Какие причины вызывают образование пар электрон дырка. Энергетические зоны

Энергетический спектр чистых (или, как говорят, собственных) полупроводниковых кристаллов отличается от спектра диэлектриков только в количественном отношении - меньшими значениями щели , в результате чего при обычных темературах в полупроводнике имеется значительная (по сравнению с диэлектриком) плотность носителей тока. Ясно, что это различие условно, и к тому же зависит от интересующей нас области температур.

В примесных (или легированных) полупроводниках дополнительным источником электронов или дырок являются атомы примесей, для которых энергетическая щель по отношению к отдаче электрона в решетку (донорная примесь) или его захвата из решетки (акцепторная примесь) оказывается меньше, чем энергетическая щель в основном спектре.

Рассмотрим подробнее вопрос о связи между величиной щели А и плотностью электронов проводимости и дырок в полупроводнике (или диэлектрике).

Попарное возникновение или исчезновение электрона и дырки можно рассматривать, с термодинамической точки зрения, как «химическую реакцию» (основное состояние кристалла играет роль «вакуума»). По общим правилам (см. V § 101) условие термодинамического равновесия этой реакции записывается в виде

где - химические потенциалы электронов и дырок. Ввиду сравнительно небольшой плотности электронов и дырок в полупроводнике (при ) распределение Ферми для них с большой точностью сводится к распределению Больцмана, так что электроны и дырки образуют классический газ. Из условия (67,1) следует тогда обычным образом (см. V § 101) закон действующих масс, согласно которому произведение равновесных плотностей

где справа стоит функция температуры, зависящая только от свойств основной решетки, на атомах которой и происходит рождение и уничтожение электронов и дырок; эта функция не зависит от наличия или отсутствия примесей. Вычислим функцию приняв для определенности, что энергии электронов и дырок являются квадратичными функциями квазиимпульса (66,1).

Распределение электронов (в единице объема) по квазиимпульсам дается распределением Больцмана

(множитель 2 учитывает два направления спина). Переход к распределению по энергиям осуществляется заменой

где - главные значения тензора эффективных масс .

Полное число электронов в единице объема есть, следовательно,

(в виду быстрой сходимости интегрирование можно распространить до бесконечности). Вычислив интеграл, находим

Темы кодификатора ЕГЭ : полупроводники, собственная и примесная проводимость полупроводников.

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники : их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м. К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками). Наиболее широко примененяются кремний и германий .

Главная особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1 .

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой - как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого - различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе - их атомы скрепляет ковалентная связь . Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными , слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2 ).

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь - это связь, существующая между атомами за счёт общих электронных пар . По этой причине ковалентная связь называется также парноэлектронной .

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник - кремний. Аналогичное строение имеет и второй по важности полупроводник - германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки - Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, - это каналы ковалентной связи между атомами.

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен - на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома. Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону. Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4 ).

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей. От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем - к соседнему с ним атому 3 и так далее. Валентные электроны могут перемещаться по всему пространству кристалла - они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах. Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему. Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам - они не проводят электрический ток.

Собственная проводимость

Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?

При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости ) - точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.

Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.

Разрыв ковалентных связей и появление свободных электронов показан на рис. 5 . На месте разорванной ковалентной связи образуется дырка - вакантное место для электрона. Дырка имеет положительный заряд, поскольку с уходом отрицательно заряженного электрона остаётся нескомпенсированный положительный заряд ядра атома кремния.

Рис. 5. Образование свободных электронов и дырок

Дырки не остаются на месте - они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.

При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.

На рис. 6 изображён полупроводник, помещённый в электрическое поле . В левой части рисунка - начальное положение дырки.

Рис. 6. Движение дырки в электрическом поле

Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля - то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля , а дырки - в направлении вектора .

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью , или проводимостью n-типа . Процесс упорядоченного перемещения дырок называется дырочной проводимостью ,или проводимостью p-типа (от первых букв латинских слов negativus (отрицательный) и positivus (положительный)). Обе проводимости - электронная и дырочная - вместе называются собственной проводимостью полупроводника.

