Особенностью реакции полимеризации отличающей ее от поликонденсации. Причины прекращения процесса

Процессы полимеризации и поликонденсации имеют важное значение в промышленности органического синтеза. При их проведении получают высокомолекулярные вещества ─ полимеры ─ которые впоследствии используются для получения пластмасс, химических волокон, синтетических каучуков, лакокрасочной продукции, различных клеев и других синтетических материалов.

Полимеризацией называется реакция получения макромолекул, протекающая за счет разрыва кратных связей мономера, без выделения побочных продуктов.

nCH 2 = CH 2 → (──CH 2 ─CH 2 ──) n + Q

этилен полиэтилен

Исходными веществами для реакций полимеризации являются ненасыщенные соединения, имеющие двойные или тройные связи (этилен, ацетилен, стирол, винилхлорид, бутадиен и их производные) а также вещества, имеющие подвижные атомы, которые легко замешаются атомами других веществ. Возможность получения полимера обусловливается разрывом двойной связи, в результате чего молекула мономера реагирует с другими молекулами.

Процесс полимеризации проводят с использованием инициаторов или катализаторов. В присутствии инициаторов процесс протекает по радикальному механизму (через образование свободных радикалов), при использовании катализаторов ─ по ионному механизму (через образование ионов).

Поликонденсацией называется процесс образования полимеров, при котором взаимодействие молекул мономеров сопровождается выделением побочных низкомолекулярных соединений (воды, спирта, хлористого водорода). Например, лавсан получают при поликонденсации терефталевой кислоты и этиленгликоля:

nHOOC-C 6 H 4 -COOH + n HO-CH 2 -CH 2 -OH → (─OC-C 6 H 4 -CO-O-CH 2 -CH 2 -O─) n + 2n H 2 O + Q

Исходными веществами для реакций поликонденсации являются вещества, содержащие реакционноспособные (функциональные) группы (гидроксильные, карбоксильные аминогруппы и др.). Эти реакции, как правило, проводятся в присутствии инициаторов или катализаторов.

По химической сущности процессы полимеризации и поликонденсации отличаются друг от друга, однако условия их проведения одинаковы. Существуют три основных способа проведения процессов полимеризации (поликонденсации): блочный, эмульсионный и в растворе.

Блочная полимеризация перетекает в массе чистого мономера. Для проведения процесса требуются сравнительно невысокие температуры (от 200 до 370 0 С). С целью зарождения цепи процесс, как правило, проводят в присутствии инициатора.

Эмульсионной полимеризацией получают поливинилхлорид (латексная полимеризация), полиэтилен

низкого давления (суспензионная полимеризация), полистирол (латексный и суспензионный) и др. Реакторы-полимеризаторы для промышленного проведения латексной и суспензионной полимеризации чаще применяются емкостного типа, но могут быть и колонного типа.


Недостатки эмульсионной полимеризации ─ загрязнение полимера эмульгаторами, которые ухудшают свойства получаемого продукта.

Полимеризация в растворе проводится в среде растворителя, растворяющего мономер и полимер или только мономер. В первом случае продукт полимеризации представляет собой раствор полимера в виде лака, поэтому этот способ часто используют в лакокрасочной промышленности. Если полимер не растворяется, то по мере образования он вБлочный способ полимеризации используется в тех случаях, когда нужно получить полимер, не загрязненный примесями. В частности, таким способом получают полистирол, полиэтилен высокого давления, поликапролактам и др. Для осуществления блочной полимеризации при использовании непрерывных процессов применяют реакторы колонного типа и змеевиковые с обеспечением позонного температурного режима.

Эмульсионная полимеризация осуществляется в водной среде или в среде углеводородного растворителя, не способного растворять полимеризуемый мономер. Жидкий мономер распределяется в воде в виде мельчайших капелек, образуя эмульсию. Чтобы капельки мономера не сливались одна с другой, в воду добавляют различные эмульгаторы и эмульсию энергично перемешивают. В качестве эмульгаторов используют различные мыла, желатины, высшие спирты. Добавляемый эмульгатор обеспечивает лучшее диспергирование мономера, что обусловливает высокую скорость процесса. Кроме этого, эмульгатор снижает поверхностное натяжение на границе мономер─вода. Эмульсииыделяется из раствора в твердом виде (получается суспензия). Осадок полимера отделяют от растворителя фильтрацией, промывкой и сушкой.

