных на явлении радиоактивного распада. В связи с этим возраст пород носит название радиогеохронометрического. Для его определения используют радиоактивные изотопы урана, тория, рубидия, калия, углерода и водорода. Ввиду того что нам известны скорости распада радиоактивного изотопа, легко можно определить возраст минерала, а следовательно, и породы. В настоящее время разработаны и широко применятся различные методы ядерной геохронологии: ураноторий-свинцовый, ураноторий-гелиевый, урано-ксеноновый, калий-аргоновый, рубидий-стронциевый, самарий-ниодимовый, рений-осмиевый и радиоуглеродный. Содержание радиоактивных изотопов в горных породах и минералах определяется в специальных приборах -- мacc-спектрометрах.

Благодаря методам ядерной геохронологии, устанавливается возраст магматических и осадочных горных пород, а для метаморфических пород определяется время воздействия на них высоких температур и давления. Изотопный возраст наиболее древних пород земного шара составляет 3,8--4 млрд. лет. Близкий возраст имеют некоторые лунные породы и метеориты.

Трудность изучения архейских и протерозойских отложений предопределила их слабую стратиграфическую и геохронологическую расчлененность. Вот как выглядит в настоящее время пока далекая от совершенства и детальности шкала архея и протерозоя.

В геологии применяется также дополнительный метод возрастного расчленения и сопоставления отложе, ний. Это палеомагнитный метод, основанный на явлении сохранения в толщах горных пород магнитных свойств. Горные породы, содержащие магнитные минералы, обладают ферромагнитными (намагниченными) свойства, ми и под влиянием магнитного поля Земли приобретают естественную остаточную намагниченность. Сейчас доказано, что в течение длительной геологической истории положение магнитных полюсов неоднократно менялось. Установив остаточную намагниченность и ее направленность (т. е. вектор) и сравнивая между собой вектора, можно установить одновозрастность горных пород, что в определенной степени уточняет геохронологическую шкалу.

Геологические источники информации

Геологическая информация предполагает:

  1. Сведения о месторождениях полезных ископаемых;
  2. Сведения об их запасах;
  3. Сведения об условиях залегания и путях использования полезных ископаемых;
  4. Первичный фактический материал – образцы проб керна;
  5. Данные измерений над геологическими объектами;
  6. Аналитические материалы в виде таблиц, графиков, карт, отчетов и др.
  7. Затраты на геологическую разведку полезных ископаемых.

Одним из более доступных источников геологической информации является геологическая карта.

Определение 1

Геологическая карта – это графическое изображение геологического строения какого-либо участка земной коры или в целом земного шара с помощью специальных условных знаков.

На геологических картах показывается распространение выходов горных пород на земной поверхности, которые различаются возрастом, происхождением, составом и условиями залегания. Геологическая карта дает возможность делать вывод о формировании земной коры и закономерностях распространения полезных ископаемых на территории. Создать геологическую карту можно по результатам геологической съемки, практического опыта, теоретического обобщения научных геологических достижений.

  1. Собственно геологические карты;
  2. Карты четвертичных отложений;
  3. Геоморфологические карты;
  4. Карты полезных ископаемых;
  5. Прогнозные карты.

Собственно геологические карты по содержанию относятся к стратиграфическим картам до четвертичных пород. Они не показывают континентальные отложения. Исключением может быть большая мощность отложений или неизвестность подстилающих пород. Специальные условные знаки этой карты показывают возраст, состав, происхождение горных пород, условия их залегания и характер границ между ними.

Карты четвертичных отложений . На них идет разделение четвертичных горных пород по генезису, возрасту и составу. Карты показывают границы стадий оледенения, морские трансгрессии и регрессии, границы распространения многолетнемерзлых горных пород.

Литологические карты показывают состав и условия залегания тех пород, которые на поверхности обнажены или скрыты под четвертичными отложениями.

Геоморфологические карты отображают основные типы рельефа и его отдельные элементы. При этом учитывается их возраст и происхождение.

Тектонические карты показывают время, условия образования и формы залегания основных структурных элементов земной коры;

Гидрогеологические карты дают информацию о водоносных горизонтах, условиях их залегания, распространения, состава, режима подземных вод.

Инженерно-геологические карты дают информацию о физико-механических свойствах горных пород и современных геодинамических явлениях.

