Принципиальные отличия полупроводников от металлов. Чем отличается проводник от полупроводника? Электротехнические материалы: полупроводники, диэлектрики, проводники, сверхпроводники

Известно, что в веществе, помещенном в электрическое поле, при воздействии сил данного поля образуется движение свободных электронов, либо ионов по направлению сил поля. Другими словами, в веществе происходит возникновение электрического тока.

Свойство, определяющее способность вещества проводить электрический ток имеет название «электропроводность». Электропроводность напрямую зависима от концентрации заряженных частиц: чем выше концентрация, тем она электропроводность.

По данному свойству все вещества подразделяются на 3 типа:

  1. Проводники.
  2. Полупроводники.

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах. Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей.

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Описание диэлектриков

Диэлектрики также принято называть электроизоляционными веществами.

Все электроизоляционные вещества имеют следующую классификацию:

  • В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
  • В зависимости от способы получения — естественными и синтетическими.
  • В зависимости от химического состава – органическими и неорганическими.
  • В зависимости от строения молекул – нейтральными и полярными.

К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле . Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.

В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.

Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.

О полупроводниках

Полупроводник выступает в роли промежуточного вещества между проводником и диэлектриком . Самыми яркими представителями данного типа веществ являются кремний, германий, селен. Помимо этого, к данным веществам принято относить элементы четвертой группы периодической таблицы Дмитрия Ивановича Менделеева.

Полупроводники имеют дополнительную «дырочную» проводимость, в дополнение к электронной проводимости. Данный тип проводимости зависим от ряда факторов внешней среды, среди которых свет, температура, электрическое и магнитное поле.

В данных веществах имеются непрочные ковалентные связи. При воздействии одного из внешних факторов связь разрушается, после чего происходит образование свободных электронов. При этом, когда электрон отсоединяется, в составе ковалентной связи остается свободная «дырка». Свободные «дырки» притягивают соседние электроны, и так данное действие может производиться бесконечно.

Увеличить проводимость полупроводниковых веществ можно путем внесения в них различных примесей. Данный прием широко распространен в промышленной электронике: в диодах, транзисторах, тиристорах. Рассмотрим более подробно главные отличия проводников от полупроводников.

Чем отличается проводник от полупроводника?

Основным отличием проводника от полупроводника является способность к проводимости электрического тока. У проводника она на порядок выше.

Когда поднимается значение температуры, проводимость полупроводников также возрастает; проводимость проводников при повышении становится меньше.

В чистых проводниках в нормальных условиях при прохождении тока высвобождается гораздо большее количество электронов, нежели в полупроводниках. При этом, добавление примесей снижает проводимость проводников, но увеличивает проводимость полупроводников.

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.
Все проводники обладают такими свойствами, как сопротивление и проводимость . Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R ).
Величина, обратная сопротивлению, называется проводимостью (G ).

G = 1/ R

То есть, проводимость это свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость . Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет бо льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников , в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся , в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы , изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру , все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить , что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Полупроводники

Существуют вещества , которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками . Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников , у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости - уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры

Электропроводность есть способность тела пропускать электрический ток под действием электрического поля. Для характеристики этого явления служит величина удельной электропроводности σ. Как показывает теория , величину σ можно выразить через концентрацию n свободных носителей заряда, их заряд е, массу m, время свободного пробега τ e , длину свободного пробега λe и среднюю дрейфовую скорость < v > носителей заряда. Для металлов в роли свободных носителей заряда выступают свободные электроны, так что:

σ = ne 2 · τе / m = (n · e 2 / m) · (λe / < v >) = e · n · u

где u - подвижность носителей, т.е. физическая величина, численно равная дрейфовой скорости, приобретенной носителями в поле единичной напряженности, а именно

u = < v > / E = (e · τ е) / m

В зависимости от σ все вещества подразделяются; на проводники - с σ > 10 6 (Ом · м) -1 , диэлектрики - с σ > 10 -8 (Ом · м) -1 и полупроводники - с промежуточным значением σ.

С точки зрения зонной теории деление веществ на проводники, полупроводники и диэлектрики определяется тем, как заполнена электронами при 0 К валентная зона кристалла: частично или полностью.

Энергия, которая сообщается электронам даже слабым электрическим полем, сравнима с расстоянием между уровнями в энергетической зоне. Если в зоне есть свободные уровни, то электроны, возбужденные внешним электрическим полем, будут заполнять их. Квантовое состояние системы электронов будет изменяться, и в кристалле появится преимущественное (направленное) движение электронов против поля, т.е. электрический ток. Такие тела (рис.10.1,а) являются проводниками.

Если валентная зона заполнена целиком, то изменение состояния системы электронов может произойти только при переходе их через запрещенную зону. Энергия внешнего электрического поля такой переход осуществить не может. Перестановка электронов внутри полностью заполненной зоны не вызывает изменения квантового состояния системы, т.к. сами по себе электроны неразличимы.

В таких кристаллах (рис. 10.1,б) внешнее электрическое поле не вызовет появление электрического тока, и они будут непроводниками (диэлектриками). Из этой группы веществ выделены те у которых ширина запрещенной зоны ΔE ≤ 1 эВ (1эВ = 1,6 · 10 -19 Дж).

Переход электронов через запрещенную зону у таких тел можно осуществить, например, посредством теплового возбуждения. При этом освобождается часть уровней - валентной зоны и частично заполняются уровни следующей за ней свободной зоны (зоны проводимости). Эти вещества являются полупроводниками.


Согласно выражению (10.1) изменение электропроводности (электрического сопротивления) тел с температурой может быть вызвано изменением концентрации n носителей заряда или изменением их подвижности u .

Металлы

Квантово-механические расчеты показывают, что для металлов концентрация n свободных носителей заряда (электронов) равна:

n = (1 / 3π 2) · (2mE F / ђ 2) 3/2

где ђ = h / 2π = 1,05 · 10 -34 Дж · с - нормированная постоянная Планка, E F - энергия Ферми.

Так как E F практически от температуры T не зависит, то и концентрация носителей заряда от температуры не зависит. Следовательно, температурная зависимость электропроводности металлов будет полностью определяться подвижностью u электронов, как и следует из формулы (10.1). Тогда в области высоких температур

u ~ λ e / ~ T -1

а в области низких температур

u ~ λ e / ~ const (T).


Степень подвижности носителей заряда будет определяться процессами рассеяния, т.е. взаимодействием электронов с периодическим полем решетки. Так как поле идеальной решетки строго периодическое, а состояние электронов - стационарное, то рассеяние (возникновение электрического сопротивления металла) может быть вызвано только дефектами (примесными атомами, искажениями структуры и т.д.) и тепловыми колебаниями решетки (фононами).

Вблизи 0 К, где интенсивность тепловых колебаний решетки и концентрация фононов близка к нулю, преобладает рассеяние на примесях (электрон-примесное рассеяние). Проводимость при этом практически не меняется, как следует из формулы (10.4), а удельное сопротивление


имеет постоянное значение, которое называется удельным остаточным сопротивлением ρ ост или удельным примесным сопротивлением ρ прим, т.е.

