Значение функции пуассона. Распределение и формула пуассона

Наиболее общим случаем различного рода вероятностных распределений является биномиальное распределение. Воспользуемся его универсальностью для определения наиболее часто встречающихся на практике частных видов распределений.

Биномиальное распределение

Пусть имеется некое событие A . Вероятность появления события A равна p , вероятность непоявления события A равна 1 – p , иногда ее обозначают как q . Пусть n — число испытаний, m — частота появления события A в этих n испытаниях.

Известно, что суммарная вероятность всех возможных комбинаций исходов равна единице, то есть:

1 = p n + n · p n – 1 · (1 – p ) + C n n – 2 · p n – 2 · (1 – p ) 2 + … + C n m · p m · (1 – p ) n – m + … + (1 – p ) n .

p n — вероятность того, что в n n раз;

n · p n – 1 · (1 – p ) — вероятность того, что в n n – 1) раз и не произойдет 1 раз;

C n n – 2 · p n – 2 · (1 – p ) 2 — вероятность того, что в n испытаниях событие A произойдет (n – 2) раза и не произойдет 2 раза;

P m = C n m · p m · (1 – p ) n – m — вероятность того, что в n испытаниях событие A произойдет m раз и не произойдет (n – m ) раз;

(1 – p ) n — вероятность того, что в n испытаниях событие A не произойдет ни разу;

— число сочетаний из n по m .

Математическое ожидание M биномиального распределения равно:

M = n · p ,

где n — число испытаний, p — вероятность появления события A .

Среднеквадратичное отклонение σ :

σ = sqrt(n · p · (1 – p )) .

Пример 1 . Вычислить вероятность того, что событие, имеющее вероятность p = 0.5 , в n = 10 испытаниях произойдет m = 1 раз. Имеем: C 10 1 = 10 , и далее: P 1 = 10 · 0.5 1 · (1 – 0.5) 10 – 1 = 10 · 0.5 10 = 0.0098 . Как видим, вероятность наступления этого события достаточно мала. Объясняется это, во-первых, тем, что абсолютно не ясно, произойдет ли событие или нет, поскольку вероятность равна 0.5 и шансы здесь «50 на 50»; а во-вторых, требуется исчислить то, что событие произойдет именно один раз (не больше и не меньше) из десяти.

Пример 2 . Вычислить вероятность того, что событие, имеющее вероятность p = 0.5 , в n = 10 испытаниях произойдет m = 2 раза. Имеем: C 10 2 = 45 , и далее: P 2 = 45 · 0.5 2 · (1 – 0.5) 10 – 2 = 45 · 0.5 10 = 0.044 . Вероятность наступления этого события стала больше!

Пример 3 . Увеличим вероятность наступления самого события. Сделаем его более вероятным. Вычислить вероятность того, что событие, имеющее вероятность p = 0.8 , в n = 10 испытаниях произойдет m = 1 раз. Имеем: C 10 1 = 10 , и далее: P 1 = 10 · 0.8 1 · (1 – 0.8) 10 – 1 = 10 · 0.8 1 · 0.2 9 = 0.000004 . Вероятность стала меньше, чем в первом примере! Ответ, на первый взгляд, кажется странным, но поскольку событие имеет достаточно большую вероятность, вряд ли оно произойдет только один раз. Более вероятно, что оно произойдет большее, чем один, количество раз. Действительно, подсчитывая P 0 , P 1 , P 2 , P 3 , …, P 10 (вероятность того, что событие в n = 10 испытаниях произойдет 0, 1, 2, 3, …, 10 раз), мы увидим:

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.8 0 · (1 – 0.8) 10 – 0 = 1 · 1 · 0.2 10 = 0.0000… ;
P 1 = 10 · 0.8 1 · (1 – 0.8) 10 – 1 = 10 · 0.8 1 · 0.2 9 = 0.0000… ;
P 2 = 45 · 0.8 2 · (1 – 0.8) 10 – 2 = 45 · 0.8 2 · 0.2 8 = 0.0000… ;
P 3 = 120 · 0.8 3 · (1 – 0.8) 10 – 3 = 120 · 0.8 3 · 0.2 7 = 0.0008… ;
P 4 = 210 · 0.8 4 · (1 – 0.8) 10 – 4 = 210 · 0.8 4 · 0.2 6 = 0.0055… ;
P 5 = 252 · 0.8 5 · (1 – 0.8) 10 – 5 = 252 · 0.8 5 · 0.2 5 = 0.0264… ;
P 6 = 210 · 0.8 6 · (1 – 0.8) 10 – 6 = 210 · 0.8 6 · 0.2 4 = 0.0881… ;
P 7 = 120 · 0.8 7 · (1 – 0.8) 10 – 7 = 120 · 0.8 7 · 0.2 3 = 0.2013… ;
P 8 = 45 · 0.8 8 · (1 – 0.8) 10 – 8 = 45 · 0.8 8 · 0.2 2 = 0.3020… (самая большая вероятность!);
P 9 = 10 · 0.8 9 · (1 – 0.8) 10 – 9 = 10 · 0.8 9 · 0.2 1 = 0.2684… ;
P 10 = 1 · 0.8 10 · (1 – 0.8) 10 – 10 = 1 · 0.8 10 · 0.2 0 = 0.1074…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Нормальное распределение

Если изобразить величины P 0 , P 1 , P 2 , P 3 , …, P 10 , которые мы подсчитали в примере 3, на графике, то окажется, что их распределение имеет вид, близкий к нормальному закону распределения (см. рис. 27.1 ) (см. лекцию 25. Моделирование нормально распределенных случайных величин).

Рис. 27.1. Вид биномиального распределения
вероятностей для различных m при p = 0.8, n = 10

Биномиальный закон переходит в нормальный, если вероятности появления и непоявления события A примерно одинаковы, то есть, условно можно записать: p ≈ (1 – p ) . Для примера возьмем n = 10 и p = 0.5 (то есть p = 1 – p = 0.5 ).

Содержательно к такой задаче мы придем, если, например, захотим теоретически посчитать, сколько будет мальчиков и сколько девочек из 10 родившихся в роддоме в один день детей. Точнее, считать будем не мальчиков и девочек, а вероятность, что родятся только мальчики, что родится 1 мальчик и 9 девочек, что родится 2 мальчика и 8 девочек и так далее. Примем для простоты, что вероятность рождения мальчика и девочки одинакова и равна 0.5 (но на самом деле, если честно, это не так, см. курс «Моделирование систем искусственного интеллекта»).

Ясно, что распределение будет симметричное, так как вероятность рождения 3 мальчиков и 7 девочек равна вероятности рождения 7 мальчиков и 3 девочек. Наибольшая вероятность рождения будет у 5 мальчиков и 5 девочек. Эта вероятность равна 0.25, кстати, не такая уж она и большая по абсолютной величине. Далее, вероятность того, что родится сразу 10 или 9 мальчиков намного меньше, чем вероятность того, что родится 5 ± 1 мальчик из 10 детей. Как раз биномиальное распределение нам поможет сделать этот расчет. Итак.

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.5 0 · (1 – 0.5) 10 – 0 = 1 · 1 · 0.5 10 = 0.000977… ;
P 1 = 10 · 0.5 1 · (1 – 0.5) 10 – 1 = 10 · 0.5 10 = 0.009766… ;
P 2 = 45 · 0.5 2 · (1 – 0.5) 10 – 2 = 45 · 0.5 10 = 0.043945… ;
P 3 = 120 · 0.5 3 · (1 – 0.5) 10 – 3 = 120 · 0.5 10 = 0.117188… ;
P 4 = 210 · 0.5 4 · (1 – 0.5) 10 – 4 = 210 · 0.5 10 = 0.205078… ;
P 5 = 252 · 0.5 5 · (1 – 0.5) 10 – 5 = 252 · 0.5 10 = 0.246094… ;
P 6 = 210 · 0.5 6 · (1 – 0.5) 10 – 6 = 210 · 0.5 10 = 0.205078… ;
P 7 = 120 · 0.5 7 · (1 – 0.5) 10 – 7 = 120 · 0.5 10 = 0.117188… ;
P 8 = 45 · 0.5 8 · (1 – 0.5) 10 – 8 = 45 · 0.5 10 = 0.043945… ;
P 9 = 10 · 0.5 9 · (1 – 0.5) 10 – 9 = 10 · 0.5 10 = 0.009766… ;
P 10 = 1 · 0.5 10 · (1 – 0.5) 10 – 10 = 1 · 0.5 10 = 0.000977…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Отразим на графике величины P 0 , P 1 , P 2 , P 3 , …, P 10 (см. рис. 27.2 ).