При полимеризации в растворах получают более однородные полимеры (по сравнению с другими способами), но с меньшим молекулярным весом, так как цепи под действием молекул растворителя быстро обрываются.

Общая характеристика пожарной опасности процессов полимеризации и поликонденсации:

1. Пожарная опасность процессов полимеризации и поликонденсации связана, прежде всего, с тем, что в качестве мономеров используются легковоспламеняющиеся и горючие жидкости (стирол, хлоропрен, изопрен, изопентан), горючие газы (этилен, пропилен), в том числе и сжиженные (бутадиен, хлористый винил), горючие твердые вещества (капролактам, фенол, диметилтерефталат) и др.

Инициаторами процессов полимеризации являются органические перекиси и гидроперекиси (перекись бензоила, перекись водорода, гидроперекись изопропилбензола, персульфаты). В качестве катализаторов используют металлоорганические соединения (три- и диэтилалюминийхлорид, триизобутилалюминий) ─ вещества, обладающие большой химической активностью, самовоспламеняющиеся на воздухе, при контакте с водой и веществами, содержащими группу ОН. Катализаторами бывают и щелочные металлы (Nа, Li), самовоспламеняющиеся при контакте с водой.

Для нагрева в некоторых случаях используют органические теплоносители.

2. Процессы полимеризации очень чувствительны к повышенным температурам. Повышение температурного режима в результате увеличения скорости химической реакции полимеризации приводит к росту давления и авариям. Следовательно, при работе реакторов необходимо поддержание постоянного температурного режима.

3. При проведении процессов полимеризации и поликонденсации технологические коммуникации могут засоряться полимерными отложениями, что зачастую приводит к значительному повышению давления в полимеризаторе.

Коммуникации, продолжительное время соприкасающиеся с мономером, а также поверхность предохранительных клапанов и вентилей ручного стравливания с целью защиты от отложений полимеров необходимо смазывать ингибитором процесса полимеризации.

4. Повышенное давление в реакторах может наблюдаться при нарушении нормального отвода побочного продукта, образующегося в процессе поликонденсации.

5. При полимеризации в присутствии металлоорганических катализаторов нарушение температурного режима и давления может наблюдаться в случае попадания в реактор влаги или кислорода. Поэтому исходные вещества и азот предварительно осушаются. Кроме того, осуществляют контроль за содержанием свободного кислорода в сырье и азоте, которое не должно превышать норму, установленную технологическим регламентом.

6. Внутренняя поверхность реакторов и соединенных с ними трубопроводов может подвергаться химической коррозии.

7. Использование мешалок связано с возможность выхода горючих веществ наружу через неплотности. Поэтому возникает необходимость обеспечения надежной герметичности мест выхода из аппаратов валов мешалок и устройства местных отсосов.

8. В периоды вывода установок из эксплуатации возможно самовозгорание отложений термополимеров.

9. Применяемые в процессах полимеризации углеводородные растворители и многие мономеры являются хорошими диэлектриками, при движении которых образуется статическое электричество. Это вызывает необходимость тщательного заземления аппаратов и трубопроводов.

10. Источники зажигания могут возникнуть при неисправности и несоответствии электроприводов к мешалкам, а также электроподогревателей реакционной среды.

При реакции полимеризации на выходе получают только полимеры. В ходе поликонденсации продуктом реакций становится полимеры и низкомолекулярные вещества.

Определение

В процессе полимеризации последовательно соединяются как одинаковые, так и различные молекулы мономеров, выстраивая одну сложную молекулу полимера (высокомолекулярного вещества) без выделения и образования побочных продуктов – низкомолекулярных соединений. Поэтому на выходе получают полимер с точно таким же элементарным составом, что и мономер.

В процессе поликонденсации молекулы одного либо нескольких мономеров, соединяясь между собой, образуют макромолекулу полимера и побочно выделяют тот или иной низкомолекулярный продукт (воду, спирт, хлороводород или аммиак). Поликонденсация лежит в основе биосинтеза целлюлозы, нуклеиновых кислот и, конечно, белков.