ρ ост (или ρ прим) = const (T)

В области высоких температур у металлов становится преобладающим электрон-фононный механизм рассеяния. При таком механизме рассеяния электропроводность обратно пропорциональна температуре, как видно из формулы (10.3), а удельное сопротивление прямо пропорционально температуре:

График зависимости удельного сопротивления ρ от температуры приведен на рис. 10.2

При температурах отличных от 0 К и достаточно большом количестве примесей могут иметь место как электрон-фононное, так и электрон-примесное рассеяние; суммарное удельное сопротивление имеет вид


ρ = ρ прим + ρ ф

Выражение (10.6) представляет собой правило Матиссена об аддитивности сопротивления. Следует отметить, что как электрон-фононное, так и электрон-примесное рассеяние носит хаотический характер.

Полупроводники

Квантово-механические расчеты подвижности носителей в полупроводниках показали, что, во-первых, с повышением температуры подвижность носителей u убывает, и решающим в определении подвижности является тот механизм рассеяния, который обуславливает наиболее низкую подвижность. Во-вторых, зависимость подвижности носителей заряда от уровня легирования (концентрации примесей) показывает, что при малом уровне легирования подвижность будет определяться рассеянием на колебаниях решетки и, следовательно, не должна зависеть от концентрации примесей.

При высоких уровнях легирования она должна определяться рассеиванием на ионизированной легирующей примеси и уменьшаться с увеличением концентрации примеси. Таким образом, изменение подвижности носителей заряда не должно вносить заметного вклада в изменение электрического сопротивления полупроводника.

В соответствии с выражением (10.1) основной вклад в изменение электропроводности полупроводников должно вносить изменение концентрации п носителей заряда .

Главным признаком полупроводников является активационная природа проводимости, т.е. резко выраженная зависимость концентрации носителей от внешних воздействий, как-то температуры, облучения и т.д. Это объясняется узостью запрещенной зоны (ΔЕ < 1 эВ) у собственных полупроводников и наличием дополнительных уровней в запрещенной зоне у примесных полупроводников.

Электропроводность химически чистых полупроводников называется собственной проводимостью . Собственная проводимость полупроводников возникает в результате перехода электронов (n) с верхних уровней валентной зоны в зону проводимости и образованием дырок (p) в валентной зоне:


σ = σ n + σ ρ = e · n n · u n + e · n ρ · u ρ

где n n и· n ρ - концентрация электронов и дырок,
u n и u ρ - соответственно их подвижности,
e - заряд носителя.

С повышением температуры концентрация электронов в зоне проводимости и дырок в валентной зоне экспоненциально возрастает:

n n = u nо · exp(-ΔE / 2kT) = n ρ = n ρо · exp(-ΔE / 2kT)

где n nо и n pо - концентрации электронов и дырок при Т → ∞,
k = 1,38 · 10 –23 Дж/ К - постоянная Больцмана.

На рисунке 10.3,а приведен график зависимости логарифма электропровод-ности ln σ собственного полупроводника от обратной температуры 1 / Т: ln σ = = ƒ(1 / Т). График представляет собой прямую, по наклону которой можно опреде-лить ширину запрещенной зоны ∆Е.



Электропроводность легированных полупроводников обусловлена наличием в них примесных центров. Температурная зависимость таких полупроводников определяется не только концентрацией основных носителей, но и концентрацией носителей, поставляемых примесными центрами. На рис. 10.3,б приведены графики зависимости ln σ = ƒ (1 / Т) для полупроводников с различной степенью легирования (n1 < n2 < n3, где n – концентрация примеси).

Для слаболегированных полупроводников в области низких температур преобладают переходы с участием примесных уровней. С повышением температуры растет концентрация примесных носителей, значит растет и примесная проводимость. При достижении т. А (см. рис. 10.3,б; кривая 1) – температуры истощения примеси Т S1 – все примесные носители будут переведены в зону проводимости.

Выше температуры Т S1 и до температуры перехода к собственной проводимости Т i1 (см. т. В, кривая 1, рис. 10.3,б) электропроводность падает, а сопротивление полупроводника растет. Выше температуры Т i1 преобладает собственная электропроводность, т.е. в зону проводимости вследствие теплового возбуждения переходят собственные носители заряда. В области собственной проводимости σ растет, а ρ падает.

Для сильнолегированных полупроводников, у которых концентрация примеси n ~ 10 26 м –3 , т.е. соизмерима с концентрацией носителей заряда в металлах (см. кривая 3, рис. 10.3,б), зависимость σ от температуры наблюдается только в области собственной проводимости. С ростом концентрации примесей величина интервала АВ (АВ > A"B" > A"B") уменьшается (см. рис. 10.3,б).

Как в области примесной проводимости, так и в области собственной проводимости преобладает электрон-фононный механизм рассеяния. В области истощения примеси (интервалы AB, A"B", A"B") вблизи температуры Т S преобладает электрон-примесное рассеяние. По мере увеличения температуры (перехода к Т i) начинает преобладать электрон-фононное рассеяние. Таким образом, интервал АВ (A"B" или A"B"), называемый областью истощения примеси, является также областью перехода от механизма примесной проводимости к механизму собственной проводимости.

Элементарные метал­лы являются проводниками электричества первого рода. Способ­ность металлов проводить электричество - их электрическая проводимость обусловлена наличием в них кристаллических решет­ках электронов, находящихся в состоянии проводимости. Энергетическое состояние электронов проводимости обусловлено расщеплением электронных уровней в зависимости от расстояния между центрами атомов в кристалле (рис. 73). Наличие электронов про­водимости может быть доказано посредством исследования эффекта Холла. Электроны, двигающиеся в электрическом поле, меняют направление в зависимости от приложенного магнитного поля, создавая поперечную разность потен­циалов; измерив последнюю, можно вычислить число электронов прово­димости на один атом.

Рис. 73. Расщепление энергетических уровней атома

в зоны при взаимодействии атомов в твердом теле

Взаимодействие электронов проводимости с ионами металла, находящимися в узлах кристаллической решетки, обуславливает большую теплопроводность металла.

Электроны проводимости в металлическом кристалле облада­ют большой подвижностью, однако за фазовую границу металли­ческого кристалла они не проникают. Для преодоления этой границы необходимо затратить энергию, называемую работой выхода электрона. Эта энергия может быть получена электронами в результате освещения или нагревания металла. При освещении поверхности металла от нее отрываются электроны; такое явление называют фотоэлектрическим эффектом. Очевидно, что отрыв электронов при фотоэлектрическом эффекте обусловлен энергией кванта света, падающего на поверхность металла.