Карты полезных ископаемых отражают все сведения о месторождениях полезных ископаемых.

Прогнозные карты информируют о закономерностях размещения известных месторождений полезных ископаемых и указывают перспективные площади разных видов минерального сырья.

В зависимости от масштаба карты бывают:

  1. Обзорные карты с геологией больших территорий – государств, материков;
  2. Карты мелкого масштаба – показывают геологическое строение крупных регионов или государств;
  3. Карты среднего масштаба отражают черты геологии отдельных территорий, например, геология Урала, Кавказа и др.

Относительное летоисчисление

Геологические события в хронологической последовательности представлены в единой международной геохронологической шкале или таблице. Таблица показывает последовательную смену и продолжительность эр и периодов в развитии земной коры и природы.

Выделяют пять эр:

  1. Архейская эра – $1800$ млн. лет. Время примитивных бактерий и водорослей;
  2. Протерозойская эра – $2000$ млн. лет. Время появления первых многоклеточных;
  3. Палеозойская эра – $330$ млн. лет.
  4. Мезозойская эра – $165$ млн. лет;
  5. Кайнозойская эра – $70$ млн. лет.

Определение 2

Геологическая эра – это этап развития земной коры, соответствующий длительному этапу развития земной коры и органического мира.

Начиная с палеозоя эры, делятся на более короткие временные отрезки, получившие название периодов. Периодов $12$. В последний ещё не закончившийся четвертичный период кайнозойской эры живет современный человек.

В палеозойской эре выделяют 6 периодов:

  1. Кембрий – расцвет морских беспозвоночных;
  2. Ордовик – появление первых беспозвоночных;
  3. Силур – появление первых наземных растений;
  4. Девон – появление земноводных и рыб;
  5. Карбон – господство папоротников хвощей, расцвет земноводных;
  6. Пермь – появление голосеменных растений.

Мезозой включает 3 периода:

  1. Триас – расцвет голосеменных растений, появление первых млекопитающих;
  2. Юра – появление примитивных птиц;
  3. Мел – вымирание рептилий, развитие птиц и млекопитающих.

Кайнозой включает три периода:

  1. Палеоген – появление цветковых;
  2. Неоген – широкое распространение птиц, млекопитающих и цветковых растений;
  3. Антропоген – появление человека.

Геологические события часто определяются отношением одних временных единиц к другим. Такое деление истории Земли получило название относительная геохронология . В основе относительной геохронологии лежит стратиграфический анализ, позволяющий сопоставить и проследить отдельные слои, сходные по составу породы – это литостратиграфия.

Определение 3

Литостратиграфия – это метод расчленения, выделения условных временных отрезков.

В $1669$ г. Николаусом Стено был установлен закон последовательности напластования. Ученый определил, что нижние пласты осадочных горных пород являются более древними, потому что образовались раньше вышележащих. Таким образом, уже в $XVII$ веке появилась возможность установления относительной последовательности образования слоев, а это значит и тех событий, которые были с ними связаны. В результате исчезновения группы слоёв последовательность напластований может быть нарушена – это есть стратиграфический перерыв и на разрезах он обозначается волнистой чертой. Принцип Стено важный, но, как считают специалисты, имеет ряд ограничений. Принцип подходит для тех территорий, у которых тектоническое состояние спокойное и осадочные образования залегают горизонтально. В этом случае слои, расположенные выше, будут моложе по сравнению с нижележащими слоями. Если же тектонические движения смяли горные породы в складки, и они перемешались, то принцип Стено не подходит – последовательность слоёв нарушается. Если такие случаи возникают, на помощь приходит палеонтология. В горных породах остаются остатки органической жизни, по которым палеонтологи дают своё заключение о возрасте породы. Они используют принцип эволюции органического мира – от простейших к более сложным формам. Этот палеонтологический метод определения относительного возраста и последовательности залегания горных пород в относительной геохронологии является основным.

Абсолютное летоисчисление

Определение 4

Когда возраст горных пород определяется в годах – это уже будет абсолютное летоисчисление.