Каждый уход электрона с разорванной ковалентной связи порождает пару «свободный электрон–дырка». Поэтому концентрация свободных электронов в кристалле чистого кремния равна концентрации дырок. Соответственно, при нагревании кристалла увеличивается концентрация не только свободных электронов, но и дырок, что приводит к возрастанию собственной проводимости полупроводника за счёт увеличения как электронной, так и дырочной проводимости.

Наряду с образованием пар «свободный электрон–дырка» идёт и обратный процесс: рекомбинация свободных электронов и дырок. А именно, свободный электрон, встречаясь с дыркой, заполняет эту вакансию, восстанавливая разорванную ковалентную связь и превращаясь в валентный электрон. Таким образом, в полупроводнике устанавливается динамическое равновесие : среднее число разрывов ковалентных связей и образующихся электронно-дырочных пар в единицу времени равно среднему числу рекомбинирующих электронов и дырок. Это состояние динамического равновесия определяет равновесную концентрацию свободных электронов и дырок в полупроводнике при данных условиях.

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно см. Концентрация же атомов кремния - порядка см. Иными словами, на атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов .

Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость . Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.
Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка . После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями - атомами кремния (рис. 7 ). Какова судьба пятого электрона, не занятого в этих связях?

Рис. 7. Полупроводник n-типа

А пятый электрон становится свободным! Дело в том, что энергия связи этого «лишнего» электрона с атомом мышьяка, расположенным в кристалле кремния, гораздо меньше энергии связи валентных электронов с атомами кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка в результате теплового движения остаются без пятого электрона, превращаясь в положительные ионы. А кристалл кремния, соответственно, наполняется свободными электронами, которые отцепились от атомов мышьяка.

Наполнение кристалла свободными электронами для нас не новость: мы видели это и выше, когда нагревался чистый кремний (без каких-либо примесей). Но сейчас ситуация принципиально иная: появление свободного электрона, ушедшего из атома мышьяка, не сопровождается появлением подвижной дырки . Почему? Причина та же - связь валентных электронов с атомами кремния гораздо прочнее, чем с атомом мышьяка на пятой вакансии, поэтому электроны соседних атомов кремния и не стремятся эту вакансию заполнить. Вакансия, таким образом, остаётся на месте, она как бы «приморожена» к атому мышьяка и не участвует в создании тока.

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости . Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными . Например, пятивалентный мышьяк - донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными - дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками , или полупроводниками n-типа (или просто n-полупроводниками ).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет , то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка см.

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: см. Такой же окажется и концентрация свободных электронов, отданных примесью - ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна см. Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.

Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь - например, индий . Результат такого внедрения показан на рис. 8 .

Рис. 8. Полупроводник p-типа

Что происходит в этом случае? На внешнем электронном уровне атома индия расположены три электрона, которые формируют ковалентные связи с тремя окружающими атомами кремния. Для четвёртого соседнего атома кремния у атома индия уже не хватает электрона, и в этом месте возникает дырка.

И дырка эта не простая, а особенная - с весьма большой энергией связи. Когда в неё попадёт электрон из соседнего атома кремния, он в ней «застрянет навеки», ибо притяжение электрона к атому индия весьма велико - больше, чем к атомам кремния. Атом индия превратится в отрицательный ион, а в том месте, откуда электрон пришёл, возникнет дырка - но теперь уже обыкновенная подвижная дырка в виде разорванной ковалентной связи в кристаллической решётке кремния. Эта дырка обычным образом начнёт блуждать по кристаллу за счёт «эстафетной» передачи валентных электронов от одного атома кремния к другому.

И так, каждый примесный атом индия порождает дырку, но не приводит к симметричному появлению свободного электрона. Такие примеси, атомы которых захватывают «намертво» электроны и тем самым создают в кристалле подвижную дырку, называются акцепторными .

Трёхвалентный индий - пример акцепторной примеси.

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью - это дырочный полупроводник , или полупроводник p-типа (или просто p-полупроводник ).