На границе раздела двух различных металлов возникает контактная разность потенциалов. Ее возникновение обусловлено различной концентрацией электронов проводимости к различной работой выхода электронов у соприкасающихся металлов. Некоторые пары металлов обладают значительной контактной разностью потенциалов. Величина контактной разности потенциалов существенно зависит от температуры. В зависимости от поведения металлов в магнитном поле различают диамагнитные ,парамагнитные иферромагнитные металлы. Мерой магнитных свойств металлов, как и других веществ, служит магнитная восприимчивость, которая определяется восприимчивостью вещества к магнитным силовым линиям. Металлы с отрицательной восприимчивостью оказывают большее сопротивление магнитным силовым линиям, чем пустое пространство, и называются диамагнитными; металлы с положительной восприимчивостью хорошо проводят магнитные силовые линии и называются парамагнитными. Диамагнитные вещества, помещенные между полюсами сильного магнита, ориентируются перпендикулярно, а парамагнитные вещества - вдоль силовых линий. Металлы с особо высокой

магнитной восприимчивостью (например, железо) называются ферромагнитными . Парамагнитные металлы втягиваются в магнитное поле, а диамагнитные выталкиваются из него. Диа-

магнитным является, например бериллий и металлы подгрупп цинка, галлия, германия. Парамагнитными являются - щелочные, щелочноземельные и металлы побочных подгрупп периодической системы; ферромагнитных металлов немного - это железо, кобальт, никель, гадолиний и диспрозий. Ферромагнитные свойства металлов сохраняются лишь до определенной кри­тической температуры, называемой точкой Кюри, выше которой остаются лишь обычные парамагнитные свойства.

Непрозрачность металлов также обусловлена присутствием в кристаллической решетке (а также и в расплаве) свободных электронов. Подвижные электроны в металле гасят световые колебания, превращая их энергию в теплоту или, в определенных условиях, используя ее для высвобождения электронов с поверхности металла (фотоэлектрический эффект). Как известно, металлический блеск объясняется тем, что металлы отражают большую долю падающего на них света. Интенсивность блеска определяется долей поглощаемого света. Наиболее ярко блестят палладий и серебро. Большинство металлов почти полностью отражает свет всех длин волн спектра, в связи с чем они имеют белый или серый цвет. И только некоторые металлы (медь, золото, цезий) поглощают зеленый или голубой свет сильнее, чем свет других длин волн, в связи с чем, они окрашены в желтый или даже красный цвет. Этим объясняется способность всех металлов полностью отражать радиоволны, которая используется для обнаружения различных металлических объектов с помощью радиоволн (радиолокация).

Металлы относятся к веществам с очень хорошей электронной проводимостью (проводники первого рода). Их удельная электропроводностьот10 4 до10 6 ом -1 ∙см -1 , или в системе СИ от10 6 до10 8 сим∙м -1 (1 сим = 1 ом -1 ) . Несколько

меньшей проводимостью, чем чистые металлы, обладают их сплавы, некоторые интерметаллические соединения и различные карбиды, гидриды, нитриды метал­лов, являющиеся фазами переменного состава. Удельная проводимость металлов выражается уравнением

= neu ,

где n -концентрация электронов проводимости, см -3 ;е -

Заряд электрона, равный 1,6∙10 -19 к ,u -подвижность электронов,см 2 / (в∙сек) .

Если число атомов в 1 см 3 металла порядка10 22 , число валентных электронов каждого атома единица, топриu =100 см 2 / (в∙сек) бдет порядка10 5 ом -1 ∙см -1 .

Так как концентрация электронов проводимости n в данном металле практически постоянна и не зависит от температуры, тобудет зависеть только от тех факторов, которые влияют на подвижность электроновu . В частности, при повышении температуры увеличивается амплитуда колебаний положительных ионов металлической решетки. Из-за этого более интенсивно рассеиваются электроны и уменьшается их подвижность, вследствие чего электропроводность метал­лов при нагревании уменьшается. Наоборот, при приближении к аб­солютному нулю уменьшается амплитуда колебания ионов, кристалли­ческая решетка упорядочивается, уменьшается влияние ионов на электроны проводимости и облегчается продвижение последних в металле. Многие металлы в силу особых квантовых условий при низких температурах становятся сверхпроводниками.

Примеси в металле нарушают строение кристаллической решетки. Проводимость такого металла оказывается меньше, чем чистого. Имен­но по этой причине приходится, например, медь, идущую для изготовления проводов, тщательно очищать электролитическим рафини­рованием.

Диэлектрики в противоположность металлам характери­зуются жесткой локализацией валентных электронов около опреде­ленных атомов, находящихся в ковалентной связи с соседними ато­мами. В типично ионных решетках электроны тоже прочно удержива­ются около каждого иона. По этой причине диэлектрики имеют очень малую удельную электропроводность (от10 -10 до10 -22 ом -1 ∙ см -1 ) и обладают изолирующими свойствами.

К диэлектрикам относятся некоторые простые вещества (алмаз), подавляющее большинство органических соединений, керамические материалы, слюда, силикатные стекла и др. Особо важное значение имеют полимерные материалы как диэлектрики, используемые в качестве хороших изоляторов. К газообразным диэлектри­кам относятся N 2 ,SF 6 и др. В состав диэлектриков могут входить атомы металлических элементов, но атомы неметаллов входят обязательно, так как без них не существуют прочные ковалентные, ионные или ионно-ковалентные связи между атомами. Таких связей нет только в ожиженных и закристаллизованных газах нулевой группы эле­ментов периодической системы, которые также обладают свойствами диэлектриков.

Между металлами, как очень хорошими электронными проводниками, и диэлектриками, обладающими более или менее высокими изо­лирующими свойствами, находится громадная группа веществ с удельной электропроводностью от 10 -10 до10 4 ом -1 см -1 . Вещества этой группы называютполупроводниками . Под полупроводниками понимают обычно неметаллические проводники с электронным механизмом тока.

Сравнивая свойства их с металлами и диэлектриками, можно нагляднее всего характеризовать полупроводники.

При повышении температуры проводимость полупроводников в отличие от металлов обычно возрастает. Электропроводность диэлектриков тоже возрастает. При температуре, близкой к абсолютному нулю, проводимость полупроводников

и диэлектриков практически нулевая. По электрическим свойствам полупроводники стоят ближе к диэлектрикам, чем к металлам, от которых они имеют принципиальное качественное отличие.

По сравнению с металлами проводимость полупроводников не уменьшается, а увеличивается при введении ничтожных количеств примесей, при появлении других дефектов строения кристаллической решетки, при действии различных излучений. Электрофизические свойства полупроводниковых соединений весьма чувствительны к отклонениям от стехиометрического состава. В отличие от металлов полупроводники хрупки и менее теплопроводны, хуже отражают видимые лучи.

Малая проводимость их по сравнению с металлами вызвана не тем, что подвижность носителей заряда сильно отличается в металлах и полупроводниках, а главным образом тем, что ток в последних пере­носится небольшой частью электронов, например, стомиллионной долей от общего числа валентных электронов. Уменьшение при охлаждении полупроводников может быть объяснено только быстрым уменьшением числа электронов проводимостиn , так как известно, что подвижность электронов возрастает при охлаждении. Стремлениеиn к нулю приТ → 0 указывает на то, что электроны проводи­мости в полупроводниках создаются тепловым движением (или дру­гими видами энергии, сообщенной извне). Это основное отличие полупроводников от металлов.