Абсолютное летоисчисление имеет две группы методов:

  1. Скорость осадконакопления или сезонно-климатический метод. Геологические и биологические процессы связаны с сезонными изменениями климата, например, деревья имеют годичные кольца, по количеству которых можно определить их возраст. О возрасте коралловой постройки по годичным слойкам роста. Кольца деревьев и кораллов в окаменевшем виде не повреждаются и доходят до внимания ученых. Обнаружить годичные кольца можно и в осадочных горных породах, которые отложились в поймах, дельтах рек, в озерных отложениях. В этих породах образуется два слоя – весенний песчаный слой и зимний глинистый слой. Зимой принос грубообломочного материала прекращается и оседает глинистая муть, поэтому ежегодно образуется два тонких слоя – песчаный и глинистый. Для точности абсолютного летоисчисления важно, чтобы осадконакопление шло непрерывно и ритмику процессов ничего не нарушало. Кроме всего, подсчет возраста имеет свои ограничения – это десятки тысяч лет, но не миллионы;
  2. Второй метод – скорость радиоактивного распада элементов . Идея была высказана в $1902$ г П. Кюри на основании того, что кристаллическая решетка многих минералов включает в себя радиоактивные изотопы в малых количествах. Образование минерала сопровождается накоплением продуктов естественного распада изотопов. Распад изотопов происходит с постоянной скоростью и никакие факторы не могут её изменить. Первым опробованным методом был уран-свинцовый, затем появился свинцово-изотопный, калий-аргоновый, рубидий-стронциевый, самарий-неодимовый, радиоуглеродный метод. В верхних слоях атмосферы из азота образуется радиоуглерод, который распадается с периодом полураспада $5570$ лет. Используют метод для определения возраста древесины, древесного угля, торфа, углесодержащих организмов. На основании радиологических методов определена продолжительность всех геологических эр и периодов, время их начала и конца.

7. Геологическая хронология земной коры

Геохронология – последовательность геологических событий во времени, их продолжительность и соподчиненность:

– относительная геохронология отражает естественные этапы в истории развития Земли, основанная на принципе последовательности напластовывания и использует метод биостратиграфических построений;

– абсолютная геохронология определяет возраст и длительность подразделений геохронологической шкалы в промежутках времени, равных современному астрономическому году (в астрономических единицах). Она основана на изучении продуктов радиоактивного распада в минералах.

Геохронологическая (геоисторическая) шкала – иерархическая система геохронологических подразделений, эквивалентных единицам общей стратиграфической шкалы.

Стратиграфическое подразделение (единица) – совокупность горных пород, составляющих определенное единство по комплексу признаков (особенностям вещественного состава, органических остатков), который позволяет выделить ее в разрезе и проследить по площади.

Закономерности развития и образования земной коры изучает историческая геология . Возраст горных пород бывает абсолютным и относительным.

Абсолютный возраст – продолжительность существования (жизни) породы, выраженная в годах. Для его определения применяют методы, основанные на использовании процессов радиоактивных превращений, которые имеют место в некоторых химических элементах (уран, калий, рубидий), входящих в состав пород. Возраст магматических пород, а также химических осадков равен возрасту составляющих их минералов. Другие породы моложе входящих в их состав минералов.

Соотношение количеств совместно находящихся радиоактивного исходного изотопа и образовавшегося из него устойчивого элемента дает представление о возрасте вмещающих их пород. Методы определения абсолютного возраста получили свое название от продуктов радиоактивного распада: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и др. Так, зная, какое количество свинца образуется из 1 г урана в год, определяя их совместное содержание в данном минерале, можно найти абсолютный возраст минерала и той горной породы, в которой он находится. По углероду 14 С, период полураспада которого равен 5568 лет, можно установить возраст образований, появившихся позднее. Установить абсолютный возраст горных пород можно по геохронологической шкале земной коры (табл.). Определение абсолютного возраста горных пород весьма трудная задача, решение которой стало возможным только в 50-тые годы XX века.

Геохронологическая шкала земной коры

(эонотемы)

Период (система)

Типичные организмы

Абс. возраст, млн. лет

Неохрон (фанерозой)

Кайнозойская Kz («эра новой жизни»)

Четвертичный

(антропогенный) Q

Третичный Tr

Млекопитающиеся, цветковые растения

Палеоген P

Мезозойская

Mz («эра сред-ней жизни»)

Меловой К

Головоногие, моллюски и пресмыкающиеся

Триасовый T

Палеозойская Pz («эра древней жизни»)

Пермский P

Амфибии и споровые

Каменноугольный C

Девонский D

Рыбы, плеченогие

Силурийский S

беспозвоночные

Ордовикский O

Кембрийский Cm

Палеохрон (криптозой)

Протерозойская PR

Редкие остатки примитивных форм

Архейская

(археозойская) AR

Планетарная стадия Земли

Свыше 4500

Чем моложе определяемый возраст минерала, тем большее количество его требуется для анализа, так как не успевают накопиться продукты распада.