Дырки играют главную роль при создании тока в p-полупроводнике; дырки - основные носители заряда . Свободные электроны - неосновные носители заряда в p-полупроводнике. Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

p–n-переход

Место контакта двух полупроводников с различными типами проводимости (электронной и дырочной) называется электронно-дырочным переходом , или p–n-переходом . В области p–n-перехода возникает интересное и очень важное явление - односторонняя проводимость.

На рис. 9 изображён контакт областей p- и n-типа; цветные кружочки - это дырки и свободные электроны, которые являются основными (или неосновными) носителями заряда в соответствующих областях.

Рис. 9. Запирающий слой p–n-перехода

Совершая тепловое движение, носители заряда проникают через границу раздела областей.

Свободные электроны переходят из n-области в p-область и рекомбинируют там с дырками; дырки же диффундируют из p-области в n-область и рекомбинируют там с электронами.

В результате этих процессов в электронном полупроводнике около границы контакта остаётся нескомпенсированный заряд положительных ионов донорной примеси, а в дырочном полупроводнике (также вблизи границы) возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Эти нескомпенсированные объёмные заряды образуют так называемый запирающий слой , внутреннее электрическое поле которого препятствует дальнейшей диффузии свободных электронов и дырок через границу контакта.

Подключим теперь к нашему полупроводниковому элементу источник тока, подав «плюс» источника на n-полупроводник, а «минус» - на p-полупроводник (рис. 10 ).

Рис. 10. Включение в обратном направлении: тока нет

Мы видим, что внешнее электрическое поле уводит основные носители заряда дальше от границы контакта. Ширина запирающего слоя увеличивается, его электрическое поле возрастает. Сопротивление запирающего слоя велико, и основные носители не в состоянии преодолеть p–n-переход. Электрическое поле позволяет переходить границу лишь неосновным носителям, однако ввиду очень малой концентрации неосновных носителей создаваемый ими ток пренебрежимо мал.

Рассмотренная схема называется включением p–n-перехода в обратном направлении . Электрического тока основных носителей нет; имеется лишь ничтожно малый ток неосновных носителей. В данном случае p–n-переход оказывается закрытым.

Теперь поменяем полярность подключения и подадим «плюс» на p-полупроводник, а «минус»-на n-полупроводник (рис. 11 ). Эта схема называется включением в прямом направлении .

Рис. 11. Включение в прямом направлении: ток идёт

В этом случае внешнее электрическое поле направлено против запирающего поля и открывает путь основным носителям через p–n-переход. Запирающий слой становится тоньше, его сопротивление уменьшается.

Происходит массовое перемещение свободных электронов из n-области в p-область, а дырки, в свою очередь, дружно устремляются из p-области в n-область.

В цепи возникает ток , вызванный движением основных носителей заряда (Теперь, правда, электрическое поле препятствует току неосновных носителей, но этот ничтожный фактор не оказывает заметного влияния на общую проводимость).

Односторонняя проводимость p–n-перехода используется в полупроводниковых диодах . Диодом называется устройство, проводящие ток в лишь одном направлении; в противоположном направлении ток через диод не проходит (диод, как говорят, закрыт). Схематическое изображение диода показано на рис. 12 .

Рис. 12. Диод

В данном случае диод открыт в направлении слева направо: заряды как бы текут вдоль стрелки (видите её на рисунке?). В направлении справа налево заряды словно упираются в стенку - диод закрыт.

В разделе на вопрос Что такое электронная дырка? заданный автором Вирус. лучший ответ это А мне кажется, что это то, что "движется" в обратную сторону от движения электронов, и заряжено положительно. Некое обобщение такое. Используется в полупроводниках.
Почитайте здесь:
Источник: Отсутствие электрона в атоме полупроводника условно назвали дыркой. Следует иметь ввиду, что дырка - это не частица, а освободившееся после электрона место. Дырка ведет себя как элементарный положительный (именно положительный) заряд.

Ответ от Helga [гуру]
Если полупроводник чистый (без примесей) , то он обладает собственной проводимостью, которая невелика. Собственная проводимость бывает двух видов:
1) электронная (проводимость "n " - типа)
При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл. поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.
2) дырочная (проводимость " p" - типа)
При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т. к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.


Ответ от [гуру]
Атом, у которого не хватает электрона, если по-прощее.