Объяснение электропроводности металлов, полупроводников и диэлектриков дается на основе квантовой теории строения кристалли­ческих тел - так называемой зонной теории. Рассмотрим некоторые общие положения этой теории. Переход атомных паров в кристаллическое вещество можно рассматривать как химическую реакцию, так как оптические, термодинамические, электрофизические и другие свойства твердых тел отличаются от свойств газов. Важно отметить, что атомные спектры газов имеют линейчатое строение, а спектры твер­дых тел имеют сплошной характер или полосатую, очень сложную структуру. Уже при взаимодействии двух одинаковых атомов дискретные атомные энергетические уровни расщепляются и превращаются в полосы. Тем большее расщепление уровней происходит, когда большое числоN атомов, например лития, сближается с далеких расстояний до расстояний, на которых они находятся в кристаллической решетке. На рис. 74,а это расстояние между ядрами обозначено на оси абсцисс буквойd 0 . По оси ординат отложена энергия. Находясь на больших расстояниях, атомы не взаимодействуют друг с другом, и диаграмма уровней будет такая же, как и для изолированного атома лития(ls 2 2s 1 ) . При сближении атомов начнется взаимодействие между ними, прежде всего у каждого из них станет расщепляться уровень валентных электронов(2s) . Уровень(2s) расщепляется в систему весь­ма близко расположенныхN уровней, образуя целую полосу (зону) уровней. Более глубокие уровни при образовании кристалла ока­зываются совсем не расщепленными или только незначительно рас­щепленными.

Если ширина зоны валентных состояний в кристалле равна 1 эв , а число атомовN , образующих1 см 3 кристалла, имеет порядок10 22 , то энергетические уровни в зоне расположены в среднем на расстоя­ниях1 / 10 22 эв друг от друга. Между зонами состояний1s и2s в крис­талле лития находится область неразрешенных состояний (запрещен­ная зона).

Заполнение уровней разрешенных зон электронами подчиняется принципу Паули, поэтому число электронов не может быть больше числа возможных состояний в данной зоне. Максимальное число электронов в зоне должно быть не больше qN (гдеq - степень вырождения исходных уровней атома. Следовательно, в зонеs могут находиться лишь2 N электронов, так

как степень вырождения s- уровней равна двум (из-за двух различных значений спинового числа). В зонер могут находиться максимум6 N электронов (из-за шести­кратного вырожденияр - уровней) и т. д.

Рис. 74. Расщепление энергетических уровней ато­ма в зоны при взаимодействии атомов в твердом теле:

а - для лития;б - для бериллия

На основе зонной теории легко объяснима электропроводность твердого тела. Например, она объясняет электропроводность лития и других щелочных металлов У них валентная зона занята только наполовину, так как N атомов имеютN валентных электронов (по одномуs - электрону на атом), а число мест вs - зоне2 N . Незаполненность верхней (валентной) зоны порождает электронную проводимость, характерную для металла. Действительно, под влиянием электрического поля валентные электроны должны начать движение к положительному полюсу, т. е. приобретать дополнительную энергию. Такое наращивание этой энергии очень малыми порциями (почти не­прерывное) возможно, если в зоне валентных состояний есть уровни, свободные от электронов. Если зона валентных состояний полностью заполнена электронами, то проводимость должна отсутствовать, т. е. тело должно иметь свойства диэлектрика. В полностью заполненной зоне электроны не могут наращивать энергию малыми порциями, так как принцип Паули запрещает переходы внутри заполненной зоны.

С этой точки зрения атомы бериллия и других элементов 2-й группы имеют полностью заполненную s- зону валентных состояний:N атомов, образующих кристалл, поставляют2 N электронов (по дваs - электрона каждый), что отвечает числу возможных состояний в зоне. Однако кристаллы этих веществ не являются изоляторами (диэлектриками) и хорошо проводят ток, как металлы. Это объясняется следующим. При сближении атомов бериллия и других элементов 2-й группы до расстояния, равного параметру решеткиd 0 , расщепленные уровниs- ир- состояний перекрывают друг друга (рис. 74,б ) и образуют объединенную зонуsp- состояний, в которой имеется8 N мест. Таким образом, верхняяsp- зона имеет толькозанятых мест в кристаллах элементов 2-ой группы,мест остаются свободными. Поэтому указанные вещества имеют металлическую проводимость. У других металлов тоже только частично заполнена электронами верхняя (валентная) энергетическая зона.

Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запретными зо­нами. Как правило, если электроны образуют в атоме или молекуле законченную группу, то при объединении их в твердое или жидкое тело создаются зоны, все уровни которых заполнены, поэтому такие вещества будут обладать при абсолютном нуле свойствами изолято­ров. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, - олова, соединений типаA I II B V ,A II B VI ,CSi каждый атом связан единичными валентными свя­зями с четырьмя ближайшими соседями, так что вокруг него обра­зуется законченная группа электроновs 2 p 6 и валентная зона оказывается заполненной.

Полупроводники и диэлектрики отличаются от металлов тем, что валентная зона у них при Т 0 К всегда полностью

заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний. Ширина запрещенной зоны Δ E у полупроводников - от десятых долей электрон-вольт до3 Эв (условно), а у диэлектриков - от3 до5 Эв . Если между полупро­водниками и диэлектриками имеется только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в метал­ле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 75,а ).

Для возбуждения проводимости в полупроводнике необходимо к электрону, находящемуся в заполненной валентной зоне, подвести энергию, достаточную для преодоления зоны запрещенных состояний. Только при поглощении энергии не меньше, чем Δ E , электрон будет переброшен из верхнего края валентной зоны в свободную зону (зону проводимости). Если этот энергетический порог преодолен, то чистый (собственно) полупроводник имеет электронную проводимость. Чем меньше ширина запрещенной зоныΔ Е , тем больше проводимость при данной температуре. Так как у диэлектриковΔ Е очень велика, то проводимость их очень мала.

При приближении к абсолютному нулю термическое возбуждение оказывается недостаточным, и полупроводники становятся диэлектриками, а металлы становятся сверхпроводниками. Чем выше температура и чем более интенсивно полупроводник облучается квантами с энергией hне меньшеΔ Е , тем больше проводимость собственно полупроводника, так как увеличивается число электронов, перебрасываемых из валентной зоны в зону проводимости.

Для чистых полупроводников при убывании частоты падающего света коэффициент поглощения при некотором значении резко падает, и материал становится прозрачным для лучей с меньшими частотами. Этот участок быстрого спада поглощения называется краем собственного поглощения. Длина волныи частота , отвечающая краю собственного поглощения, приближенно определяются условиями

Рис. 75. Схема энергетических зон:

а - в металле;б - в полупроводнике;в - в диэлектрике;

Δ Е - ширина запрещенной зоны

h = hC / = Δ Е,

где Δ Е называется оптической шириной запрещенной зоны.

Энергия квантов видимого света лежит в пределах 1,5 - 3,0 эв , т. е. обычно превышает энергию возбуждения проводимости(Δ Е) . Если в полупроводнике есть некоторое количество примесей, он ста­новится непрозрачным в широкой области частот - от ультрафиолетовой вплоть до радиочастот.