Рис. 27.2. График биномиального распределения при параметрах
p = 0.5 и n = 10, приближающих его к нормальному закону

Итак, при условиях m n /2 и p ≈ 1 – p или p ≈ 0.5 вместо биномиального распределения можно использовать нормальное. При больших значениях n график сдвигается вправо и становится все более пологим, так как математическое ожидание и дисперсия возрастают с увеличением n : M = n · p , D = n · p · (1 – p ) .

Кстати, биномиальный закон стремится к нормальному и при увеличении n , что вполне естественно, согласно центральной предельной теореме (см. лекцию 34. Фиксация и обработка статистических результатов).

Теперь рассмотрим, как изменится биномиальный закон в случае, когда p q , то есть p –> 0 . В этом случае применить гипотезу о нормальности распределения нельзя, и биномиальное распределение переходит в распределение Пуассона.

Распределение Пуассона

Распределение Пуассона — это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p — параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

P m = C n m · p m · (1 – p ) n – m

может быть написан, если положить p = a /n , в виде

Так как p очень мало, то следует принимать во внимание только числа m , малые по сравнению с n . Произведение

весьма близко к единице. Это же относится к величине

Величина

очень близка к e –a . Отсюда получаем формулу:

Пример . В ящике находится n = 100 деталей, как качественных, так и бракованных. Вероятность достать бракованное изделие составляет p = 0.01 . Допустим, что мы вынимаем изделие, определяем, бракованное оно или нет, и кладем его обратно. Поступая таким образом, получилось, что из 100 изделий, которые мы перебрали, два оказались бракованными. Какова вероятность этого?

По биномиальному распределению получаем:

По распределению Пуассона получаем:

Как видно, величины получились близкими, поэтому в случае редких событий вполне допустимо применять закон Пуассона, тем более что он требует меньших вычислительных затрат.

Покажем графически вид закона Пуассона. Возьмем для примера параметры p = 0.05 , n = 10 . Тогда:

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.05 0 · (1 – 0.05) 10 – 0 = 1 · 1 · 0.95 10 = 0.5987… ;
P 1 = 10 · 0.05 1 · (1 – 0.05) 10 – 1 = 10 · 0.05 1 · 0.95 9 = 0.3151… ;
P 2 = 45 · 0.05 2 · (1 – 0.05) 10 – 2 = 45 · 0.05 2 · 0.95 8 = 0.0746… ;
P 3 = 120 · 0.05 3 · (1 – 0.05) 10 – 3 = 120 · 0.05 3 · 0.95 7 = 0.0105… ;
P 4 = 210 · 0.05 4 · (1 – 0.05) 10 – 4 = 210 · 0.05 4 · 0.95 6 = 0.00096… ;
P 5 = 252 · 0.05 5 · (1 – 0.05) 10 – 5 = 252 · 0.05 5 · 0.95 5 = 0.00006… ;
P 6 = 210 · 0.05 6 · (1 – 0.05) 10 – 6 = 210 · 0.05 6 · 0.95 4 = 0.0000… ;
P 7 = 120 · 0.05 7 · (1 – 0.05) 10 – 7 = 120 · 0.05 7 · 0.95 3 = 0.0000… ;
P 8 = 45 · 0.05 8 · (1 – 0.05) 10 – 8 = 45 · 0.05 8 · 0.95 2 = 0.0000… ;
P 9 = 10 · 0.05 9 · (1 – 0.05) 10 – 9 = 10 · 0.05 9 · 0.95 1 = 0.0000… ;
P 10 = 1 · 0.05 10 · (1 – 0.05) 10 – 10 = 1 · 0.05 10 · 0.95 0 = 0.0000…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Рис. 27.3. График распределения Пуассона при p = 0.05 и n = 10

При n –> ∞ распределение Пуассона переходит в нормальный закон, согласно центральной предельной теореме (см.

Где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 .