Сравнение

Эти два процесса схожи тем, что в его начале в реакцию вступает исходный мономер. А дальше при полимеризации в реакционной системе на всех стадиях текущего процесса присутствуют увеличивающиеся активные цепи, исходный мономер и закончившие рост макромолекулы. А в процессе поликонденсации мономер, как правило, исчерпывается на начальных стадиях происходящей реакции, и в дальнейшем в системе остаются лишь полимеры (олигомеры), взаимодействующие один с другим.

Для полимеризации и поликонденсации одинаково важна реакционная способность нужных мономеров и, конечно, их строение. В ходе полимеризации реакции, возникающие между увеличивающимися молекулами, как правило заканчиваются обрывом цепей.

А при поликонденсации реакции, протекающие между увеличивающимися молекулами, – это основные реакции роста полимерных цепей. Длинные цепи формируются за счет взаимодействия олигомеров. Полимеризация протекает по трем стадиям: инициированию, росту цепи и обрыву цепи. При этом центрами роста полимерной цепи являются катионы, свободные радикалы или анионы. Функциональность (количество реакционных центров в молекуле) влияет на образование трехмерных, разветвленных или линейных макромолекул.

Выводы сайт

  1. Для поликонденсации характерно выделением побочных продуктов – низкомолекулярных веществ, таких как вода или спирт.
  2. При полимеризации продуктами реакции становятся только полимеры.
  3. Биосинтез целлюлозы, белков и нуклеиновых кислот возможен благодаря реакции поликонденсации.

Полимеры – это высокомолекулярные соединения (вмс). Мономеры – это низкомолекулярные вещества, из которых получают полимеры. Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев в молекуле полимера.

Полимеризация – реакция соединения молекул мономера т, не сопровождающаяся выделением побочных продуктов. Поэтому элементарный состав мономеров и получаемого полимера одинаков. Полимеризация может осуществляться путем раскрытия двойных и тройных связей ненасыщенных соединений, а также за счет размыкания различных гетероциклов. В зависимости от характера активных центров, инициирующих цепной процесс различают радикальную и ионную полимеризацию. Процесс идет по цепному механизму.

nCH2=CH2→(-СН-СН-)n, где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Классификация полимеров :

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

    Органические – это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер – белок, нуклеиновые кислоты и так далее.

    Элементорганические – такие, в состав которых входит какой-то посторонний неорганический и не биогенный элемент. Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: органическое стекло, стеклополимеры, композиционные материалы.

    Неорганические – в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

    Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.

    Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный каучук, резина.

    Синтетические – это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, ацетатное волокно и прочее.

Поликонденсация – реакция образования высокомолекулярных соединений, протекающая по механизму замещения и сопровождающаяся обычно, выделением низкомолекулярных продуктов, вследствие чего элементарный состав полимера отличается от элементарного состава исходных продуктов.

В реакцию поликонденсации могут вступать мономерсодержащие двух или более функциональные группы. При взаимодействии этих групп происходит разложение молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул.

Поликонденсация - ступенчатая реакция, рост цепи происходит в результате взаимодействия молекул мономера друг с другом, а также промежуточными продуктами: олигомерными или полимерными молекулами или при взаимодействии олигомерных и полимерных молекул между собой. В результате образуются соединения с функциональностью исходного вещества.

Для всех реакций полимеризации основным условием является наличие мономера, способного, вследствие химического взаимодействия, создавать связи с другими молекулами мономера. Такая способность называется «функциональностью». Различные мономеры имеют возможность образовывать химические связи по различным механизмам. На различии этих механизмов основаны системы классификации реакций полимеризации.

Существует четыре основных типа реакций полимеризации : полиприсоединение, поликонденсация, цепная полимеризация и ступенчатая полимеризация. Рассмотрим эти реакции подробнее.

Реакции присоединения vs поликонденсация

Реакцию полимеризации можно отнести к реакции присоединения в случае, когда весь мономер целиком становится частью образующейся макромолекулы. Таким образом, химическая формула каждого отдельно взятого звена полимера будет совпадать со структурой использованного мономера. Например, когда этилен полимеризуется в полиэтилен, каждая молекула этилена становится частью макромолекулы полиэтилена. Мономеры присоединяются к активному центру макромолекулы.