Металлы при облучении светом практически не изменяют проводимость, так как число электронов проводимости в них не изменяется.

Уход электрона из валентной зоны полупроводника в зону проводимости оставляет свободное место (дырку) в валентной зоне с положи­тельным зарядом, численно равным заряду электрона. Таким образом, дыркой называется освобожденное от электрона место в области нарушенной ковалентной связи, соединяющей соседние атомы собственно полупроводника, имеющее единичный положительный заряд.

На рис. 76 изображены схемы появления дырки в атомной решетке элементарного полупроводника и возникновение электрона проводи­мости. Электрон, появившийся в междоузлии, является подвижным носителем заряда. Такие электроны, как и дырки, могут свободно пе­ремещаться по кристаллу (диффундировать). Если поместить кристалл в электрическое поле с напряжением, падающим справа налево, то «свободный» электрон приобретает направленное движение против поля (вправо). На место образовавшейся дырки (+) перейдет электрон из какого-либо места соседней связи левее дырки. Таким образом, образуется новая дырка вместо прежней. Следовательно, дырка перемещается по направлению поля (влево) при скачках электронов в валентной зоне, совершающихся слева направо, как показано на рис. 76,а (стрелками). Перенос заряда электронами валентной зоны называют дырочным. Таким образом, в собственных полупроводниках бывает двоякий механизм проводимости: электронный и дырочный. Удельная электропроводность полупроводника в общем случае выражается уравнением

= neu n + peu p ,

где u n иu p - подвижности соответственно электронов и дырок;n иp - их концентрации.

В собственном полупроводнике

n = p = Ae,

где k - константа Больцмана, равная1,38∙10 -16 эрг /град , или0,863·10 - 4 эв /град ;А для полупроводников с ковалентными связями (на­пример, кремния и германия) пропорциональнаТ 1,5 , а подвижности носителей заряда пропорциональныТ -1,5 , поэтому без большой погрешности можно написать считая 0 - постоянной величиной для данного полупроводника.

= 0 e,

Рис. 76. Схема разрыва валентной связи и появление

свободного электрона и дырки как носителей заряда:

а - в плоском изображении;б - в зонной энергетической диаграм­ме;А - атомы кремния или германия;(:) - валентные электроны, осуществляющие связь соседних атомов;(+) - дырка;

(-) - свободный электрон;Е с - нижний уровень свободной зоны;

Е в - верхний уровень валентной зоны

Логарифмируя, получим

ln = ln 0 -

Это уравнение прямой линии ln = f с угловым коэффициентомtg = - . Отсюда

Δ E = - 2 k tg ,

где - угол между прямой и положительным направлением оси1/Т .

Так как этот угол всегда тупой, то tg < 0 , аΔЕ > 0 . ЗдесьΔ Е называют термической шириной запрещенной зоны, т. е. вычисленной из температурного хода проводимости.

Возникновение пары электрон - дырка за счет нарушения нормаль­но заполненной связи (НЗ) можно записать в виде уравнения обратимой реакцииНЗ + Δ Е
+
(где- электрон проводимости, - дырка). При заданной температуре устанавливается динамическое равновесие. Процесс, идущий слева направо, является генерацией электронов и дырок, а обратный процесс называется рекомбинацией электронов и дырок. При повышении температуры в соответствии с принципом Ле Шателье это равновесие сдвигается вправо. При данной температуре по закону действия масс можно записать константу равновесия так:K = np / [НЗ] . Из того, что практически очень большая величина[НЗ] постоянна, следует

np = const

Нормально заполненных связей практически столько, сколько свя­зей в 1 см 3 . Например, в1 см 3 германия связей(6,02 ∙ 10 23 ∙ 5,32 / 72,59) x 2 = 9,0 ∙ 10 22 (здесь5,32 - плотность германия,г/см 3 ;72,59 - его атомная масса). Дробь, представляющая собой число атомов герма­ния в1 см 3 , умножается на 2 потому, что каждый атом имеет 4 связи с соседними атомами, но каждая связь соединяет два атома.

Для беспримесного полупроводника n = p = n i (n i - от словаintrinsic - собственный); поэтому можно представить

np = n.

Это значит: произведение концентраций электронов проводимости и дырок в полупроводнике при постоянной температуре постоянное, рав­ное произведению концентраций их в собственном полупроводнике при той же температуре и не зависит от характера и количества содержа­щихся в нем примесей. (Сравните эти закономерности с законами равновесия между ионами Н + иОН - в воде и водных растворах.)

Для германия при 300 0 К np = 6,25 ∙ 10 26 . Отсюда концентрация электронов и дырок в беспримесном германииn = p = n i =2,5 ∙ 10 13 см -3 . Для кремнияn i примерно на три порядка меньше.

Примесные полупроводники. Кроме электронов и дырок, появляющихся одновременно при нарушении валентных связей в собственном полупроводнике, могут быть также и носители зарядов, происхождение которых связано с наличием атомов примесей. В настоящее время удается изготовить полупроводники очень высокой чистоты с концентрацией примесей порядка10 -10 ат. % , однако идеально беспримесных полупроводников вообще нет.

Наиболее чистые образцы германия имеют удельную электропроводность порядка 0,01 - 0,02 ом -1 см -1 . Примеси, вводимые в высокоочищенные образцы полупроводников, сильно увеличивают электропроводность, а значит, уменьшают удельное сопротивление. Например, при введении примерно10 15 атомов сурьмы в1 см 3 особо чистого германия(4 ∙ 10 -6 вес. %) с удельной проводимостью0,017 ом -1 ∙ см -1 последняя увеличивается примерно на порядок, а сопротивление падает с60 до4 - 10 ом ∙ см .Полупроводники, содержащие примеси (реальные полупроводники), называются примесными. Примеси в полупроводниках принято делить на донорные и акцепторные. Первые создают электронную проводимость, а вторые - дырочную.

Рассмотрим примеры влияния на проводимость германия и кремния примесей замещения. Если в кристаллическую решетку их ввести атом сурьмы или другого элемента V группы, то он, став на место атома германия (или кремния) в узле решетки, образует валентные связи с четырьмя соседними ато-

мами германия, расположенными по вершинам окружающего его тетраэдра. Так как у элементов V группы во внешней оболочке 5 валентных электронов, то один из них будет избыточным и не примет участие в образовании связей. Такой электрон оказывается слабо связанным со своим атомом в кристалле; чтобы его отделить от атома и перевести в междоузлие, нужно затратить мало энергии. В зонной модели это значит, что для перевода такого электрона в зону проводимости необходимо затратить гораздо меньше энергии, чем для перевода электрона с потолка валентной зоны до нижнего края зоны проводимостиΔ Е . Значит, уровни, на которых будут находиться такие электроны, должны располагаться в запрещенной зоне вблизи от дна зоны проводимости (на уровнеЕ Д на рис. 77,б ).

