Закон инерции что такое инерция. §4

Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.

Закон инерции - материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит это состояние.

В основе классической механики лежат три закона динамики, сформулированные Ньютоном в 1687г. Первый закон Ньютона : Всякое тело находится в состоянии покоя или равномерного и прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Первый закон Ньютона выполняется не во всякой системе отсчета. Система отсчета, в которой выполняется первый закон Ньютона, называется инерциальной системой отсчета . Инерциальных систем отсчета существует бесконечное множество. Любая система отсчета, движущаяся относительно некоторой инерциальной системы прямолинейно и равномерно (т.е. с постоянной скоростью), будет также инерциальной. Опытным путем установлено, что система отсчета, центр которой совмещен с Солнцем, а оси направлены на соответствующим образом выбранные звезды, являются инерциальной. Эта система называется гелиоцентрической системой отсчета. Всякое тело противится попыткам изменить его состояние движения. Это свойство тел называется инертностью . В качестве количественной характеристики инертности используется величина, называемая массой тела m . Для количественной характеристики взаимодействия тел или полей вводится физическая величина, называемая силой Воздействие на данное тело со стороны других тел вызывает изменение его скорости. Опыт показывает, что одинаковые воздействия на разные тела, вызывают разные по величине изменения скоростей этих тел. Чтобы описать этот опытный факт, вводится понятие импульса тела или количества движения: .

.
Второй закон Ньютона : Скорость изменения импульса тела равна геометрической сумме сил, действующих на данное тело .

Подставляя сюда выражение для импульса тела , получим еще одну формулировку второго закона Ньютона: Произведение массы тела на его ускорение равно геометрической сумме сил, действующих на тела второй закон Ньютона. Всякое действие тел друг на друга носит характер взаимодействия: если тело 1 действует на тело 2 с силой , то и тело 2 в свою очередь действует на тело 1 с силой .

Третий закон Ньютона: Силы с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению: третий закон Ньютона. Эти силы не компенсируют друг друга, поскольку приложены к разным телам.
При формулировке фундаментальных законов физики (в том числе и законов Ньютона) важно понимать, что эти законы (как и любые законы естествознания) имеют ограниченную область применимости. Так, законы классической механики применимы только для описания движения достаточно массивных макроскопических тел, при условии их движения с малыми (по сравнению со скоростью света) скоростями.