Ответ от Sc@r [новичек]
нет такого понятия!


Ответ от Ѕ.Забей [гуру]
Это место в кристаллической решётке, где не хватает электрона. Условно принято считать дырку положительной, хотя на самом деле никакого перемещения дырок нет - это электроны перемещаются, заполняя дырки. При этом там, откуда электрон "убежал", остаётся дырка. Таким образом и создаётся видимость "движения" положительных носителей - дырок, то есть.
Короче, пустоты в решётке - это дырки, и они притягивают электроны. Поэтому дырки считают положительными

Чистые полупроводники являются относительно хорошими диэлектриками по сравнению с металлами, хотя и не настолько хорошими, как настоящий диэлектрик, например, стекло. Чтобы быть полезным в полупроводниковых применениях, собственный полупроводник (чистый нелегированный полупроводник) должен иметь не более одного атома примеси на 10 миллиардов атомов полупроводника. Это аналогично крупинке соли в железнодорожном вагоне сахара. Нечистые, или грязные полупроводники являются значительно более проводящими, хотя и такими хорошими, как металлы. Почему так происходит? Чтобы ответить на этот вопрос, мы должны рассмотреть электронную структуру этих материалов на рисунке ниже.

Рисунок ниже (a) показывает 4 электрона в валентной оболочке полупроводника, образующих ковалентные связи с четырьмя другими атомами. Это плоская, более простая для рисования, версия рисунка, приведенного ранее . Все электроны атома связаны в четырех ковалентных связях, в парах общих электронов. Электроны не могут свободно перемещаться по кристаллической решетке. Таким образом, собственные, чистые, полупроводники являются относительно хорошими диэлектриками по сравнению с металлами.

(a) Собственный полупроводник является диэлектриком, имеющим полную электронную оболочку.
(b) Тем не менее, тепловая энергия может создать несколько пар электрон-дырка, что в результате даст слабую проводимость.

Тепловая энергия иногда может освобождать электрон из кристаллической решетки, как показано на рисунке выше (b). Этому электрону становится доступно передвижение по кристаллической решетке. Когда электрон освобождается, он оставляет в кристаллической решетке пустое место с положительным зарядом, известное как дырка. Эта дырка не прикреплена к решетке и может свободно по ней перемещаться. Свободные электрон и дырка вносят свой вклад в движение электронов по кристаллической решетке. То есть, электрон свободен, пока он не попадает в дырку. Это явление называется рекомбинацией. При воздействии на полупроводник внешним электрическим полем электроны и дырки разводятся в противоположных направлениях. Увеличение температуры увеличит и количество электронов и дырок, что в свою очередь уменьшит сопротивление. Это противоположно поведению металлов, у которых сопротивление увеличивается с ростом температуры за счет увеличения столкновений электронов с кристаллической решеткой. Количество электронов и дырок в собственном полупроводнике одинаково. Тем не менее, оба носителя при воздействии внешнего поля необязательно будут двигаться с одинаковой скоростью. Другими словами, подвижность у электронов и дырок неодинакова.

Чистые полупроводники, сами по себе, не особенно полезны. Хотя полупроводники и должны быть в большой степени очищены от примесей для создания отправной точки перед добавлением определенных примесей.

В материал полупроводника, с долей содержания примесей 1 к 10 миллиардам, для увеличения количества носителей могут добавляться определенные примеси в соотношении примерно 1 часть на 10 миллионов. Добавление в полупроводник необходимой примеси известно, как легирование. Легирование увеличивает проводимость полупроводника, и, таким образом, он становится более сопоставим с металлом, а не с диэлектриком.

Можно увеличить количество отрицательно заряженных носителей в кристаллической решетке полупроводника путем легирования таким электронным донором, как фосфор. Электронные доноры, также известные, как примеси N-типа, включают в себя элементы группы VA (группы 15 по IUPAC) периодической таблицы: азот, фосфор, мышьяк и сурьма. Азот и фосфор являются примесью N-типа для алмаза. Фосфор, мышьяк и сурьма используются совместно с кремнием.

