Относительная погрешность формула примеры. Погрешность приближения

Часто в жизни нам приходится сталкиваться с различными приближенными величинами. Приближенные вычисления - всегда вычисления с некоторой погрешностью.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения это модуль разности точного значения и приближенного значения.
То есть из точного значения нужно вычесть приближенное значение и взять полученное число по модулю. Таким образом, абсолютная погрешность всегда величина положительная.

Как вычислять абсолютную погрешность

Покажем, как это может выглядеть на практике. Например, у нас имеется график некоторой величины, пускай это будет парабола: y=x^2.

По графику мы сможем определить приблизительное значение в некоторых точках. Например, при x=1.5 значение у приблизительно равно 2.2 (y≈2.2).

По формуле y=x^2 мы можем найти точное значение в точке x=1.5 у= 2.25.

Теперь вычислим абсолютную погрешность наших измерений. |2.25-2.2|=|0.05| = 0.05.

Абсолютная погрешность равна 0.05. В таких случаях еще говорят значение вычислено с точность до 0.05.

Часто бывает так, что точное значение не всегда можно найти, а, следовательно, абсолютную погрешность не всегда возможно найти.

Например, если мы будем вычислять расстояние между двумя точками с помощью линейки, или значение угла между двумя прямыми с помощью транспортира, то мы получим приближенные значения. А вот точное значение вычислить невозможно. В данном случае, мы можем указать такое число, больше которого значение абсолютной погрешности быть не может.

В примере с линейкой это будет 0.1 см, так как цена деления на линейке 1 миллиметр. В примере для транспортира 1 градус потому, что шкала транспортира проградуирована через каждый градус. Таким образом, значения абсолютной погрешности в первом случае 0.1, а во втором случае 1.

Абсолютная и относительная погрешности

С приближенными числами нам приходится иметь дело при вычислениях значений каких-либо функций, либо при измерениях и обработке физических величин, получаемых в результате экспериментов. В том и другом случае нужно уметь правильно записывать значения приближенных чисел и их погрешность.

Приближенным числом а называется число, которое незначительно отличается от точного числа А и заменяет последнее в вычислениях . Если известно, что а < А , то а называется приближенным значением числа А по недостатку; если а > А , – то по избытку. Если а есть приближенное значение числа А , то пишут а ≈ А .

Под ошибкой или погрешностью А приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближенным, т.е.

Чтобы получить точное число А , нужно к приближенному значению числа прибавить его ошибку , т.е.

Во многих случаях знак ошибки неизвестен. Тогда целесообразно пользоваться абсолютной погрешностью приближенного числа

Из приведенной записи следует, что абсолютной погрешностью приближенного числа а называется модуль разности между соответствующими точным числом А и его приближенным значением а , т.е.

Точное число А чаще всего бывает неизвестно, поэтому найти ошибку или абсолютную погрешность не представляется возможным. В этом случае полезно вместо неизвестной теоретической погрешности ввести ее оценку сверху, так называемую предельную абсолютную погрешность.

Под предельной абсолютной погрешностью приближенного числа а понимается всякое число , не меньшее абсолютной погрешности этого числа, т.е.

Если в последней записи вместо использовать формулу (1,1), то можно записать

(1.2)

Отсюда следует, что точное число А заключено в границах

Следовательно, разность есть приближение числа А по недостатку, а – приближение числа А по избытку. В этом случае для краткости пользуются записью

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее, чем положительное число, тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи число ,удовлетворяющее неравенству (1.2).

Например, если в результате измерения получили длину отрезка l = 210 см ± 0,5 см., то здесь предельная абсолютная погрешность = 0,5 см, а точная величина l отрезка заключена в границах 209,5см≤l≤ 210,5см.

Абсолютная погрешность недостаточна для характеристики точности измерения или вычисления. Так, например, если при измерении длин двух стержней получены результаты l 1 = 95,6см ± 0,1см и l 2 =8,3 ± 0,1 см, то, несмотря на совпадение предельных абсолютных погрешностей, точность первого измерения выше, чем второго. Отсюда видно, что для точности измерений важнее не абсолютная, а относительная погрешность, которая зависит от значений измеряемых величин.