Как видно на схеме, мономер обладает двумя атомами углерода и четырьмя атомами водорода, простейшее звено полимерной цепи имеет ту же структуру, в отличие от продуктов реакций поликонденсации.

К реакциям поликондесации относятся такие процессы полимеризации, вследствие которых часть молекулы мономера отбрасывается, что позволяет этой молекуле образовать химическую связь. Чаще всего в реакциях поликонденсации основному продукту сопутствуют такие продукты как вода или соляная кислота.

Типичным примером реакции поликонденсации является образование нейлона, в качестве продукта взаимодействия адипоилхлорида с гексаметилендиамином.

Как видно из схемы, атомы хлора и водорода отсоединяются от мономеров и образуют побочный продукт реакции – соляную кислоту. Так как конечная масса полимерной молекулы меньше чем суммарная масса мономеров, вступивших в химическое взаимодействие говорят, что масса полимера сократилась (condensed), отсюда название реакции – конденсация.

Цепная полимеризация vs ступенчатая полимеризация

Второй важной группой рассматриваемого процесса являются реакции цепной и ступенчатой полимеризации.

При цепном механизме реакций полимеризации, молекулы мономеров по одной присоединяются к растущей полимерной макромолекуле. Рассмотрим механизм реакции цепной полимеризации на примере анионной полимеризации стирола:

Как следует из схем реакции выше, в процессе полимеризации стирола, только мономеры стирола могут присоединяться (1) к растущей цепи полистирола. Две растущие цепи (2) не вступают во взаимодействие. Это основная особенность реакции цепной полимеризации, которая отличает данный процесс от ступенчатой полимеризации.

Ступенчатая полимеризация представляет из себя несколько более сложный процесс.

Рассмотрим процесс ступенчатой полимеризации на примере взаимодействия двух мономеров: терефталоилхлорида и этиленгликоля. Взаимодействие этих двух компонентов приводит к образованию полиэфира, который называется полиэтилентерефталат.

На первой стадии процесса две молекулы мономеров реагируют с образованием димера:

В то же самое время, димер может прореагировать с еще одной молекулой этиленгликоля.

Или же димер может провзаимодействовать с другим димером с образованием тетрамера:

С ростом олигомерной цепи процесс усложняется – мономеры, димеры, тирмеры, пентамеры и т.д. взаимодействуют друг с другом в случайном порядке до тех пор, пока олигомерная молекула не разрастается в большую полимерную макромолекулу и пока объемные, стерические, химические и прочие факторы не замедлят рост цепи.

Таким образом, главным отличием цепной полимеризации от ступенчатой является: в ступенчатом процессе растущие молекулы могут взаимодействовать друг с другом с образованием еще более длинных цепей. В цепном процессе, напротив, только лишь мономеры могут поочередно присоединяться к активном центру растущей макромолекулы.

Можно заметить, что приведенная выше реакция синтеза полиэтилетерефталата характеризуется выбросом небольшого количества соляной кислоты, что позволяет классифицировать ее также как реакцию поликонденсации. А приведенная в качестве примера цепной полимеризации реакция синтеза стирола, является также хорошим примером реакции полиприсоединения. Однако, сделать вывод, что все цепные реакции – реакции присоединения, а ступенчатые – реакции поликонденсации будет неверным. Хорошим примером ступенчатой реакции, при этом относящуюся к процессу полиприсоединения, может послужить процесс образования полиуретанов. Эту реакцию имеет смысл рассмотреть поподробнее.

В самом начале процесса получения полимерных уретанов реагируют два простейших компонента цепи:

Вследствие взаимодействия этих компонентов получается димер:

Уретановый димер имеет дверазличные функциональные группы на своих концах – изоцианатную с одной и гидроксильную с другой. Это свойство позволяет димеру реагировать как с другими изоцианатами или спиртами с образованием тримера, так и с другими димерами, тримерами и более высокомолекулярными уретановыми олигомерами.