Ряд распределения закона Пуассона имеет вид:


Назначение сервиса . Онлайн-калькулятор используется для построения Пуассоновского распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Число испытаний: n = , Вероятность p =
Вычислить вероятность для: m =
наступит раз
менее раз
не менее раз
более раз
не более раз
не менее и не более раз
наступит хотя бы один раз
В случае, когда n велико, а λ = p·n > 10 формула Пуассона дает очень грубое приближение и для расчета P n (m) используют локальную и интегральную теоремы Муавра-Лапласа .

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание : M[X] = λ = 2
Дисперсия : D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X 0 1 2 m
P e -20 20e -20 200e -20 20 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P 200 (1).
Получаем: . Тогда P 200 (1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k < 3. Найдем P 200 (k < 3).
Имеем: a = 1.

в) Задано: n = 200, p = 1/200, k > 2. Найдем P 200 (k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p - достаточно малым; положим np = a, где a - некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:


Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:
где λ - интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5 < 10. Значит случайная величина Х – распределена по Пуассоновскому распределению. Составим закон.
Случайная величина X имеет область значений (0,1,2,...,m). Вероятности этих значений можно найти по формуле:

Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e - λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x<3) = P(0) + P(1) + P(2) = 0,01111 + 0,04999 + 0,1125 = 0,1736

Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e - λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P 1 (0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P 2 (0) = e -λ2*t = e -0.05*10 = 0,6065

а) оба элемента будут работать безотказно;
P(2) = P 1 (0)*P 2 (0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P 1 (0)*(1-P 2 (0)) + (1-P 1 (0))*P 2 (0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание : поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

Во многих практически важных приложениях большую роль играет распределение Пуассона. Многие из числовых дискретных величин являются реализациями пуассоновского процесса, обладающего следующими свойствами:

  • Нас интересует, сколько раз происходит некое событие в заданной области возможных исходов случайного эксперимента. Область возможных исходов может представлять собой интервал времени, отрезок, поверхность и т.п.
  • Вероятность данного события одинакова для всех областей возможных исходов.
  • Количество событий, происходящих в одной области возможных исходов, не зависит от количества событий, происходящих в других областях.
  • Вероятность того, что в одной и той же области возможных исходов данное событие происходит больше одного раза, стремится к нулю по мере уменьшения области возможных исходов.

Чтобы глубже понять смысл пуассоновского процесса, предположим, что мы исследуем количество клиентов, посещающих отделение банка, расположенное в центральном деловом районе, во время ланча, т.е. с 12 до 13 часов. Предположим, требуется определить количество клиентов, приходящих за одну минуту. Обладает ли эта ситуация особенностями, перечисленными выше? Во-первых, событие, которое нас интересует, представляет собой приход клиента, а область возможных исходов - одноминутный интервал. Сколько клиентов придет в банк за минуту - ни одного, один, два или больше? Во-вторых, разумно предположить, что вероятность прихода клиента на протяжении минуты одинакова для всех одноминутных интервалов. В-третьих, приход одного клиента в течение любого одноминутного интервала не зависит от прихода любого другого клиента в течение любого другого одноминутного интервала. И, наконец, вероятность того, что в банк придет больше одного клиента стремится к нулю, если временной интервал стремится к нулю, например, становится меньше 0,1 с. Итак, количество клиентов, приходящих в банк во время ланча в течение одной минуты, описывается распределением Пуассона.

Распределение Пуассона имеет один параметр, обозначаемый символом λ (греческая буква «лямбда») – среднее количество успешных испытаний в заданной области возможных исходов. Дисперсия распределения Пуассона также равна λ, а его стандартное отклонение равно . Количество успешных испытаний Х пуассоновской случайной величины изменяется от 0 до бесконечности. Распределение Пуассона описывается формулой:

где Р(Х) - вероятность X успешных испытаний, λ - ожидаемое количество успехов, е - основание натурального логарифма, равное 2,71828, X - количество успехов в единицу времени.

Вернемся к нашему примеру. Допустим, что в течение обеденного перерыва в среднем в банк приходят три клиента в минуту. Какова вероятность того, что в данную минуту в банк придут два клиента? А чему равна вероятность того, что в банк придут более двух клиентов?