Минимальное количество минерала, требуемое для определения их возраста, г

Примерно ожидаемый возраст, млн. лет

При оценке относительного возраста различают более древние и более молодые горные породы. Проще определять относительный возраст у осадочных пород при ненарушенном их залегании (близко к горизонтальному залеганию). При складчатом расположении – иногда невозможно. Затруднительно и при наличии пород, слагающих участки, удаленные друг от друга.

Палеонтология – наука, устанавливающая закономерность развития жизни на Земле путем изучения останков животных и растительных организмов (окаменелости), имеющихся в толщах осадочных пород. Время образования той или иной породы соответствует времени гибели организмов, останки которых оказались захороненными при накоплении осадков. Трилобиты, папоротники, хвощи, лепидофиты, археоцитат, эхиносферит, кальцеола, кистеперые рыбы, каменный уголь …).

При этом используют два метода:

Стратиграфический метод применяют для толщ с ненарушенным горизонтальным залеганием слоев (рис. 11). Этот метод нельзя применить при складчатом расположении слоев. Считают, что нижележащие слои являются более древними, чем вышележащие. Молодым является слой 3 , а слои 1 и 2 более древние.

Рис. 11. Залегание слоев: а) – горизонтальное залегание слоев; б) – в виде складок

Палеонтологический метод позволяет определять возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на различных участках. Каждому отрезку геологического времени соответствует определенный состав жизненных форм.

Все геологическое время разделили на отрезки. Для слоев пород, которые образовались в эти отрезки времени, были предложены свои названия, что позволило создать стратиграфическую шкалу (табл.).

Стратиграфическая шкала

Геохронологическая шкала времени

(геохронологические подразделения)

Стратиграфическая шкала слоев пород*

(единицы общей шкалы)

Эонотема

Эратотема (группа)

Фаза (время)

Зона (хронозона)

Звено (для четвертичной системы)

* - различают и дополнительные единицы: подотдел – часть отдела; надъярус – несколько ярусов; подъярус – часть яруса; подзона – часть зоны

Наиболее крупные промежутки времени – эоны , а толщи пород, образовавшиеся за это время – эонотемы . Каждый эон делят на эры . Каждая эра подразделяется на периоды, периоды – на эпохи , группы – на системы и т.д. Самый короткий отрезок – век. Век – промежуток времени, в течение которого отложилась толща горных пород, образующих ярус. Продолжительность века в палеозое ~ 10 млн. лет, в мезозое и кайнозое ~ 5…6 млн. лет.

Представленная шкала многократно корректируется.

Инженеры-строители должны знать, что понимают под возрастными индексами горных пород и использовать это в своей работе, чтении геологической документации (карт и разрезов) при проектировании зданий и сооружений.

Особый интерес вызывает четвертичный период (табл.).

Схема расчленения четвертичного периода (системы)

Древнечетвертичная

Нижнечетвертичный

Среднечетвертичная

Среднечетвертичный

Позднечетвертичная

Верхнечетвертичный

Современная

Современный

Отложения четвертичного периода распространены почти повсеместно, их толщи содержат останки древнего человека и предметы его обихода. К толщам этих отложений приурочены месторождения россыпного золота и других ценных металлов. Многие породы четвертичного периода являются сырьем для производства строительных материалов. Большое место занимают отложения культурного слоя , появляющегося в результате деятельности человека. Он отличаются значительной рыхлостью и большой неоднородностью. Его наличие может осложнить строительство зданий и сооружений.