Кристаллическая решетка на рисунке ниже (b) содержит атомы, содержащие четыре электрона во внешней оболочке, формирующих ковалентные связи с соседними атомами. Эта кристаллическая решетка ожидаема. Добавление атома фосфора с пятью электронами во внешней оболочке вводит в решетку дополнительный электрон по сравнению с атомом кремния. Пятивалентная примесь образует четыре ковалентные связи с четырьмя атомами кремния с помощью четырех из пяти электронов, встраиваясь в решетку с одним электроном в запасе. Обратите внимание, что этот лишний электрон не сильно привязан к решетке, как электроны обычных атомов Si. Будучи не привязанным к узлу фосфора в кристаллической решетке, он свободен для перемещения по ней. Так как мы легировали одну часть фосфора на 10 миллионов атомов кремния, то по сравнению с многочисленными атомами кремния было создано лишь несколько свободных электронов. Тем не менее, по сравнению с немногочисленными парами электрон-дырка в собственном полупроводнике, в этом случае было создано достаточно много электронов.


(a) Конфигурация электронов внешней оболочки донора N-типа фосфора, кремния (для сравнения) и акцептора P-типа бора.
(b) Примесь донора N-типа создает свободный электрон.
(c) Примесь акцептора P-типа создает дырку, положительно заряженный носитель.

Кроме того, можно вводить примеси, у которых, по сравнению с кремнием, не хватает электрона, то есть, которые имеют три электрона в валентной оболочке, по сравнению с кремнием с четырьмя валентными электронами. На рисунке выше (c) они оставляют пустое место, известное как дырка, положительно заряженный носитель. Атом бора пытается связаться с четырьмя атомами кремния, но в валентной зоне имеет только три электрона. В попытке сформировать четыре ковалентные связи три его электрона двигаются вокруг, пытаясь образовать четыре связи. Это заставляет двигаться появляющуюся дырку. Кроме того, трехвалентный атом может занимать электрон от соседнего (или более отдаленного) атома кремния, чтобы сформировать четыре ковалентные связи. Однако это оставляет атом кремния с нехваткой одного электрона. Другими словами, дырка перемещается к соседнему (или более отдаленному) атому кремния. Дырки располагаются в валентной зоне, уровнем ниже зоны проводимости. Легирование электронным акцептором, атомом, который может принять электрон, создает дефицит электронов и избыток дырок. Так как дырки являются носителями положительного заряда, примесь электронного акцептора также известна, как примесь P-типа. Легирующая примесь P-типа оставляет полупроводник с избытком дырок, носителей положительного заряда. Элементы P-типа из группы IIIA (группы 13 по IUPAC) периодической таблицы включают в себя: бор, алюминий, галлий и индий. Бор используется в качестве легирующей примеси P-типа для полупроводников кремний и алмаз, в то время как индий используется с германием.

Подобно «шарику в трубе» передвижение электронов (рисунок ниже) зависит от движения дырок и движения электронов. Шарик представляет собой электроны в проводнике, в трубе. Движение электронов слева направо в проводнике или полупроводнике N-типа объясняется входом электрона в трубу слева, заставляя выйти электрон справа. Передвижение электронов в полупроводнике N-типа происходит в зоне проводимости. Сравните это с движением дырок в валентной зоне.

Аналогия с шариком в трубе:
(a) Электроны двигаются вправо в зоне проводимости.
(b) Дырки двигаются вправо в валентной зоне, в то время как электроны двигаются влево.

Чтобы дырка вошла в левой части рисунка выше (b), электрон должен быть удален. При перемещении дырки слева направо электрон должен двигаться справа налево. Первый электрон выбрасывается из левого конца трубы, чтобы дырка могла двигаться вправо в трубу. Электрон двигается в направлении, противоположном движению положительных дырок. Чтобы дырка двигалась дальше вправо, электроны должны перемещаться влево, заполняя дырку. Дырка - это отсутствие электрона в валентной зоне за счет легирования P-типа. Она имеет локальный положительный заряд. Чтобы переместить дырку в заданном направлении, валентные электроны двигаются в противоположном направлении.