Уже при невысокой температуре эти электроны получают достаточное количество энергии (Δ Е Д ) - порядка сотых долей электрон - вольта для перехода в зону проводимости. Но это не

оставит дырки в валентной зоне, зато у атома сурьмы появится единичный положительный заряд (неподвижный). Δ Е Д можно назвать энергией активации донорной примеси. Увеличив концентрацию сурьмы в германии, мы тем самым увеличим концентрацию свободных электронов и положительных ионов сурьмы, не увеличив концентрацию дырок. Наоборот, по концентрация дырок должна уменьшаться во столько раз, во сколько увеличивается концентрация электроновn . В этом случае электроны станут основными носителями заряда, а дырки – не основными. Такие полупроводники по преимуществу с электронной проводимостью назы­ваются полупроводникамиn - типа (от лат.negative - отрицательный).

Если вводить в кристаллическую решетку германия (кремния) атом галлия или другого элемента Ш А подгруппы, то у атома замещающей примеси не хватит одного электрона для осуществления четырех нормальных связей с соседними атомами германия. Одна из связей будет незаполненной (одноэлектронной), но атом галлия и смежный с ним атом германия

будут электронейтральными. Однако при небольшом возбуждении электрон из какой-либо нормальной соседней связи между атомами германия может перейти в место незаполненной

связи. Тогда у атома галлия появится отрицательный заряд,

Рис. 77. Модель образования электронной примесной

проводимости в кремнии и германии:

а - в плоском изображении;б Е Д - донорный уровень;Δ Е Д - энергия активации донора;1 + - за­ряд иона донора (остальные обозначения те же, что и на рис. 76)

а где-то вблизи возникнет дырка (рис. 78). Таким легированием германия (кремния) элементами III A подгруппы можно повышать концентрацию дырок, которые станут основными носителями подвижных зарядов, а электроны – не основными. Так как энергия возникновения дырки вблизи акцепторной примесиΔ Е а тоже порядка сотых долейЭв , то появление галлия в решетке германия как примеси замещения, по - видимому, приводит к появлению локального уровняЕ а вблизи верхнего края валентной зоны (рис. 78,6 ). Уже при невысокой температуре электроны из валентной зоны переходят на этот акцепторный уровеньЕ а , оставляя дырку в валентной зоне. Полупроводники с избытком дырок (с акцепторными примесями) называются дырочными илир- типа полупроводниками (от лат.positive - положительный).

Атомы замещающей примеси в кристаллах германия и кремния действуют как донорные примеси, если у них валентных электронов больше четырех, и как акцепторные примеси,

если валентных электронов в атомах замещающих примесей меньше четырех. Например, атомы цинка, замещающие атомы кремния в решетке, действуют как двойные акцепторы.

Если примесные атомы образуют твердые растворы внедрения в полупроводнике, то атомы металлов играют роль доноров, а атомы не­металлов - роль акцепторов. Очень важно различать, в какое поло­жение попадают атомы примеси в решетку. Например, при малой концентрации магния в решетке GaAs (ниже10 18 см -3 ) они действуют как доноры, являясь атомами внедрения, а при большой концентрации начинают действовать как акцепторы, так как становятся заместителя­ми атомов галлия в решетке. Атомы лития и меди, как примеси

Рис. 78. Модель образования дырочной примесной

про­водимости в кремнии или в германии:

а - в плоском изображении;б - в зонной энергетической диаграмме;Е а - акцепторный уровень;Δ Е а - энергия активации акцептора;- электрон перекочевавший из места валентной связи между атомамиА и оставивший там дырку(+) ;

    Заряд иона акцептора (остальные обозначения те же,

    что и на рис. 76)

внедрения в германий, являются донорами. Так же ведет себя медь в арсениде индия.

В полупроводниковых соединениях чем больше будет разность электроотрицательностей атомов в решетке, тем больше степень ионности связей. Это оказывает определенное влияние на свойства полупровод­ника, так как с увеличением степени ионности связей обычно увеличи­вается ширина запрещенной зоны.

В случае замещения более электроотрицательного атома полупроводникового соединения атомами с большим числом валентных электронов, чем у замещаемого атома (например, атомов мышьяка в GaAs атомами селена или теллура), примеси являются донорами, а поэтому возникаетn - проводимость. Если же примесные атомы имеют меньшее число валентных электронов, то они являются акцепторами, и поэтому появляетсяр- тип проводимости. То же правило доминирует и при за­мещении менее электроотрицательного атома другими. Например, при замещенииGa вGaAs атомамиZn, Cd, Mg возникают акцепторные центры ир- тип проводимости. Однако из этих правил есть и исключения, которые пока не нашли себе объяснения. Требуется дальнейшее изучение этих вопросов.

При сильно выраженном ионном характере связи возможно иное объяснение появлению донорных и акцепторных центров в случае образования твердых растворов замещения. Например, если в сульфидах цинка, кадмия, свинца атомы серы замещать атомами хлора, то можно думать, что донорные уровни возникают не потому, что хлор отдает один из своих электронов в зону проводимости, а потому, что сера способна отнимать два электрона от атома металла, а хлор только один. В результате часть электронов, отданная атомами металла, но не при­соединенная к атомам хлора, и создает n - проводимость.

Локальные уровни в запрещенной зоне полупроводника могут появиться не только из-за примесей, но и в результате

образования в ре­шетке протяженных дефектов. Например, при

образовании дислокаций в кристаллах германия и кремния создаются акцепторные уровни вследствие того, что ненасыщенные валентные связи около таких дефектов могут захватывать электроны, т. е. играть роль акцепторных центров. Например, в германии дислокации образуют акцепторные уровни, отстоящие примерно на 0,2 эв от дна зоны проводимости. Нарушение стехиометрического состава соединений из-за образования вакансий в различных подрешетках полупроводникового соединения также приводит к появлению донорных или акцепторных центров. При появлении вакансий в подрешетке неметаллических ато­мов возникают донорные уровни иn - тип проводимости (ZnO 1 - x , CdS 1 - x , PbS 1 - x и т. п.). При появлении вакансий в подрешетке металлических атомов возникают акцепторные уровни ир- тип проводимости (С u 2 - x О, T i 1 - x О, Pb 1 - x S и т.п.).

Это правило находит себе объяснение в том, что при удалении атома неметалла из решетки остаются слабо связанные электроны у атомов металла, окружающих пустой узел. Эти электроны легко отделяются от атомов металла и становятся электронами проводимости. При удале­нии атома металла из решетки у атомов неметалла, окружающих пус­той узел, остаются ненасыщенные валентности, которые обусловливают появление акцепторных уровней и порождают р- тип проводимости.

Халькогениды свинца интересны тем, что используются в виде тонких пленок в качестве фотосопротивлений, очень чувствительных к инфракрасным лучам. Все три халькогенида имеют структуру типа NaCl и являются двусторонними фазами вычи­тания переменного состава. Бребрик и Сканлон изменяли состав кристаллов сульфида свинца, нагревая их20 ч до500 0 С при разном давлении паров серы, затем быстро охлаждали их до комнатной температуры. На рис. 79 приведены ре­зультаты исследования удельного сопротивления полученных образцов,

измеренного при комнатной температуре. Максимум сопро-

тивления получившегося образца отвечает давлению паров серы примерно 0,01 мм рт. ст. (это давление насыщенных паров серы при температу­ре около103° С ). В этих условиях совершается термодинамическое пре­вращениеn- типа сульфида вр- тип и обратно и полу­чается образец с миниму­мом проводимости, отвеча­ющий стехиометрическому составуPbS . Если упру­гость паров серы меньше, то во время термической обработки сульфида при500° С образец приобретает все большую и большуюn- проводимость, обуслов­ленную увеличивающейся концентрацией вакансий в подрешетке серы. При уве­личивающейся упругости паров серы во время тер­мической обработки суль­фида образец приобретает все большую и большую проводимостьp - типа, обуслов­ленную увеличивающейся концентрацией вакансий в подрешетке свинца. Та­ким образом, по обе стороны от максимума сопротивление резко убы­вает, как видно на рис. 79.