Рис. 12. Окаменелости палеогенового и неогенового периодов: а ), б ), в ), г ), д ), е ), и ) – брюхоногие моллюски; ж ), з ), к ), л ) – двустворчатые моллюски

Рис. 13. Окаменелости триасового периода: а ), в ), г ), д ), з ) – двустворчатые моллюски; б ) – брахиопода; е ) – аммонит, ж ) – криноидея

Рис. 14. Окаменелости юрского периода: а ) – устрицы; б ), е ), з ), к ) – аммониты; в ) – белемнит; г ) – посейдония; д ) – двустворчатый моллюск; ж ), и ) – брахиоподы

Рис. 15. Окаменелости мелового периода: а ), е ) – двустворчатые моллюски; б ), в) – белемниты; г ), д ), з ) – аммониты; ж ) – морские ежи

Рис. 16. Окаменелости палеозойской эры: а ) – трилобит; б ), в ), д ), ж ), л) – брахиоподы; г ) – цефалопода; е ) – криноидея; з ) – аммонит; и ) – морской бутон; к ) – сигиллярия

ОПРЕДЕЛЕНИЕ АБСОЛЮТНОГО ВОЗРАСТА ГОРНЫХ ПОРОД

Наиболее распространенный стратиграфический метод основан на принципе перекрывания одних слоев и пачек осадочных пород другими. В связи с развитием органического мира в различных осадках встречаются остатки различных представителей растительного и животного царства, отражающие их эволюцию. На основании этих двух фактов была выработана стратиграфическая шкала, самой крупной единицей которой является эра. Всего выделяется пять эр:

а) археозойская, или архейская (от древнегреческих слов: «архе», начало и «зое», жизнь) – эра начала жизни;

б) протерозойская (от «протерос», первый) – эра первичной жизни;

в) палеозойская (от «паляйос», древний) – эра древней жизни;

г) мезозойская (от «мезос», средний) – эра средней жизни;

д) кайнозойская (от «кайнос», новый) – эра новой жизни.

В свою очередь эры разделены на периоды, а периоды – на эпохи.

Стратиграфическая шкала является относительной: она указывает лишь на последовательность образования горных пород и развитие органического мира. Стратиграфическая шкала наиболее близка к реальной жизни только для наиболее поздних геологических явлений. К таковым относятся ледниковые отложения Северной Европы. Изучение озерных осадков (ленточных глин), позволило довольно точно установить возраст оледенения. Чередование тонких прослоев глинистых и песчаных частиц соответствует зимнему и летнему периодам. Таким образом, подсчитано, что Валдайское оледенение на северо-западе России началось около 90 тыс. лет тому назад. Однако по мере изучения все более древних осадочных отложений такой способ становится все менее и менее совершенным в силу большой измененности первичных осадков.

Также несовершенны и другие приемы оценки геологического времени, в частности по количеству глинистых и песчаных частиц, приносимых реками в океан, и сопоставлению этих величин с общей мощностью осадочных пород.

Точное установление возраста геологических формаций стало возможным только после открытия радиоактивности. Изучение радиоактивных веществ показало, что на скорость радиоактивного распада не влияют ни температура, ни давление, ни электрические и магнитные поля, ни, наконец, действие химических реагентов. Поэтому, зная количество накопившихся продуктов распада радиоактивного вещества и период полураспада их, можно вычислить время, за которое эти продукты распада образовались, т. е. вычислить абсолютное время существования радиоактивного вещества (минерала).

Зная количество продуктов радиоактивного распада, количество нераспавшихся атомов и константу распада, можно вычислить абсолютный возраст образования данного изотопа. Для этого нужно, чтобы конечные продукты распада не покидали радиоактивного вещества и были учтены полностью. Кристаллическая структура минералов является приближенно закрытой системой и продукты распада практически не покидают ее. Чем больше в минерале находится продуктов распада, тем древнее этот минерал.

Поскольку периоды полураспада для изотопов урана, тория и калия очень велики, то продукты радиоактивного распада этих элементов не могут в достаточном количестве (для их точного учета) накопиться за короткий промежуток времени. Поэтому определения возраста по радиоактивным изотопам урана, тория и калия затруднены для молодых геологических образований и практически показывают уверенные значения, начиная с мезозоя.

Для определения абсолютного возраста нужно следить, чтобы образцы пород не были выветрелыми, разрушенными или подвержены механическим деформациям; минералы не должны содержать включений других минералов. Все это нужно для того, чтобы получить материал, не потерявший продуктов радиоактивного распада. Наиболее желателен отбор минералов, имеющих кристаллическую форму, ибо в этом случае мы можем быть наиболее уверенными в сохранности продуктов радиоактивного распада.