Ньютон дал следующую формулировку закона инерции : “Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”.
Историю закона инерции следует начать с Галилея, так как до него понятия движения тел по инерции не было. Аристотель, например, утверждал, что для поддержания движения свободного тела к нему необходимо постоянно прикладывать силу. Галилей в своей работе “Диалоги о двух важнейших системах мира, птолемеевой и коперниковой” утверждал : “Когда тело движется по горизонтальной плоскости, не встречая никакого сопротивления, то… движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца”.
Позже Р. Декарт сформулировал закон инерции в виде двух законов природы : “Первый закон природы: всякая вещь пребывает в том состоянии, в каком она находится, пока ее что-либо не изменит”.
“Второй закон природы: всякое движущееся тело стремится продолжать свое движение по прямой”.
И еще : “…каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение с другими частицами не вынуждает ее изменить это состояние…раз уже она начала двигаться, то будет продолжать это движение постоянно с равной силой до тех пор, пока другие ее не остановят или не замедлят ее движение”.
Приведенные формулировки закона инерции, данные Декартом, по своей сути почти ничем не отличаются от формулировки И.Ньютона, за исключением второго закона природы, который можно отнести к каждому моменту движения тела при наличии действующих на него сил. Целесообразность такой формулировки закона инерции –будет показана ниже.
В одной из современных формулировок закон инерции выглядит так : “Если на материальную точку не действуют силы, то она сохраняет состояние покоя или равномерного и прямолинейного движения”.
Данная формулировка закона инерции очень похожа на формулировку И.Ньютона, но с одной только разницей: у Ньютона речь идет о теле, а здесь – о материальной точке. И это, на первый взгляд, не существенное различие, на самом деле является принципиальным.
Во-первых, понятие материальной точки является условным, поскольку в природе таких материальных объектов нет. Поэтому создателям механики и в голову не могло прийти сравнивать реальные тела с математической точкой, то есть с фикцией. Другое дело, что движение тел во многих случаях можно было описать как движение одной его точки, за которую принимался центр масс тела. Однако, некритическое отношение к этому вопросу привело в дальнейшем уже к принципиальному убеждению, что законы механики относятся только к материальной точке или к системе материальных точек, а не к реальным телам. Хотя ясно, что точка остается точкой, если ее даже и назвать материальной. И этим самым развитию механики был поставлен труднопреодолимый барьер. Ниже этот вопрос будет обсуждаться подробнее.
Во-вторых, отнесение закона инерции к движению только материальной точки приводит к тому, что сам этот закон также становится фикцией, так как движутся все-таки реальные тела, состоящие из атомов, а в атомах имеются ядра и электроны, которые вращаются вокруг своих осей, а электроны еще и вокруг ядер, причем в целом довольно хаотично. И если средневековые ученые могли еще думать, что все частицы любого тела могут двигаться с одинаковыми скоростями, поскольку они не знали, что все тела состоят из атомов, то современные ученые должны этот факт учитывать.
Таким образом, к закону движения по инерции может быть два варианта отношения: или считать его условным, фиктивным, или учесть реальность и относить его к реальным телам, а не к точкам. При этом необходимо учесть и тот факт, что движения материальных объектов без силового воздействия на них в природе практически не существует.
Такая постановка вопроса приводит к необходимости осмысления новой сущности закона инерции и изменения его формулировки. В §4 первой главы мы уже говорили о необходимости представить этот закон в дифференциальной форме, то есть считать его справедливым, для любого момента движения материальных объектов, независимо от характера этого движения. Сейчас мы сделаем некоторые уточнения для предложенной там формулировки. Это связано, во-первых, с тем, что любое материальное тело представляет собой совокупность частиц, которые в одно и то же время могут иметь разные скорости и ускорения, как, например, во вращательном движении. И, во-вторых, необходимо иметь в виду, что силовое воздействие на тело и его частицы обусловлено подводом энергии
Тогда закон инерции можно сформулировать следующим образом:
– Инерция – это стремление тела, как единого целого сохранить состояние покоя или скорость (энергию) своего движения в любой момент этого движения как при действии на него сил, так и при отсутствии такого воздействия; при прекращении силового воздействия тело будет двигаться в соответствии с имеющейся у него на данный момент скоростью в любой выбранной системе отсчета.
Можно дать и другую формулировку закона инерции:
– В любой момент своего движения материальный объект стремится двигаться с имеющейся у него на данный момент скоростью (энергией) независимо от выбранной системы отсчета, и только внешние воздействия препятствуют такому движению.
Ярким подтверждением справедливости дифференциальной трактовки закона инерции является движение тел по окружности, не связанных жестко с центром вращения, как, например, при движении планет вокруг Солнца (в главе III будет показано, что движение планет вокруг Солнца можно считать вращательным движением). В популярной литературе это движение часто объясняется так: за счет притяжения Солнца планеты падают на него, но наличие у них скорости в касательном направлении смещает планету в сторону, в результате чего и получается движение по окружности (приближенно). С точки же зрения закона инерции круговой характер движения планет следует объяснять таким образом: в любой момент своего движения планета стремится двигаться по направлению имеющейся у нее на данный момент скорости, но под действием притяжения Солнца в каждый момент движения происходит изменение этой скорости (при круговом вращательном движении меняется только направление скорости), в результате чего траектория движения искривляется и становится окружностью при постоянной действующей силе. Здесь следует подчеркнуть, что основное движение планет это движение по инерции, а сила притяжения со стороны Солнца только искривляет траекторию этого движения.
Таким образом, если бы не было инерции у тел, то их движение всегда происходило бы только по направлению действующих на них сил.
Трактовка закона инерции в дифференциальной форме ставит также вопрос и о причинах его существования, то есть о его физической сущности. То, что тела при отсутствии на них силового воздействия должны двигаться с постоянной скоростью, нам понятно, так как при наличии сил появляется ускорение. Но движение по инерции пусть и мгновенное при постоянном силовом воздействии требует осмысления. Здесь, очевидно, следует сравнивать кинетические энергии, связанные с инерционным движением и силовым воздействием. Поскольку любое тело при движении имеет какую-то скорость, то оно имеет и определенную кинетическую энергию. Силовое воздействие тоже связано с затратами энергии. Из опыта нам известно, что чем больше будет сила, приложенная к движущемуся телу, тем сильнее изменится характер его движения. Это значит, что чем больше будет подведенная к телу энергия по сравнению с энергией его движения, тем больше будет ее влияние на характер движения тела. Поэтому можно утверждать, что инерция движущегося тела определяется его кинетической энергией. Именно соотношение кинетической энергии тела и энергии силового воздействия определяет закон движения тела.
Найдем затраты энергии на искривление траектории при вращательном движении тел. К телу, движущемуся по окружности (рис.1), подводится энергия в радиальном направлении, в результате чего изменяется направление его скорости, но не ее величина. Можно ли в этом случае сказать, что происходит изменение кинетической энергии тела? Если иметь в виду только ее величину, то нет. Если же учитывать направленность кинетической энергии, то да. Этот пример является еще одним подтверждением направленности кинетической энергии, ее векторной сущности при движении тел и их взаимодействии, потому что для изменения направления движения необходимо приложить силу, то есть подвести добавочную энергию в определенном направлении. Величина радиальной (центростремительной) силы определяется величиной изменения кинетической энергии тела , отнесенной к величине его радиального перемещения при угле поворота . Изменение кинетической энергии тела будет равно подведенной к нему энергии :
, (1)
где m – масса тела, - изменение окружной скорости тела при угле поворота от начального положения.
В соответствии с рис.1,б имеем:
, (2)
где V – окружная скорость тела.
Центростремительная сила определяется отношением при , где в соответствии с рис.1,а будет равно:
(3)
Тогда:
(4)
Затраты кинетической энергии определим, представив выражение (1) с учетом выражения (2) в виде:

(5)
Последовательно увеличивая значение угла в 2, 3,…n раз, придем к формуле:
, (6)
где за один полный оборот число шагов n будет равно:
(7)
В соответствии с формулой (6) затраты кинетической энергии при вращательном движении графически представлены на рис.2. Поскольку энергия все время потребляется, то максимальное значение энергии , соответствующее половине оборота, следует удвоить, чтобы найти затраты энергии за полный оборот.
Тогда, имея в виду, что для половины оборота , получим:
(8)
Таким образом, чтобы заставить тело двигаться по окружности, к нему надо подвести энергию в 8 раз большую, чем его собственная энергия движения.
Интересно также отметить следующий результат, вытекающий из полученного нами соотношения. Поскольку затраты энергии можно определить через работу центростремительной силы:
, (9)
где S – перемещение точки приложения силы, соответствующее направлению ее действия.
Используя выражения (8) и (4), получим:
(10)
Отсюда следует, что перемещение S представляет собой два диаметра окружности радиуса r , а работа центростремительной силы будет определяться кратчайшим расстоянием между наиболее удаленными точками окружности при движении тела сперва в одну (удаление), а затем другую (приближение) стороны от его начального положения.
Таким образом, инерцию тела можно определить как его стремление сохранить свою кинетическую энергию при внешнем воздействии. Характер движения тела будет зависеть от соотношения его собственной кинетической энергии и энергии, к нему подведенной. При этом характер движения будет зависеть не только от величины подведенной энергии, но и от направления ее подведения.
Если к телу не подводится никакой энергии, то его энергия не изменяется и оно движется с постоянной по величине и направлению скоростью. Однако, здесь следует иметь в виду, что так можно говорить, если рассматривать тело как единое целое. Если же иметь в виду и частички, из которых состоит тело (электроны и ядра), то для них такое утверждение будет неверно, так как они движутся с переменными скоростями и ускорениями. Очевидно, о постоянстве скорости можно говорить только для центра масс тела. А в целом о теле можно сказать только, что оно движется с постоянной энергией, так как энергия его частичек тоже не меняется. При таком определении инерции не исключается возможность и вращательного движения тела по инерции с постоянной угловой скоростью, или даже сочетание его прямолинейного движения с постоянной скоростью и вращения вокруг центра масс с постоянной угловой скоростью.
Что касается затрат энергии на вращение частичек тела, то противоположно расположенные частички взаимно воздействуют друг на друга (без внешнего воздействия), в связи с чем затрат энергии не происходит.
В свете всего сказанного выше закон инерции Ньютона можно считать интегральным законом, справедливым для конечных промежутков времени. Этот закон можно обобщить и на случай вращательного движения, сформулировав его следующим образом:
– Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного или равномерного вращательного движения пока в результате взаимодействий не изменится его кинетическая энергия.
Таким образом, мы расширили существующее понятие интегрального закона инерции, обобщив его и на равномерное вращательное движение и связав его с постоянством кинетической энергии тела. Причем сделали мы это в классической традиции, связав его с постоянством скорости движения тел. Скорость движения будет постоянной как при отсутствии действия на тело каких-либо сил, так и при действии на него уравновешенной системы сил. Это обстоятельство учитывается в ряде современных формулировок закона инерции. Приведем наиболее развернутую характеристику закона инерции, данную в физической энциклопедии : “Инертность (инерция) (от лат. iners , род. падеж inertis – бездеятельный) в механике – свойство материальных тел, проявляющееся в том, что тело сохраняет неизменным состояние своего движения или покоя по отношению к т. н. Инерциальной системе отсчета, когда внешние воздействия на тело (силы) отсутствуют или взаимно уравновешиваются. Если же на тело действует неуравновешенная система сил, то свойство инертности сказывается в том, что изменение состояния покоя или движения тела, то есть изменение скоростей его точек, происходит постепенно, а не мгновенно; при этом движение изменяется тем медленнее, чем больше инертность тела. Мерой инертности тела является его масса”.
Не будем подробно анализировать эту формулировку, обратим внимание только на утверждение о соответствии закону инерции движения тела под действием уравновешенной системы сил. Такое утверждение вызывает сомнения. Действительно, можно ли назвать движением по инерции движение автомобиля с работающим двигателем, хотя он и движется с постоянной скоростью? Ведь при таком движении происходят затраты энергии, внешней по отношению к автомобилю. Это обстоятельство заставляет задуматься при рассмотрении закона инерции с энергетических позиций. Сомнительно, чтобы движение по инерции было связано с затратами внешней энергии. Рассмотрим с этой точки зрения еще несколько примеров. Вернемся снова к движению планет по их орбитам. Предположим для упрощения, что орбиты будут круговыми. Тогда на планеты силы тяготения будут действовать только в радиальном направлении, в касательном же направлении никаких сил не будет и, значит, не будет затрат энергии. В этом случае возникает желание назвать движение в касательном направлении движением по инерции. Но тогда получается, что движение одного и того же тела (планеты) будет одновременно и по инерции в касательном направлении, при котором величина скорости будет постоянной и не инерционным в радиальном направлении, так как при этом будет изменяться направление скорости и будет затрачиваться внешняя энергия (энергия Солнца). Очевидно, что два указанных направления должны быть взаимно перпендикулярными, так как только тогда взаимодействия в этих направлениях не будут влиять друг на друга.
Рассмотрим теперь движение автомобиля с отключенным двигателем, то есть движение накатом, когда на машину действует только сила сопротивления. Машина при этом тормозится, а скорость ее уменьшается. Движение машины в этом случае происходит за счет ее собственной кинетической энергии без использования внешней энергии. Возникает вопрос: можно ли такое движение назвать движением по инерции? Если исходить из классической формулировки закона инерции, то нет. Если же попытаться понять сущность такого движения, то кроме собственной инерции у тела ничего нет, что заставляло бы его двигаться. Значит, именно инерция тела, связанная с его запасом кинетической энергии, заставляет тело продолжать движение до тех пор, пока не будет исчерпан весь ее запас. Если же это так, то такое движение тоже следует считать движением по инерции.
В связи со всем изложенным закон инерции в интегральной форме можно сформулировать следующим образом:
– Если в каком-либо направлении движение тела происходит без затрат внешней энергии или за счет собственной кинетической энергии, такое движение будет движением по инерции.
Под данное определение будут подходить прямолинейное и вращательное движения, совместное вращательное и прямолинейное движения без затрат внешней энергии и при торможении, вращение планет вокруг Солнца и т. п.
Автор выносит на обсуждение такое понимание сущности закона инерции.
И, наконец, следует подчеркнуть важное следствие, имеющее место при использовании закона инерции в дифференциальной форме: в случае реальности сил инерции все системы отсчета – инерциальные и неинерциальные – можно считать равноправными, так как в любой из них будут выполняться все законы механики.