Образование вакансий в подрешетке серы с удалением атомов серы из сульфида свинца можно записать в таком виде:

q+ [S] q-
q+ [S]+S 2

Здесь q+ иq- - некоторый заряд меньший единицы, имеющийся на атомах, соответствующий доле ионной составляющей химической связи; q- - вакансии в анионной подрешетке; формула паров серы условно записанаS 2 .

По правилу фаз С = К + 2 - Ф эта система имеет две степени свободы, так как в ней одна твердая фаза, одна газообразная и два компонента. Поэтому, чтобы получить полупроводник с определенны­ми свойствами, необходимо установить не только постоянную темпера­туру, но и определенное давление паров серы (или свинца), соответст­вующее заданной температуре.

Температура резервуара с серой, 0 C

Рис. 79. Зависимость сопротивления кри­сталлов сульфида свинца от давления па­ров серы в процессе его

термической обра­ботки

Этот вывод важен для технологов. Он заставил перейти от однотемпературных печей при синтезе полупроводниковых соединений к двухтемпературным. Например, при одной температуре должен нахо­диться обрабатываемый сульфид, а при другой - сера или свинец (рис. 80).

Рис. 80. Схема синтеза полупро­водников в двухзонной печи

в условиях бивариантного равнове­сия с управлением

давлением па­ра одного из компонентов

В откачанной и запаянной ампуле находится при повышенной температуре T 1 (например, порядка1200° К ) сульфид в кварцевой лодочке, а в другой лодочке - сера, допустим, при температуре ее плавленияТ 2 = 392° К , при которой будет все время поддерживаться давление паров серы3,2 ∙ 10 -2 мм рт. ст. ИзменяяТ 2 , можно варьиро­вать давление паров серы, а значит, состав и свойства образца сульфи­да.

Выделение атомов серы из кристаллов сульфида при малом давле­нии паров серы объясняется весьма просто. Сначала удаляются атомы, лежащие на поверхности, из открытых трещин. На их место изнутри диффундируют другие атомы, оставляя после себя вакансии, и т. д. - до состояния термодинамического равновесия. Так как атомы серы имеют в решетке заряд q - , то, испа­ряясь в виде молекулS 2 (илиS n ) они оставляют свой заряд вакан­сиям. Так возникают донорные уровни. Если давление паров серы настолько велико, что все анионные вакансии заполнены путем диффу­зии по ним атомов серы вглубь, то может начаться достройка кристал­ловPbS атомами серы на поверхности. К этим атомам серы начнут диффундировать на поверхность атомы свинца, образуя в объеме кристалла вакансии с положитель­ным зарядомq + . Эти заряды эквивалентны акцепторным уровням, поэтому сульфид приобретаетр- проводимость:

q+ [S] q- + S 2
q+ [S]

(1 + x ) [ Pb ] [ S ] q -

Подобным образом возникают вакансии в подрешетке серы при обра­ботке PbS в парах свинца с повышенным давлением. Переход от[ Pb ] [ S ] q - к[ Pb ] q + [ S ] осуществляется в очень узкой области гомогенности - от 0,9995 0,0005 [S] до [S] 0,9995 0,0005 ; в этом узком интервале изменений состава изменяются знак и концент­рация подвижных носителей заряда.

На этом и других примерах образования фаз вычитания (ZnO 1 - x , С u 2 - x О, CdS 1 - x , и т. д.) можно видеть огромное значение вакансий в ионно-ковалентного характера соединениях переменного состава для возникновения тех или иных электрофизических свойств полупровод­ника.

Электропроводность примесных полупроводников (точнее с преоб­ладающей концентрацией донорных или акцепторных уровней) скла­дывается из двух слагаемых: = 1 + 2 ,

где 1 = e и 2 = e

Здесь Δ Е - ширина запрещенной зоны собственно полупроводни­ка;Δ Е" - энергия активации донорного или акцепторного центра (примеси).

Первое слагаемое выражает собственную проводимость, а второе - примесную проводимость полупроводника. При низкой температуре преобладает второй член, так как Δ Е" <Δ Е . С повышением темпера­туры начинает больше проявляться собственная проводимость, а при­месная теряет значение. Чем большеΔ Е , тем выше должна быть тем­пература, при которой в примесном полупроводнике станет преобла­дать собственная проводимость. Так, в примесном кремнии собствен­ная проводимость проявляется при более высокой температуре, чем в примесном германии, потому чтоΔ E Si =1,12 эв , аΔ E Ge =0,72 эв при комнатной температуре. Поэтому рабочая температура германие­вых приборов не превышает60 - 80° С , а кремниевые приборы могут работать до200° С . Надо иметь в виду, что возникновение собственной проводимости, достигающей известной доли примесной, в примесном полупроводнике нарушает режим работы приборов.

Иногда при условии активации практически всех донорных или акцептор­ных центров, когда собственная проводимость еще почти не имеет значения, на кривой = f (T) может

появиться область понижения проводимости за счет преобладающего влияния падающей подвижности носителей заряда. При даль­нейшем повышении Т и усилении генерации подвижных носителей заряда соб­ственно полупроводника опять повышается проводимость.

Расположение примесных уровней в запретной зоне зависит от положения элемента в периодической системе. Напри­мер, в твердых растворах замещения элементы III А подгруппы являются одиночными акцепторами, а элементыV A подгруппы одиночными донорами. Литий может только внедряться в кристаллические решетки германия и кремния и создавать донорные уровни. Энергия активации примесных атомовIII А иV A подгрупп в германии значительно мень­ше, чем в кремнии. Это в известной мере объясняется большей ди­электрической проницаемостью германия(15,9) , чем кремния(11,9) . Интересно, что энергия активации акцепторовIII группы увели­чивается от бора к индию. Это объясняется нарастанием металличес­ких свойств элементов отВ кIn , вследствие чего способность к захва­ту электронов падает. Отсюда растет энергия активации акцептора.