В настоящее время для определения абсолютного возраста используют следующие методы определения абсолютного возраста: урано-свинцовый (свинцовый), гелиевый, калий-аргоновый (аргоновый), калий-кальциевый, рубидиево-стронциевый и т. д.

Урано-свинцовый метод. Для определения абсо­лютного возраста урано-свинцовым методом нужно знать весовые количества урана, тория и свинца в минерале, а также изотопный состав свинца. Определение изотопного состава свинца, как, впрочем, и других элементов, производится на специальных приборах – масс-спектрометрах. Природный свинец состоит из четырех изотопов: 204 РЬ, 206 РЬ, 207 РЬ и 208 РЬ; три последних обязаны своим происхождением радиоактивному распаду урана и тория, а 204 РЬ является нерадиогенным, количество его в геологической истории Земли постоянно.

Зная весовое количество урана в минерале, определяемое химически, мы, тем самым, знаем, сколько у нас изотопов 238 U и 235 U, ибо содержание в природном уране в настоящее время всегда равно 0,714 %.

Для определения возраста урано-свинцовым методом могут быть использованы следующие минералы: уранинит, монацит, ортит, циркон, пирохлор, эшинит, ксенотим, самарскит и др. Для приближенного определения возраста можно использовать отношение 207 РЬ/ 206 РЬ, извлекая свинец из таких минералов, как полевые шпаты.

Калий-аргоновый метод основан на ядерном превращении 40 К в 40 Аг и 40 Са. Природный калий состоит из изотопов: 39 К – 93,08 %, 40 К – 0,0119 % и 41 К – 6,91 %. Из них только 40 К является разноактивным изотопом, большая часть его (88 %) превращается в 40 Са и около 12 % – в 40 Аг. Отсюда и возникли калий-кальциевый и калий-аргоновый методы. Калий-аргоновый метод в настоящее время весьма широко распространен. Аргон выделяют из образца на специальных установках прокаливанием при температуре 1200…1400 °С в вакууме. Возраст минерала определяется по отношению 40 Аг/ 40 К. Калий определяется химически дипикриламинатным или тетрафенилборатным методами, а чаще методом фотометрии пламени.

Для определения возраста породы калий-аргоновым методом используют калийсодержащие минералы: мусковит, биотит, глауконит, сильвин, амфиболы. В некоторых случаях, когда трудно выделить отдельные минералы, определяют возраст породы в целом (например, глинистый сланец).

Рубидиево-стронциевый метод дает более надежные результаты, чем калий-аргоновый. Для определения возраста по рубидиево-стронциевому методу могут быть использованы минералы калия, рубидий.

Как уже отмечалось, урано-свинцовый и калий-аргоновый, а также рубидиево-стронциевый методы мало удобны для установления возраста новейших геологических образований.

Для определения наиболее молодых геологических образований применяется радиоуглеродный метод, сущность которого состоит в следующем. В верхних слоях атмо­сферы под действием корпускулярного излучения Солнца на 14 N образуется 14 С. Период полураспада 14 С равен примерно 5500 лет. Через этот промежуток времени количество 14 С распадается наполовину, снова образуя 14 N. Радиоактивный углерод 14 С примешивается в атмосфере к обычному углероду и попадает во все объекты природы (организмы животных, растения, горные породы).

Пока организмы живы, содержание 14 С в них постоянно, благодаря постоянному обмену с окружающей средой. Однако после их смерти обмен со средой прекращается и содержание 14 С начинает уменьшаться. Замеряя количество 14 С, можно определить возраст растительных остатков, прошедший со времени их смерти. Материалом для анализа является хорошо сохранившееся дерево, древесный уголь, торф, карбонатные илы. Этот метод применяется для установления возраста речных террас, морен, торфообразования, а также для датировки археологических памятников.

Погрешность составляет 100 лет. Радиоуглеродным методом устанавливают возраст объектов от 1000 до 30 000 лет.