2014-05-26

Результаты экспериментов Галилея свидетельствовали о том, что чем меньше сопротивление движению, тем меньше изменение скорости и тем дольше движется шарик. Размышляя над такими результатами, Галилей пришел гениальному выводу: при полном отсутствии силы трения или сопротивления скорость тела постоянна, и для поддержания движения не нужно прилагать никакой силы. Математически это можно записать так: = const, если = const. Явление сохранения телом скорости при отсутствии внешних воздействий на него со стороны других тел называют инерцией, а это свойство тела — инертностью. А закон, открытый Галилеем, называют законом инерции и формулируют так: если на тело не действуют другие тела, оно движется прямолинейно и равномерно или находится в состоянии покоя.

Отметим, что физический смысл закона инерции заключается в том, что свободные друг относительно друга материальные точки (материальные точки, на которые не действуют другие тела) движутся прямолинейно и равномерно.

О том, что телу свойственно хранить любое движение, а именно прямолинейный, свидетельствует такой опыт (рис. 2). Шарик движется прямолинейно по плоской горизонтальной поверхности, сталкиваясь с препятствием, которое имеет криволинейную форму, под действием этого препятствия вынуждена двигаться по дуге. Однако когда шарик доходит до конца препятствия, она перестает двигаться криволинейно и снова начинает двигаться по прямой.