Относительной погрешностью δ приближенного числа а называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа А, т.е.

Аналогично предельной абсолютной погрешности используют также определение и для предельной относительной погрешности. Предельной относительной погрешностью данного приближенного числа а называется всякое число, не меньшее относительной погрешности этого числа

т.е. откуда следует

Таким образом, за предельную абсолютную погрешность числа а можно принять

Так как на практике А≈а ,то вместо формулы (1.3) часто пользуются формулой

1.2 Десятичная запись приближенных чисел

Всякое положительное десятичное число а может быть представлено в виде конечной или бесконечной дроби

где – десятичные цифры числа а ( = 0,1,2,...,9), причем старшая цифра а m – число разрядов в записи целой части числа а , а n – число разрядов в записи дробной части числа а . Например:

5214,73... = 5 · 10 3 + 2 · 10 2 + 1 · 10 1 + 4 · 10 0 +7 · 10 -1 + 3 · 10 -2 ... (1.5)

Каждая цифра , стоящая на определенном месте в числе а , написанном в виде (1.4), имеет свой вес. Так, цифра, стоящая на первом месте (т.е. ), весит 10 m , на втором – 10 m -1 и т.д.

На практике мы обычно не пользуемся записью в форме (1.4), а используем сокращенную запись чисел в виде последовательности коэффициентов при соответствующих степенях 10. Так, например, в записи (1.5) мы пользуемся левой от знака равенства формой, а не правой, представляющей разложение этого числа по степеням 10.

На практике преимущественно приходится иметь дело с приближенными числами в виде конечных десятичных дробей. Для корректного сравнения различных вычислительных и экспериментальных результатов вводят понятие значащей цифры в записи результата. Все сохраняемые десятичные значения (i = m , m- 1,…, m-n+ 1), отличные от нуля, и нуль, если он стоит между значащими цифрами или является представителем сохраненного десятичного разряда в конце числа называются значащими цифрами приближенного числа а . При этом нули, связанные с множителем 10 n к значащим не относятся.

При позиционном обозначении числа а в десятичной системе счисления иногда приходится вводить лишние нули в начале или в конце числа. Например,

а = 7·10 -3 + 0·10 -4 + 1·10 -5 + 0·10 -6 = 0,00 7010

b = 2·10 9 + 0·10 8 + 0·10 7 + 3·10 6 + 0·10 5 = 2003000000.

Такие нули (в приведенных примерах они подчеркнуты) не считаются значащими цифрами.

Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля , а также и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда. Все остальные нули, входящие в состав приближенного числа и служащие лишь для обозначения его десятичных разрядов, не причисляются к значащим числам.

Например, в числе 0,002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими цифрами, так как первый из них находиться между значащими цифрами 2 и 8, а второй указывает на то, что в приближенном числе сохранен десятичный разряд 10 -6 . В случае, если в данном числе 0,002080 последняя цифра не является значащей, то это число должно быть записано в виде 0,00208. С этой точки зрения числа 0,002080 и 0,00208 не равноценны, так как первое из них содержит четыре значащих цифры, а второе лишь три.



Кроме понятия значащей цифры важным является понятие верной цифры. Следует отметить, что это понятие существует в двух определениях – в узком и широком смыслах .

Определение широком смысле). Говорят, что n первых значащих цифр числа (считая слева направо) являются верными в широком смысле, если абсолютная погрешность этого числа не превосходит единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес 1 равен 10; 1 10 0 – здесь вес 1 равен 1; 1 10 -1 – здесь вес 1 равен 0,1; 1 10 -2 – здесь вес 1 равен 0,01 и т.д.).

Определение (в узком смысле). Говорят, что n первых значащих цифр приближенного числа являются верными, если абсолютная погрешность этого числа не превосходит половины единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес половины 1 равен 5; 1 10 0 – здесь вес половины 1 равен 0,5; 1 10 -1 – равен 0,05 и т.д.).