Наиболее древние значения возраста горных пород и минералов близки к 3,5млрд. лет (Кольский полуостров). Возраст отдельных минералов древних щитов Канады, Южной Африки также близок к 3 млрд. лет. Наиболее древний возраст имеют геологические объекты на щитах, которые считаются древнейшими геологическими структурами Земли. Если возраст гранитов достигает 3,5млрд. лет, то естественно, что возраст земной коры должен быть значительно большим, ибо граниты внедрились в какие-то уже существовавшие породы, а если же они образовались ультраметаморфическим путем, т. е. в результате гранитизации, то, следовательно, гораздо раньше их уже существовали какие-то осадки. Древнейшие горные породы, которые удалось датировать, находятся в горном районе Нэрриер в Австралии. Возраст их 4,2 млрд. лет. В настоящее время считают, что возраст Земли составляет около 4,5млрд. лет. Эти данные хорошо согласуются с данными о возрасте небесных пришельцев-метеоритов, которые не древнее 4,5млрд. лет.

Как показали исследования, возраст горных пород Луны также оказался близким к 4,5млрд. лет. Последнее обстоятельство, как и другие геохимические данные, указывает на единство земного, лунного и метеоритного вещества. Возраст Солнца примерно в десять раз больше возраста Земли.

С момента образования Земли - 4,6 млрд лет назад - облик её поверхности многократно менялся: материки и океаны приобретали разные размеры и очертания. Современное географическое положение материков и океанов, особенности их - это результат длительного .

Летоисчисление Земли

Люди измеряют время минутами, часами и годами. Но наша жизнь слишком коротка по сравнению со временем существования Земли. Протяжённость основных временных подразделений геологической истории Земли - эр - сотни миллионов и даже миллиарды лет. Внутри эр, начиная с палеозойской, выделяют меньшие отрезки времени - периоды.
О более древних эрах истории Земли известно меньше, чем о недавнем геологическом прошлом, поэтому они представлены более продолжительными отрезками времени.

В названиях эр отражены этапы развития жизни на Земле. Архей - время древнейшей жизни (от греч. «археос» - древнейший, архаичный), протерозой - время ранней жизни («протерос» - первичный), палеозой, мезозой и кайнозой - эры древней, средней и новой жизни.

Остатки живых организмов в виде окаменелостей содержатся в накопившихся за определённые промежутки времени осадочных горных породах. На основе знаний об эволюции живых организмов по их остаткам можно определить возраст горных пород.

Остатки живых организмов и историю жизни на Земле изучает биологическая наука - палеонтология.

Палеонтологические методы помогают определить возраст горных пород.

Формирование земной коры материков

Считается, что сначала на Земле образовалась древняя кора океанического типа. Позднее стала формироваться континентальная кора. По мере развития Земли происходило постепенное увеличение её площади. При сближении и столкновении древних возникали складчатые горы суши, а океаническая кора при этом превращалась в континентальную с её «гранитным» слоем.

Складчатые горы формировались во все эры, присоединяясь к более древним частям материков. Всё время формирования континентальной разделяют на циклы, называемые эпохами складчатости.

Образование платформ

Под действием внешних сил горы любой высоты выравнивались. На их месте возникали платформы с равнинным рельефом. Их основанием - фундаментом - служат разрушенные горы. Из-за медленных опусканий отдельные участки фундамента платформ затапливались морями. На их дне горизонтальными слоями накапливались новые горные породы - осадочный чехол. Части платформ с осадочным чехлом называются плитами, а без осадочного чехла - щитами. В областях древнейших складчатостей сформировались древние платформы, во всех остальных - молодые. Сейчас на Земле существует 11 крупных древних платформ.

Разломы земной коры и смещение её участков приводят к преобразованию платформенных равнин и формированию в их пределах глыбовых гор.

Горообразование

Древние и молодые платформы находятся вдали от границ современных . Поэтому они - устойчивые, спокойные участки земной коры, как правило, без землетрясений и . На границах же схождения литосферных плит образуются горы: складчатые в областях кайнозойской складчатости и глыбовые в областях всех более древних складчатостей. К глыбовым горам относятся Скандинавские горы, Урал, Куньлунь и Тянь-Шань в Евразии; Аппалачи в ; Большой Водораздельный хребет в Австралии. Образование гор связано с подвижками в земной коре, часто сопровождающимися и вулканизмом.

Современные материки и океаны

Современные материки до начала мезозойской эры были частями огромного материка - Пангеи. Она протягивалась в меридиональном направлении от полярных широт Северного полушария до Южного полюса.