Применим формулу (1) с параметром λ = 3. Тогда вероятность того, что в течение данной минуты в банк придут два клиента, равна

Вероятность того, что в банк придут более двух клиентов, равна Р(Х > 2) = Р(Х = 3) + Р(Х = 4) + … + Р(Х = ∞) . Поскольку сумма всех вероятностей должна быть равной 1, члены ряда, стоящего в правой части формулы, представляют собой вероятность дополнения к событию Х≤ 2. Иначе говоря, сумма этого ряда равна 1 – Р(Х ≤ 2). Таким образом, Р(Х> 2) = 1 – Р(Х≤2) = 1 – [Р(Х = 0) + Р(Х = 1) + Р(Х = 2)]. Теперь, используя формулу (1), получаем:

Таким образом, вероятность того, что в банк в течение минуты придут не больше двух клиентов, равна 0,423 (или 42,3%), а вероятность того, что в банк в течение минуты придут больше двух клиентов, равна 0,577 (или 57,7%).

Такие вычисления могут показаться утомительными, особенно если параметр λ достаточно велик. Чтобы избежать сложных вычислений, многие пуассоновские вероятности можно найти в специальных таблицах (рис. 1). Например, вероятность того, что в заданную минуту в банк придут два клиента, если в среднем в банк приходят три клиента в минуту, находится на пересечении строки X = 2 и столбца λ = 3. Таким образом, она равна 0,2240 или 22,4%.

Рис. 1. Пуассоновская вероятность при λ = 3

Сейчас вряд ли кто-то будет пользоваться таблицами, если под рукой есть Excel с его функцией =ПУАССОН.РАСП() (рис. 2). Эта функция имеет три параметра: число успешных испытаний Х , среднее ожидаемое количество успешных испытаний λ, параметр Интегральная , принимающий два значения: ЛОЖЬ – в этом случае вычисляется вероятность числа успешных испытаний Х (только Х), ИСТИНА – в этом случае вычисляется вероятность числа успешных испытаний от 0 до Х.

Рис. 2. Расчет в Excel вероятностей распределения Пуассона при λ = 3

Аппроксимация биноминального распределения с помощью распределения Пуассона

Если число n велико, а число р - мало, биномиальное распределение можно аппроксимировать с помощью распределения Пуассона. Чем больше число n и меньше число р , тем выше точность аппроксимации. Для аппроксимации биномиального распределения используется следующая модель Пуассона.

где Р(Х) - вероятность X успехов при заданных параметрах n и р , n - объем выборки, р - истинная вероятность успеха, е - основание натурального логарифма, X - количество успехов в выборке (X = 0, 1, 2, …, n ).

Теоретически случайная величина, имеющая распределение Пуассона, принимает значения от 0 до ∞. Однако в тех ситуациях, когда распределение Пуассона применяется для приближения биномиального распределения, пуассоновская случайная величина - количество успехов среди n наблюдений - не может превышать число n . Из формулы (2) следует, что с увеличением числа n и уменьшением числа р вероятность обнаружить большое количество успехов уменьшается и стремится к нулю.

Как говорилось выше, математическое ожидание µ и дисперсия σ 2 распределения Пуассона равны λ. Следовательно, при аппроксимации биномиального распределения с помощью распределения Пуассона для приближения математического ожидания следует применять формулу (3).

(3) µ = Е(Х) = λ = np

Для аппроксимации стандартного отклонения используется формула (4).

Обратите внимание на то, что стандартное отклонение, вычисленное по формуле (4), стремится к стандартному отклонению в биномиальной модели – , когда вероятность успеха p стремится к нулю, и, соответственно, вероятность неудачи 1 – р стремится к единице.

Предположим, что 8% шин, произведенных на некотором заводе, являются бракованными. Чтобы проиллюстрировать применение распределения Пуассона для аппроксимации биномиального распределения, вычислим вероятность обнаружить одну дефектную шину в выборке, состоящей из 20 шин. Применим формулу (2), получим

Если бы мы вычислили истинное биномиальное распределение, а не его приближение, то получили бы следующий результат:

Однако эти вычисления довольно утомительны. В то же время, если вы используете Excel для вычисления вероятностей, то применение аппроксимации в виде распределения Пуассона становится излишним. На рис. 3 показано, что трудоемкость вычислений в Excel одинакова. Тем не менее, этот раздел, на мой взгляд, полезен понимаем того, что при некоторых условиях биноминальное распределение и распределение Пуассона дают близкие результаты.