Поток электронов в полупроводнике N-типа аналогичен движению электронов в металлическом проводе. Атомы примеси N-типа дадут электроны, доступные для передвижения. Эти электроны из-за легирующей примеси известны, как основные носители, так как они находятся в большинстве, по сравнению с немногочисленными тепловыми дырками. Если к пластине полупроводника N-типа приложить электрическое поле (рисунок ниже (a)), электроны перейдут в отрицательный (левый) конец пластины, пройдут кристаллическую решетку и выйдут справа к клемме (+) батареи.


(a) Полупроводник N-типа с электронами, перемещающимися через кристаллическую решетку слева направо.
(b) Полупроводник P-типа с дырками, перемещающимися слева направо, что соответствует движению электронов в противоположном направлении.

Объяснить протекание тока в полупроводнике P-типа немного сложнее. Примесь P-типа, акцептор электронов, придает локальным областям положительный заряд, известный как дырки. Эти дырки и являются основными носителями в полупроводнике P-типа. Хотя дырки и образуются в местах трехвалентных атомов примеси, они могут перемещаться по пластине полупроводника. Обратите внимание, что включение батареи на рисунке выше (b) противоположно включению на рисунке (a). Положительный вывод батареи подключен к левому концу пластины P-типа. Поток электронов выходит из отрицательного вывода батареи и через пластину P-типа возвращается к положительному выводу батареи. Электрон покидает положительный (левый) конец пластины полупроводника, чтобы положительный вывод батареи оставил дырку в полупроводнике, которая может двигаться вправо. Дырки проходят через кристаллическую решетку слева направо. В отрицательном конце пластины электрон из батареи соединяется с дыркой, нейтрализуя её. Это дает возможность другой дырке в положительном конце пластины двигаться вправо. Имейте в виду, что когда дырки перемещаются слева направо, это на самом деле электроны двигаются в противоположном направлении, что и делает видимым движение дырок.

Элементы, используемые для производства полупроводников, приведены на рисунке ниже. Полупроводниковый материал германий из группы IVA (14 по IUPAC) сейчас используется довольно ограничено. Полупроводники на основе кремния составляют около 90% всего промышленного производства полупроводников. Полупроводники на основе алмаза сейчас широко исследуются и обладают значительным потенциалом. Составные полупроводники включают в себя кремний-германий (тонкие слои на пластинах Si), карбид кремния и соединения групп III-V, например, арсенид галлия. Полупроводниковые соединения групп III-VI включают в себя AlN, GaN, InN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga 1-x As и In x Ga 1-x As. Столбцы II и VI периодической таблицы, не показанные на рисунке, также формируют составные полупроводники.


Группа IIIA - примеси P-типа, группа IV - основные полупроводниковые материалы, и группа VA - примеси N-типа.

Основной причиной включения групп IIIA и VA на рисунок выше является возможность показать примеси, используемые с группой полупроводников IVA. Элементы группы IIIA являются акцепторами, примесями P-типа, которые принимают электроны, оставляя дырки (положительные носители) в кристаллической решетке. Бор является примесью P-типа для алмаза и самой распространенной примесью для кремниевых полупроводников. Индий является примесью P-типа для германия.

Элементы группы VA являются донорами, примесями N-типа, дающими свободный электрон. Азот и фосфор подходят в качестве примеси N-типа для алмаза. Фосфор и мышьяк являются наиболее используемыми примесями N-типа для кремния, хотя может использоваться и сурьма.

Итоги

Собственные полупроводники, максимальная доля примеси в которых составляет 1 на 10 миллиардов, являются плохими проводниками.

Полупроводник N-типа легируется пятивалентной примесью, чтобы создать свободные электроны. Такой материал является проводящим. Электрон в нем является основным носителем.

Полупроводник P-типа, легированный трехвалентной примесью, имеет множество свободных дырок. Это носители положительного заряда. Материал P-типа является проводящим. Дырки в нем являются основными носителями.

Большинство полупроводников основаны на элементах из группы IVA периодической таблицы. Причем кремний является наиболее распространенным, германий устарел, а углерод (алмаз) в настоящее время исследуется.

Широко используются и составные полупроводники, такие как карбид кремния (группа IVA) и арсенид галлия (группа III-V).