Около 200 млн лет назад Пангея начала раскалываться и распалась сначала на два континента: Лавразию и Гондвану. Дальнейшие расколы разделили Лавразию на Северную Америку и , а Гондвану - на южные материки. Из-за расхождения литосферных плит материки отодвигались друг от друга и заняли в конце концов современное положение. Между материками расширялись впадины Атлантического, Индийского и .

Принадлежность южных материков к Гондване, а северных - к Лавразии отражается в строении земной коры, рельефе и некоторых других особенностях их природы.

Формирование рельефа Земли

Особенности рельефа Земли

— учение о хронологической последовательности формирования и возрасте горных пород, слагающих земную кору. Геологические процессы происходят на протяжении многих тысячелетий. Выделение различных этапов и периодов в жизни Земли основано на последовательности накопления осадочных горных пород. Время, в которое накапливалась каждая из пяти групп пород, названо эрой . Последние три эры разделены на периоды, т.к. в отложениях этих времен лучше сохранились останки животных и растений. В эрах были эпохи активизации горообразовательных процессов - складчатости.

Геохронологическая таблица

Эры Периоды Складчатости События
Кайнозойская , 68 млн. лет Четвертичный, 2 млн. лет Альпийская складчатость Формирование современного рельефа под влиянием массового поднятия суши. Оледенение, изменение уровня моря. Происхождение человека.
Неогеновый, 25 млн. лет Мощные вулканические извержения, поднятие гор Альпийской складчатости. Массовое распространение цветковых растений.
Палеогеновый, 41 млн. лет Разрушение гор, затопление молодых платформ морями. Развитие птиц и млекопитающих.
Мезозойская , 170 млн. лет Меловой, 75 млн. лет Мезозойская складчатость Поднятие разрушенных гор, сформировавшихся в Байкальской складчатости. Исчезновение гигантских пресмыкающихся. Происхождение покрытосеменных растений.
Юрский, 60 млн. лет Возникновение разломов на материках, массовый ввод магматических пород. Начало обнажения ложа современных морей. Жаркий влажный климат.
Триасовый, 35 млн. лет Отступление морей и увеличение площади суши. Выветривание и понижение палеозойских гор. Формирование равнинного рельефа.
Палеозойская , 330 млн. лет Пермский, 45 млн. лет Герцинская складчатость Окончание герцинского горообразования, интенсивное развитие жизни в горах. Появление на суше земноводных, простых пресмыкающихся и насекомых.
Каменноугольный, 65 млн. лет Опускание суши. Оледенение на материках Южного полушария. Расширение площадей болот. Появление тропического климата. Интенсивное развитие земноводных.
Девонский, 55 млн. лет Каледонская складчатость Отступление морей. Накопление на суше мощных слоев красного цвета континентального отложения. Преобладание жаркого сухого климата. Интенсивное развитие рыб, выход жизни из моря на сушу. Появление земноводных, открытосеменных растений.
Силурийский, 35 млн. лет Начало каледонской складчатости Поднятие уровня моря, появление рыб.
Ордовикский, 60 млн. лет Сильные извержения вулканов, уменьшение морских бассейнов. Увеличение численности беспозвоночных животных, появление первых беспозвоночных.
Кембрийский, 70 млн. лет Байкальская складчатость Опускание суши и появление больших болотистых массивов. В морях интенсивно развиваются беспозвоночные.
Протерозойская, 2 млрд. лет Начало байкальской складчатости Мощные извержения вулканов. Формирование фундаментов древних платформ. Развитие бактерий и синезеленых водорослей.
Архейская, 1 млрд. лет Начало формирования материковой земной коры и усиление магматических процессов. Мощные извержения вулканов. Первое появление жизни - период бактерий.

Возраст горных пород

Различают относительный и абсолютный возраст горных пород . Относительный возраст легко устанавливается в случае горизонтального залегания пластов горных пород в пределах одного вскрытия. Абсолютный возраст пород определить достаточно сложно. Для этого пользуются методом радиоактивного распада ряда элементов, принцип которого не меняется под действием внешних условий и идет с постоянной скоростью. Этот метод внедрили в науку в начале XX века Пьер Кюри и Эрнест Резерфорд. В зависимости от конечных продуктов распада выделяют свинцовый, гелиевый, аргоновый, кальциевый, стронциевый и радиоуглеродный методы.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...