Рис. 3. Сравнение трудоемкости расчетов в Excel: (а) распределение Пуассона; (б) биноминальное распределение

Итак, в настоящей и двух предыдущих заметках были рассмотрены три дискретных числовых распределения: , и Пуассона. Чтобы лучше представлять, как эти распределения соотносятся друг с другом приведем небольшое дерево вопросов (рис. 4).

Рис. 4. Классификация дискретных распределений вероятностей

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 320–328

Снова напомним ситуацию, которая была названа схемой Бернулли: производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р . Тогда для определения вероятности того, что в этих n испытаниях событие А появится ровно k раз (такая вероятность обозначалась P n (k ) ) может быть точно вычислена по формуле Бернулли , гдеq =1− p . Однако при большом числе испытаний n расчеты по формуле Бернулли становятся очень неудобными, так как приводят к действиям с очень большими числами. Поэтому (если помните это когда-то проходилось при изучении схемы и формулы Бернулли при изучении первой части теории вероятностей «Случайные события») при больших n предлагались значительно более удобные (хотя и приближенные) формулы, которые оказывались тем точнее, чем больше n (формула Пуассона, локальная и интегральная формула Муавра-Лапласа). Если в схеме Бернулли число опытов n велико, а вероятность р появления события А в каждом испытании мала, то хорошее приближение дает упомянутая формула Пуассона
, где параметра = n p . Эта формула и приводит к распределению Пуассона. Дадим точные определения

Дискретная случайная величина Х имеет распределение Пуассона , если она принимает значения 0, 1, 2, ... с вероятностями р 0 , р 1 , ... , которые вычисляются по формуле

а число а является параметром распределения Пуассона. Обращаем внимание, что возможных значений с.в. Х бесконечно много это все целые неотрицательные числа. Таким образом, д.с.в Х с распределением Пуассона имеет следующий закон распределения:

При вычислении математического ожидания (по их определению для д.с.в. с известным законом распределения) придется теперь считать не конечные суммы, а суммы соответствующих бесконечных рядов (так как таблица закона распределения имеет бесконечно много столбцов). Если же посчитать суммы этих рядов, то окажется, что и математическое ожидание, и дисперсия случайной величины Х с распределением Пуассона совпадает с параметром а этого распределения:

,
.

Найдем моду d (X ) распределенной по Пуассону случайной величины Х . Применим тот же самый прием, что был использован для вычисления моды биномиально распределенной случайной величины. По определению моды d (X )= k , если вероятность
наибольшая среди всех вероятностей р 0 , р 1 , ... . Найдем такое число k (это целое неотрицательное число). При таком k вероятность p k должна быть не меньше соседних с ней вероятностей: p k −1 p k p k +1 . Подставив вместо каждой вероятности соответствующую формулу, получим, что число k должно удовлетворять двойному неравенству:

.

Если расписать формулы для факториалов и провести простые преобразования, можно получить, что левое неравенство дает k ≤ а , а правое k ≥ а −1 . Таким образом, число k удовлетворяет двойному неравенству а −1 ≤ k ≤ а , т.е. принадлежит отрезку [а −1, а ] . Поскольку длина этого отрезка, очевидно, равна 1 , то в него может попасть либо одно, либо 2 целых числа. Если число а целое, то в отрезке [а −1, а ] имеется 2 целых числа, лежащих на концах отрезка. Если же число а не целое, то в этом отрезке есть только одно целое число.

Таким образом, если число а целое, то мода распределенной по Пуассону случайной величины Х принимает 2 соседних значения: d (X )=а−1 и d (X )=а . Если же число а не целое, то мода имеет одно значение d (X )= k , где k есть единственное целое число, удовлетворяющее неравенству а −1 ≤ k ≤ а , т.е. d (X )= [а ] .

Пример . Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится, равно 0.0002 . Какова вероятность, что повредится 18 изделий? Каково среднее значение поврежденных изделий? Каково наивероятнейшее число поврежденных изделий и какова его вероятность?



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...