🕗24.05.2008 г. | 🙋 | 👀27 775 | ✍️0


Эта статья в основном предназначена для тех, кто только-только начал первые шаги в области радиотехники, но может быть полезна и опытным радиолюбителям или студентам.

В первой части статьи разъясняются процессы, происходящие в полупроводниках на атомном уровне, расписываются такие понятия, как валентная зона , зона проводимости , собственная электропроводность и другие.
Остальные пять частей будут постепенно выкладываться в раздел "Начинающим".

Структура и энергетические диаграммы чистого полупроводника

К полупроводниковым относят вещества, которые по своему удельному сопротивлению занимают промежуточное положение между проводниками и диэлектриками. Характерной чертой полупроводников, отличающей их от других веществ, является сильная зависимость их сопротивления от температуры и концентрации примесей.

В производстве полупроводниковых приборов наибольшее распространение получили такие материалы, как германий и кремний. Они имеют кристаллическую структуру и расположены в IV группе таблицы Менделеева.

Все вещества состоят из атомов. Атом включает положительно заряженное ядро и электроны, вращающиеся вокруг него по орбитам с определенным радиусом.

Энергию электронов атома можно представить в виде диаграммы (рис. 3.1, а). Как видно из рисунка, электроны в атоме могут обладать лишь значениями энергий, равными W1 , W2 , W3 , W4 , и не могут иметь промежуточных уровней.

Электроны, вращающиеся на внешних оболочках, называются валентными. Установлено, что в атоме любого вещества одинаковая энергия может быть не более чем у двух электронов. Иными словами, на одном энергетическом уровне может находиться не более двух электронов. Поскольку в веществе содержится большое количество атомов, вследствие их взаимодействия энергетические уровни электронов, вращающихся по одинаковым орбитам, смещаются относительно энергетических уровней этих же электронов в отдельном «изолированном» атоме. В результате образуются целые энергетические зоны, состоящие из близко расположенных энергетических уровней. Энергетические уровни, образованные валентными электронами, называют валентной зоной (рис. 3.1,б).

Образование свободных электронов и дырок в полупроводнике

При абсолютном нуле (абсолютный нуль - наиболее низкая возможная температура -273,16 °С; в настоящее время достигнуты температуры, отличающиеся от абсолютного нуля на ничтожные доли градуса) все валентные электроны находятся на орбитах и прочно связаны с атомами. Поэтому в таком полупроводнике нет свободных электронов и он представляет собой идеальный изолятор (диэлектрик). С ростом температуры валентные электроны получают дополнительную энергию и могут оторваться от атома. Оторвавшийся электрон становится «свободным». Энергетические уровни свободных электронов образуют зону проводимости, расположенную над валентной зоной и отделенную от нее запрещенной зоной шириной ΔW (рис. 3.1, в).
Свободные электроны могут перемещаться по полупроводнику и участвовать таким образом в образовании электрического тока. Чем больше свободных электронов в единице объема вещества, тем меньше его сопротивление.

Между атомами в кристалле полупроводника существуют ковалентные связи. Ковалентная связь образуется за счет вращения двух электронов, принадлежащих двум рядом расположенным атомам, по одной общей орбите (рис. 3.2, а). Германий и кремний являются четырехвалентными элементами, и их атомы имеют по 4 валентных электрона. В результате образования парных ковалентных связей все атомы германия и кремния оказываются взаимосвязанными. Плоские модели кристаллических решеток чистого германия Ge и кремния Si изображены на рис. 3.2, б. На этом рисунке парные ковалентпые связи показаны двумя параллельными линиями, соединяющими два соседних атома, а электроны, образующие эти связи,- в виде черных точек.

При сообщении электрону дополнительной энергии ковалентная связь может нарушиться и он станет свободным.
Место на внешней орбите атома, где ранее находился электрон, называют дыркой. На энергетической диаграмме дырке соответствует свободный энергетический уровень в валентной зоне, с которого электрон перешел в зону проводимости (рис. 3.2, г).

Образование свободных электронов в зоне проводимости и дырок в валентной зоне называют генерацией подвижных носителей заряда, или генерацией пар электрон - дырка, поскольку появление свободного электрона в зоне проводимости обязательно сопровождается появлением дырки в валентной зоне.