Например, в приближенном числе исходя из первого определения, значащие цифры 3,4 и 5 верные в широком смысле, а цифра 6 – сомнительна. Исходя из второго определения, значащие цифры 3 и 4 являются верными в узком смысле, а цифры 5 и 6 – сомнительные. Важно подчеркнуть, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр .

Как в теоретических рассуждениях, так и в практических применениях большее применение находит определение верной цифры в узком смысле.

Таким образом, если для приближенного числа а, заменяющего число А , известно, что

(1.6)

то, по определению, первые n цифр этого числа являются верными.

Например, для точного числа А = 35,97 число а = 36,00 является приближенным с тремя верными знаками. К этому результату приводят следующие рассуждения. Так как абсолютная погрешность нашего приближенного числа составляет величину 0,03, то по определению она должна удовлетворять условию

(1.7)

В нашем приближенном числе 36,00 цифра 3 является первой значащей цифрой (т.е. ), поэтому m = 1. Отсюда очевидно, что условие (1.7) будет выполняться при n = 3.

Обычно принято при десятичной записи приближенного числа писать только верные цифры. Если известно, что данное приближенное число записано правильно, то по записи можно определить предельную абсолютную погрешность. Именно при правильной записи абсолютная погрешность не превышает половины младшего разряда, который следует за последним верным разрядом (или половины единицы последнего верного разряда, что одно и то же)

Например, даны приближенные числа, записанные правильно: а = 3,8; b = 0,0283; с = 4260. Согласно определению, предельные абсолютные погрешности этих чисел будут: = 0,05; = 0,00005; = 0,5.

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения . По-другому его называют абсолютной погрешностью . Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.

Если a - это точное значение числа, а b - его приближенное значение, то погрешность приближения определяется по формуле |a – b|.

Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.

Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.

Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:

|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...

Так как 0,00159...

Говоря о погрешности приближения, также как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).

Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).

Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным G u и истинным G значениями величины, определяемая по формуле:

Δ=ΔG=G u -G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/G u ·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/G норм ·100%

где G норм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/G норм ·100%, если ΔG m =const

где ΔG m – наибольшая возможная абсолютная погрешность прибора;

G k – конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δ m =±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·G норм /G u

б) для наибольшей приведенной погрешности

δ=±γ m ·G норм /G u

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением G н , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U , при измерении тока C = I , буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения γ m = 1,0 % , U н = G норм, G k = 450 В , измеряют напряжение U u , равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γ m =±2,5 % . Используемый в работе предел шкалы вольтметра U норм =30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность:

Ответ. ΔU = ±0,75 В .

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

  • Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.
  • Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.
  • Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α , то

Где Δn – предельная абсолютная погрешность; а δ n – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

  • Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.
  • Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

  • Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

  • Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: δ=δ 1 +δ 2 , или, точнее, δ=δ 1 +δ 2 +δ 1 δ 2 где δ – относительная погрешность произведения, δ 1 δ 2 - относительные погрешности сомножителей.

Примечания :

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

  • Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81: 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлениемчерез И ∞ . Искомая относительная погрешность

Заметим, что

тогда получим

Так как R И >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой , справедливой при λ≤1 для любого α . Предположив, что в этой формуле α = -1 и λ= rR (r+R) -1 R И -1 , получим δ ≈ rR/(r+R) R И .

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности К А = 1,5 с пределом измерения I k = 20 А; А 1 – амперметр типа М 366 класса точности К А1 = 1,0 с пределом измерения I к1 = 7,5 А. Найти наибольшую возможную относительную погрешность измерения тока I 2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I 1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I 2 по показаниям прибора (без учета их погрешностей): I 2 =I-I 1 =8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А 1

Для А имеем равенство для амперметра

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 10 3 – для одного прибора; 2·10 3 – для другого прибора. Какой из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 10 3) = 1000, для второго – 1/(2 . 10 3) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 10 3 / 1 . 10 3 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

Погрешности измерений физических величин

1.Введение(измерения и погрешности измерений)

2.Случайные и систематические погрешности

3.Абсолютные и относительные погрешности

4.Погрешности средств измерений

5.Класс точности электроизмерительных приборов

6.Погрешность отсчета

7.Полная абсолютная погрешность прямых измерений

8.Запись окончательного результата прямого измерения

9.Погрешности косвенных измерений

10.Пример

1. Введение(измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.



Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения...).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

2. Случайные и систематические погрешности

Погрешности, возникаемые при измерениях делятся на систематические и случайные.

Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

Причины возникновения систематических погрешностей:

1) несоответствие средств измерения эталону;

2) неправильная установка измерительных приборов (наклон, неуравновешенность);

3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

3. Абсолютные и относительные погрешности

Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

А пр - D А < А ист < А пр + D А

Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/А пр или e= (D А/А пр)*100%.

Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

4. Погрешности средств измерений

Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

встречающихся в школьном эксперименте средств измерения.

Средства измерения

Предел измерения

Цена деления

Допустимаяпогрешность

линейка ученическая

линейка демонстрационная

лента измерительная

мензурка

гири 10,20, 50 мг

гири 100,200 мг

гири 500 мг

штангенциркуль

микрометр

динамометр

весы учебные

Секундомер

1с за 30 мин

барометр-анероид

720-780 мм рт.ст.

1 мм рт.ст

3 мм рт.ст

термометр лабораторный

0-100 градусов С

амперметр школьный

вольтметр школьный

5. Класс точности электроизмерительных приборов

Стрелочные электроизмерительные приборы по допустимым значениям погрешностям делятся на классы точности, которые обозначены на шкалах приборов числами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности g пр прибора показывает, сколько процентов составляет абсолютная погрешность от всей шкалы прибора.

g пр = (D и А/А макс)*100% .

Например абсолютная инструментальная погрешность прибора класса 2,5 составляет 2,5% от его шкалы.

Если известен класс точности прибора и его шкала, то можно определить абсолютную инструментальную погрешность измерения

D иА=( g пр * А макс)/100.

Для повышения точности измерения стрелочным электроизмерительным прибором надо выбирать прибор с такой шкалой, чтобы в процессе измерения располагались во второй половине шкалы прибора.

6. Погрешность отсчета

Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

Абсолютную погрешность отсчета принято обозначать D оА

7. Полная абсолютная погрешность прямых измерений

При выполнении прямых измерений физической величины А нужно оценивать следующие погрешности: D иА, D оА и D сА (случайную). Конечно, иные источники ошибок, связанные с неправильной установкой приборов, несовмещение начального положения стрелки прибора с 0 и пр. должны быть исключены.

Полная абсолютная погрешность прямого измерения должна включать в себя все три вида погрешностей.

Если случайная погрешность мала по сравнению с наименьшим значением, которое может быть измерено данным средством измерения (по сравнению с ценой деления), то ее можно пренебречь и тогда для определения значения физической величины достаточно одного измерения. В противном случае теория вероятностей рекомендует находить результат измерения как среднее арифметическое значение результатов всей серии многократных измерений, погрешность результата вычислять методом математической статистики. Знание этих методов выходит за пределы школьной программы.

8. Запись окончательного результата прямого измерения

Окончательный результат измерения физической величины А следует записывать в такой форме;

А=А пр + D А, e= (D А/А пр)*100%.

А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений. D А- полная абсолютная погрешность прямого измерения.

Абсолютную погрешность обычно выражают одной значащей цифрой.

Пример: L=(7,9 + 0,1) мм, e=13%.

9. Погрешности косвенных измерений

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= D Х/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле D Х=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений.

Вид функции

Формула

Х=А+В+С

Х=А-В


Х=А*В*С



Х=А n

Х=А/В

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33.Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н.Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

, следовательно абсолютная погрешность косвенного измерения μ составляет0,22*0,33=0,074



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...