Реакция продолжается до тех пор, пока растущая макромолекула не набирает достаточный молекулярный вес, чтобы быть классифицированной как полиуретан с общей формулой:

При внимательном рассмотрении структуры конечного продукта (полиуретана), структуры мономеров и схемы химического взаимодействия, можно сделать вывод, что структура мономера сохраняется при переходе в полимерное состояние, а также отсутствуют побочные второстепенные продукты. По этим признакам можно заключить, что данная реакция относится к реакциям полиприсоединения. А способность присоединять не только мономеры, но и тримеры и прочие олигомеры позволяют классифицировать химический процесс как ступенчатую полимеризационную реакцию.

Из всего вышесказанного можно сделать вывод: разделение реакций полимеризации на присоединение, конденсацию, ступенчатые и цепные реакции не случайно, и нельзя поставить знаки равенства между ними. Хорошим примером реакции присоединения, которая одновременно относится к реакциям ступенчатой полимеризации является реакция синтеза полиуретанов.

С ценами на услуги нашей компании можно ознакомиться в разделе

Или закажите консультацию специалиста в удобное для Вас время!

Заявка абсолютно бесплатна и ни к чему Вас не обязывает!

Существуют различные варианты формирования цепи макро­мо­лекул из низ­комолекулярных реагентов. Число таких вариантовмож­но определить, пользу­ясь принципами комбинаторики. Так, к молекуле мономера можно присоединить еще одну молеку­лу мономера,затем к образовавшемуся димеру вновь присоединить одну молекулу мономера и т. д. Такой вариант составления макромолекулы измономеров показан на рис. 3 ломаной линией 1. Возможны и другие вари­анты получения макромолекулы, на­пример, образовавшиеся димеры и другиеn-меры могут взаимодей­ствовать друг с другом и с мономе­ром (линии 3 и 4). Предельно­му случаю этого пути процесса соответствует линия 2, отвечающая такой ситуации, при которой димеры взаимодействуют с димерами, тетрамеры с тетрамерами, получивши­еся далее октамеры взаимо­действуют с октамерами и т. д.,т. е. при каждом взаимодействии происходит удвоение длины молекулы реак­ционноспособногоn-мера (дублика­ция). Из множества вариантов образования макромолекулы из мономеров мож­но выделить две i основ­ные разновидности: полимеризацию и поликонденсацию.

Полимеризацией называется процесс образования макромолекул путем последовательного присоединения молекул мономера к реакционным реагентов системы. Общую схему полимеризации можнозаписать в виде:

[–M–] n + M[–M–] n+1

Этой схеме отвечает ломаная линия 1 на рис. 3. Можно ска­зать, что цепь макромолекулы при полимеризации образуется позвенно, пос­тепенно, как бы наращиванием, поэтому реакцию обра­зования макромолекул при полимеризации называютреакцией роста.

Рис. 3 а) Зависимость степени полимеризация или поликонденсации от числа единичных последовательных реакций образования макромолекулы наначальной стадии процесса; б) Зависимость степени полимеризацияилиполиконденсации отчисла последователь­ных реакций стадии образованнамакромолекулы: 1 – полимеризация; 2 –поликонденсация удвоением(дубликацией);3 –другие случаи поликонденсации;4 – поликонденсация, близкая к полимеризации.

Поликонденсацией называется процесс образования макромолекул путем взаимодействия друг с другом реакционных центроввсех реагентов системы. Схему поликонденсационной сборки макромолекул можно записать ввиде:

[–M–]n 1 + [–M–]n 2
[–M–]n 1 +n 2

Эта схема учитывает также и начало процесса с участием мономеров:

М + М
М 2 М 2 + М
М 3

Однако, как будет показано ниже, при получении высокомоле­ку­лярных продуктов поликонденсацией основную долю взаимодействий составляют реакции олигомеров (n> 1) между собой. Поликонденсации отвечают ломаные кривые 2, 3, 4 на рис. 3. Мож­но сказать, что цепь макромолекулы в этом случае собирается блоками. Для та­кого процесса не подходит термин «рост»; для него можно предложитьтермин «сборка» цепей. Приведенные выше оп­ределения достаточно общи, они могут быть отнесены ко всем про­­цессам синтеза полиме­ров. При этом не требуется введения каких - либо дополнительных терминов (по­липрисоединение, миграционная полимеризация ит. д.). Данные определения процессов синтеза полимеров не связаны с химиче­ским строением мономеров и реакционных центров, так каксин­­тез полимеров (поликонденсацией или полимеризацией) можноосуществить различ­ными химическими путями. Кроме того, в определениях ничего не сказано о выделении низкомолекулярных побочныхпродуктов, поскольку как полимеризация, так и поликон­денсациямогут протекать с выделением и без выделения низко­молекулярного продукта.