Свободный электрон может, теряя часть своей энергии, из зоны проводимости перейти в валентную зону, заполнив собой одну из имеющихся в ней дырок. При этом восстанавливается ковалентная связь. Этот процесс называют рекомбинацией. Таким образом, рекомбинация всегда сопровождается потерей пары электрон-дырка.

Электронный и дырочный токи в полупроводниках

При заданной температуре в полупроводнике всегда имеются разорванные ковалентные связи, т. е. некоторое количество свободных электронов и соответствующее им число дырок. Если к такому полупроводнику подключить источник напряжения, свободные электроны под действием образовавшегося электрического поля будут двигаться в сторону положительного полюса, создавая электрический ток. Кроме того, электроны могут покидать одни ковалентные связи и восстанавливать другие - разрушенные. При этом в одном месте дырка исчезает, а в другом, откуда ушел электрон, появляется. Следовательно, в полупроводнике могут перемещаться не только электроны, но и дырки, и электрический ток включает две составляющие: электронную, образуемую путем перемещения свободных электронов, и дырочную, создаваемую при перемещении дырок. Дырке условно соответствует положительный единичный заряд, равный заряду электрона.

Полупроводники, которые состоят только из атомов германия или кремния, называют чистыми, или собственными, а электропроводность (способность проводить электрический ток), обусловленную наличием свободных электронов и дырок,- собственной электропроводностью.

Примесные полупроводники n-типа

Для придания полупроводниковым приборам необходимых свойств в полупроводники добавляют примеси других элементов. В качестве таковых используются пяти- и трехвалентные элементы, расположенные в V и III группах таблицы Менделеева.

При внесении в германий или кремний пятивалентных элементов (фосфора Р, мышьяка As, сурьмы Sb и др.) четыре валентных электрона примесных атомов образуют устойчивые ковалентные связи с атомами основного вещества. Пятые валентные электроны примесных атомов оказываются как бы лишними, они слабо связаны с атомами, и достаточно тепловой энергии, сообщаемой им при комнатной температуре, чтобы они смогли оторваться от атомов и стать свободными. При этом примесный атом превращается в положительный ион.

Появление свободных электронов не сопровождается дополнительными разрушениями ковалентных связей, а наоборот, некоторые дырки «исчезают», рекомбинируя (восстанавливая связь) со свободными электронами. Следовательно, в таких полупроводниках свободных электронов значительно больше, чем дырок, и протекание тока через полупроводник будет в основном определиться движением электронов и в очень малой степени - движением дырок. Это полупроводники n-типа (от латинского слова negative-отрицательный), примеси же называют донорами. Энергетическая диаграмма полупроводника n-типа приведена на рис. 3.3, а.

Примесные полупроводники р-типа

Если в германий или кремний ввести трехвалентные атомы бора В, индия In, алюминия Аl, галлия Ga и др., то три валентных электрона примесных атомов образуют устойчивые ковалентные связи с тремя рядом расположенными атомами основного вещества. Для образования четвертой ковалентной связи примесным атомам не хватает по одному электрону. Эти электроны они получают вследствие разрыва ковалентных связей между атомами основного вещества. Причем на месте ушедшего электрона образуется дырка, а примесные атомы, принявшие по электрону, превращаются в отрицательные ионы. Таким образом, в полупроводнике образуется дополнительное количество дырок, а число свободных электронов не увеличивается. Электрический ток в таком полупроводнике создается главным образом за счет перемещения дырок в валентной зоне и в незначительной степени - при движении свободных электронов в зоне проводимости. Это полупроводники р-типа (от латинского positive- положительный). Примеси называют акцепторами.

Энергетическая диаграмма примесного полупроводника р-типа приведена на рис. 3.3, б.
Подвижные носители электрического заряда, которые преобладают в полупроводнике данного типа, называются основными, остальные - неосновными. В полупроводнике n-типа основными носителями заряда являются электроны, а неосновными - дырки, в полупроводнике р-типа, наоборот, дырки - основные носители, а электроны - неосновные.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...