Рассматривая механические движения в доме на берегу моря и в каюте корабля, Г. Галилей обнаружил, что они осуществляются одинаково, когда корабль плывет по гладкой поверхности без ускорения. Очень важным для всего последующего развития физики оказалось утверждение Галилея о том, что никакими механическими опытами, которые проводятся внутри инерционной системы отсчета (для пассажира ней есть каюта корабля), невозможно установить, находится эта система в покое, или движется равномерно и прямолинейно. Это утверждение называют принципом относительности Галилея. Человек в каюте корабля может установить факт движения только тогда, когда она будет наблюдать внешние тела: остров, берег моря и т.д..

Инерционными Ньютон назвал такие системы, для которых единственным источником ускорения есть сила, то есть взаимодействие с другими телами. Системы отсчета, которые движутся относительно инерциальных систем с ускорением (поступательно или вращательно), он назвал неинерциальных. Ньютон, рассматривая инерциальную систему отсчета (ИСО), так и не смог указать тело, которое было бы для нее телом отсчета. Окружающие тела движутся ускоренно: дом вращается вокруг оси Земли, а вместе с ее поверхностью — вокруг Солнца. Системы отсчета, связанные с окружающими телами, неинерциальные, но их ускорения в основном очень малы. Ускорение автобуса составляет около 1 м/с2, большого корабля — несколько cм/с2, Земли — 6 мм/с2, Солнца — около 10-4 см/с2. Соответственно, чем больше масса тела отсчета, тем меньше его ускорение. Поэтому ИСО — это абстрактное понятие, если бы она существовала, то имела бы бесконечно большую массу. Очевидно, что наибольшую массу из тел, окружающих нас, имеет Солнце, поэтому связанная с ним система отсчета почти инерционной. В этой ИСО начало отсчета координат совмещают с центром Солнца, а координаты осей проводят в направлении реальных звезд, которые можно считать неподвижными.

Однако для описания многих механических явлений с земных условий ИСО связывают с Землей, пренебрегая при этом вращательными движениями Земли вокруг своей оси и вокруг Солнца. Например, изучая свободное падение, нужно было бы учитывать ускорение лаборатории (2-3 см/с2), поскольку Земля вращается вокруг своей оси. Но ускорение лаборатории в несколько сотен раз меньше ускорения свободного падения, поэтому им обычно пренебрегают. В большинстве задач Землю считают идеальным телом отсчета, а связанные с ней системы — инерционными.

Сейчас понятно, что абсолютно неподвижных тел или тел, которые движутся строго равномерно и прямолинейно, в природе не существует, поэтому инерционная система отсчета — такая же абстракция, как и материальная точка или абсолютно твердое тело. Инерционными системами отсчета называют системы, относительно которых тело движется равномерно прямолинейно или находится в покое. Время во всех ИСО измеряют одинаково. Масса тела m = const, его ускорения и силы взаимодействия не зависят от скорости ИСО. В любых ИСО все механические явления происходят одинаково при одних и тех же начальных условиях (другая формулировка принципа относительности Галилея).

Что такое теория относительности Ландау Лев Давидович

Закон инерции

Закон инерции

Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.

Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно - и без воздействия внешних сил - продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.

Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы - силы трения. Поэтому условие, необходимое для наблюдения закона инерции - отсутствие внешних сил, действующих на тело, - не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.

Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.

Из книги Физики продолжают шутить автора Конобеев Юрий

Закон Мэрфи Дональд МИЧИ Я думаю, что самое глубокое и прочное впечатление в своей жизни каждый научный работник получает от того, как неожиданно, как несправедливо, как удручающе трудно хоть что-нибудь открыть или доказать. Многих осложнений и разочарований можно было

Из книги Физическая химия: конспект лекций автора Березовчук А В

7. Закон Генри Фугитивность растворителя в разбавленном растворе не зависит от природы растворенного вещества и вычисляется по закону Рауля, то есть: Так как фугитивность жидкости или твердого раствора равна фугитивности насыщенного пара, когда растворитель в

Из книги Тайны пространства и времени автора Комаров Виктор

2. Закон Гесса При изобарных и изохорных условиях теплота является функцией состояния.В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».?QP = dH,?QV = dUвн,QP =

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги История лазера автора Бертолотти Марио

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Закон инерции Не приходится спорить – инерциальная система отсчета удобна и обладает неоценимыми преимуществами.Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги автора

Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка

Из книги автора

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Из книги автора

Закон Авогадро Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?Механика

Из книги автора

Закон преломления В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.Уже греки знали, что

Из книги автора

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Из книги автора

Закон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти

Из книги автора

Из книги автора

Закон красного смещения Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз - на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...