При образовании высокомолекулярных соединений (n–вели­ко)ломаные линии на рис. 3а переходят в плавные и процессы образования макромолекул методами полимеризации и поликон­денсацииизображаются иначе (рис. 3б). Это следует учитывать при построениисхем стадийности процессов синтеза полимеров (рис. 1). Так, дляполимеризации, не осложненной побочными процессами линия АВ будет прямой, а для поликонденсации - кривой, аналогичной кривой 2 на рис. 3а. Кроме различий, проявляю­щихся при образовании единичной мак­ромолекулы, процессы полимеризации и поликонденсации раз­ли­чаются и по характеру изменений, происходящих во всей реак­ци­онной системе. Изменения в реакционной системе в ходе процесса синтеза полимера (особенно наран­них стадиях) удобно изобразить тройной диаграммой (треуго­ль­ником Гиббса, рис. 4). Эти диаграммы широко используются при физико-химическом анализе состояния тройных систем (плавкости, растворимости).

Такие диаграммы состава тройной системы (системы из трехком­понентов) можно применять к закрытым системам, т. е. систе­мам спостоянным числом частиц. Их можно также применить и к взаимнопревращающимся химическим системам, в которых со­блюдается материальный баланс между реагентами. В процессе синтеза полимеров участвует реакци­онные центры мономераМ и концевые реакци­онные цен­тры олиго­меров и n-меров К (рис. 4). При их взаимодействии образуется полимер­ная межзвенная связь Р . Каждая точка внутри тре­угольника обо­значает состав системы в опре­деленный момент времени; соединив этиточки, можно получить кривую, характеризующую изменение соотношения между компонентами системы (М, К, Р ) в ходе про­цесса синтеза полимеров. На рис. 4 представлены такие зависимости дляразличных процессов синтеза полимеров.

Прямая NL характеризует процесс образования полимера (уве­личение количества образовавшихся связей Р ) за счет уменьшениясодержания мономера в системе при постоянном содержании кон­цевых групп(т. е. при постоянном содержании растущих полимерныхцепей). Следовательно, прямые, параллельные основанию тре­уголь­ника МР , соответствуют процессу полимеризации. Сама линия МР от­вечает предельному случаю полимеризации – полимеризации с участием очень малого числа концевых групп, например рост од­ной макромолекулы в системе. Путь N " QL отражает процесс поликонденсации, причем на диа­грамме ясно видны две его стадии: образованиедимеров из мономеров (прямая N " Q ) и увеличение числа связей за счет уменьше­ния количества концевых групп олигомеров (отрезок QL ). Этот путь отвечает идеализированному процессу. В реальныхслучаях поликонденсации мономер не исчерпывается полностью после об­разования димеров, поэтомуточка Q в реальных процессах пере­мещается в точку Q " и, следовательно, реальный процесс поликонденсации описываетсяNQ"L.


Рис. 4 а) Тройная диаграмма, изображающая протекание процессов синтеза полимеров:MQP поликонденсация; МР– полимеризация (идеальные процессы); МQ"L – поликонденсация; NL полимеризация (реальные процес­сы).; б) Тройная диаграмма, изображающая последовательное протека­ние процессовполимеризации и поликонденсации в системе: МА– об­разова­ниереакционных центров; АВ–полимеризация; ВС–поликонденсация,

Тройные диаграммы более сложных процессов приведены нарис. 4б. Из рисунка видно, что в начале процесса (отрезокМА) образуются низкомолекулярные продукты с концевыми группами (этосоответствует, например, инициированию полимеризации). Далеепро­текает полимеризация мономера с участием этих концевых центров(отрезок АВ) и наконец процесс заканчивается поликонденсацией(отрезкиВС иСР).

Таким образом, можно сформулировать основные особенностипроцессов полимеризации и поликонденсации (таблица 1). Следует обратить особое внимание на характер участия моле­кул мономера вобразовании макромолекул полимера. Молекулы мономера участвуютв реакциях образования макромолекул в обо­их процессах, но имеются существенные различия в их протекании, обусловлен­ные особенностями последних. При полимеризации мономер является основнымре­агентом процесса на всем его протяжении; при этом молекулы мономера реагируют с концом растущей цепи в строгой последователь­ности–одна за одной. По сравнению с этими реакциями вероят­ность образования макромолекулы за счет взаимодействия олиго­меров иn-меров считается близкой к нулю.

При поликонденсации молекулы мономера участвуют в реак­циях составления цепи макромолекулы с той же вероятностью, что и моле­кулы других реагентов (олигомеров, n-меров). Поэтомуприполиконденсации после присоединения молекулы мономера, напри­мер, к тримеру могут последовать реакции взаимодействия обра­зовавшегосятетрамера сn 1 ,n 2 ,n 3 -мерами, итолькопослеэтого может вновь произойти взаимодействие образовавшегося олигомера с мономером.При поликонденсации мономер исчезает из реакционной систе­мы практи­чески на ранних стадиях (настадиях образования олигомеров), и по­этому основными реагентами в этих процессах (особенно на глубоких стадиях) становятся реакционноспособные олигомеры, взаимодей­с­твующие за счет концевых реакционных центров.

Таблица 1

Основные особенности простейших процессов полимеризации и поликонденсации

Особенность процесса

Полимеризация

Полико нденсация

Характер образования цепи макромолекулы

Зависимость степени полиме­ри­зации (поликонденсации) от чис­ла реакций, составля­ющих стадию образования макромолекулы

Число реакционноспособных макромолекул в ходе процесса

Концевые реакционные цент­ры на стадии образования макромолекулы

Исчезновение молекул моно­мера

Строение концевых реакцион­ных центров реакционноспо­собных макромолекул

Наличие катализатора, ини­циа­тора

Позвенный

Арифметическая прогрес­сия

Постоянно

Регенерируются

В конце процесса

Отличается от строения функцио­нальных групп мономера

Обязательно

Поблочный

Геометрическая прогрес­сия

Уменьшается

На более ранних стадиях процесса

Аналогично строению реакционных центров мо­номера

Не обязательно

Не следует забывать, что приведенные в таблице 1 и отмечен­ные нарис.3 особенности процессов поликонденсации и полиме­ри­зации относятся к простейшим (не осложненным процес­сам). Присинтезе полимеров в реальных условиях могут наблю­даться отклоненияот этихидеализированныхсхем. Так,кривая4 рис. 3б соответствует процессу поликонденсации, очень похоже­му на полимеризацию. Возможно протекание и таких сложных процессов, при которых олигомеры образуются путем полимериза­ции, а далее они взаимодействуют между собой по поликонденса­ционному механизму (рис.4б). Примером такого процесса яв­ляется получение поли--капроамида, когда сам лактам полимеризуется по схеме:

а образующиеся концевые NH 2 - и СООН– группы подвергаются поликонденсации:

Выше отмечались особенности лишь стадии образования мак­ро­мо­лекулы при различных процессах синтеза полимеров. Однако этиособенности накладывают отпечаток и на некоторые другие стадии.В таблице 2 перечислены реакции, составляющие различные стадиипроцессов синтеза полимеров.

Таблица 2

Основные реакции процессов синтеза полимеров

Стадия процесса

Поликонденсация

Полимеризация

Создание реакционных центров

Образование макромоле­кулы

Прекращение образова­ния макромолекулы

Реакции предварительного синтеза функциональных групп мономера

Реакции образования реак­ционных центров олигомеров

Реакции составления (сборки) макромолекулы

Реакции дезактивации реак­ционных центров олигомеров Процессы прекращения обра­зования макромолекул

Реакции инициирования

Реакции зарождения активных центров

Реакции роста макромолекулы

Реакции обрыва

Реакции диспропорционирования

Реакции передачи кинетической цепи

Более глубоко стадии процессов поликонденсации рассматриваются в лекционном курсе. Далее будут рассмотрены вопросы реакционной спо­собности и синтеза мономеров для поликонденсации.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...