Следует отметить, что полупроводники, в которые введена какая-либо примесь при определенной температуре, могут оказаться в неравновесном состоянии при рабочей температуре прибора. Это сос­тояние может сохраняться (иногда долго при низкой температуре - ложное равновесие) или медленно изменяться, потому что процессы в твердых телах требуют значительной энергии активации. Однако под влиянием локального нагрева в том или другом полупроводниковом устройстве под влиянием облучения или под действием каталитическо­го центра может начаться более быстрое изменение (диффузионное перераспределение вещества, выкристаллизация избытка примеси и т. п.). В результате теряется надежность устройства, так как изменя­ются его параметры. Все сказанное выдвигает определенные требова­ния, касающиеся условий и методов приготовления полупроводников, пригодных для обеспечения надежной работы приборов.

p - n -переходы. Получение сплавного диода и триода. p-n- переходом называют переходный слой между электронной и дырочной областью в монокристалле полупроводника. Представим, что монокристалл германия разделен некоторой плоскостьюOR (рис. 24), по одну сторону которой, положим слева, находится одно­родная областьn- типа, а по другую сторону -р- типа проводимости. Это значит, что слева от плоскости преобладают донорные примеси, а справа - акцепторные. Допустим, концентрация акцепторовN а в областир и концентрация доноровN Д в областиn одинаковы и равны10 16 см -3 . Это может быть при некоторой температуре ниже300 0 К , при которойn р = n 2 i = 10 26 . Будем считать, что все примеси полностью активированы иn = N Д , ар = N a . Тогда в областиn концентрация равновесных дырокр n равна10 26 / 10 16 = 10 10 c м -3 . Такая же концент­рация электроновn р в правой (дырочной) области.

Н
а рис. 81 изображено постепенное изменение концентрации элект­ронов и дырок в области перехода от электронной к дырочной части полупроводника (между плоскостямиММ иМ 1 M 1 ).

Рис. 81. Схема распределения при­месей, дырок и электронов в полу­проводнике с резким изменением типа проводимости

Такое равновесное распределение создается в силу присущей свободным электронам и дыркам способности диффундировать из мест с большей концентраци­ей в места с меньшей концентрацией, что требуется законами термо­динамики. Перемещение основных носителей через переход обусловливает так называемый диффузионный ток. Благодаря этому в некотором слое области р появится отрицательный заряд, а в областиn - поло­жительный. Электроны, попадая изn - области вр- область, оставляют положительные ионы доноров вn - области и частично нейтрализуют дырки вр- области. Дырки, попадая изр- области вn - область, оставля­ют отрицательные ионы акцепторов вр- области и частично нейтрали­зуют электроны вn - области. Отрицательные ионы акцепторов и поло­жительные ионы доноров являютсянеподвижными носите­лями зарядов.

Таким образом, по обе стороны плоскости OR появляется двойной слой зарядов, противоположных по знаку. По одну сторону - вn - области - он обеднен электро­нами проводимо-

сти, а по дру­гую - в р- области - обеднен дырками, т. е. основными подви­жными носителями заряда. Со­здающееся поле противодейст­вует диффузии дырок вn - об­ласть и диффузии электронов вр- область, вследствие чего и ус­танавливается равновесное рас­пределение электронов и дырок, как изображено на рис. 81.

Область повышенного сопро­тивления р - n - перехода (между плоскостямиММ иМ"М" ) на­зывается запорным слоем, пото­му что через него в прямом на­правлении (пропускном) справа налево электрический ток проходит легко, а в обратном направлении (запорном) - слабо. В ре­зультате запорный слой обладает выпрямляющим действием. В зависимости от рода полупроводника ир - n - перехода ширина за­порного слоя бывает от долей микрометра до нескольких микрометров.

Для выпрямления переменного тока служит полупроводниковый диод, представляющий собой полупроводниковый кристалл, разделен­ный на две части р - n- переходом, с укрепленными на электронной и дырочной частях металлическими невыпрямляющими контактами.

Рассмотрим, как будет вести себя запирающий слой во внешнем переменном поле. Когда внешнее поле направлено от электронного полупроводника к дырочному, то оно усиливает существующее кон­тактное поле. Основные подвижные носители заряда разойдутся в про­тивоположные стороны от р - n - перехода. Из-за этого увеличится шири­на запорного слоя, а, следовательно, возрастет его сопротивление. Когда знак приложенной разности потенциалов изменится на обратный, то внешнее поле ослабит контактное поле и может даже его пере­крыть, вследствие чего ширина запорного слоя станет меньше равновес­ной и сопротивление его уменьшится. В пропускном направлении тока дырки изр- области и электроны изn- области движутся навстречу друг другу к плоскостиOR , в запорном - они расходятся от плоскостиOR . Таким образом, в переменном поле толщина запорного слоя то увеличивается, то уменьшается, что обеспечивает преимущественно одностороннюю проводимость выпрямляющей системы.

Зависимость силы тока от величины и направления приложенного напряжения к р - n - переходу характеризуется вольт- амперной кривой, изображенной на рис. 82.

Рис. 82. Вольт - амперная ха­рактеристика р - n - перехода

Правая ее ветвь характеризует прямое нап­равление тока, а левая - обратное. Чем слабее обратный ток, тем луч­ше выпрямляющее действие диода.

Для получения р - n - переходов обычно пользуются сплавлением и диффузией. При получениир - n - перехода для германиевого диода методом сплавления монокри­сталлn - типа разрезают на квадратные пластины со сторонами1,5 - 2 мм и тол­щиной порядка200 мкм . Загрязненный поверхностный слой удаляют протрав­ливанием в кипящем пергидроле (30 % Н 2 O 2 ) с небольшим количеством щелочи или в более сильном травителеСР - 4 (15 см 3 48 % - ной плавиковой кислоты,25 см 3 70 % - ной азотной кислоты,15 см 3 ледяной уксусной кислоты и0,3 см 3 брома). При травлении германий оки­сляется и переходит в раствор до тех пор, пока толщина пластинок станет 75- 100 мкм . В качестве акцепторной примеси для германия берут ин­дий в виде шариков или дисков диаметром ~1 мм .

Их тоже подвер­гают травлению.

Промытые деионизированной водой и высушенные индиевые дис­ки и германиевые пластинки закладывают в графитовые кассеты; индиевые диски в них прилегают к пластинкам с одной стороны (или с двух - для получения р - n - р - переходов при изготовлении триода). Кассету помещают в вакуумную или водородную печь и нагревают до~500° С . Так как индий плавится при156° С , то, будучи расплавлен­ным, он смачивает поверхность германия, растворяет его, и в пластин­ке появляется углубление, заполненное расплавленным раствором гер­мания в индии (рис. 83).

Если пластины правильно нарезались по плос­костям {111} , то фронт проплавления плоский, что очень важно, и глубина проплавления при достаточном времени зависит от количества индия и температуры сплавления в соответствии с диаграммой, изо­браженной на рис. 61,б . При остывании расплава германий начинает кристаллизоваться и захватывать не-

большое число атомов индия, cкоторым он образует твердый раствор замещения. Рекристаллизационная область будет дырочной (рис.83,г ).

Рис. 83. Схематичное изображение процесса получения

сплавного р - n переходаа - до плавления индия;б - расплавление индия и смачивание поверхности германия;в - растворение германия в индии;г - рекристаллизация

Таким образом, на основе пластинки n- германия вырастает пленка дырочного германия. К концу рекристаллизации закристаллизовывается чистый индий, и застывшая капля индия играет роль невыпрямляющего контакта с дырочным слоем полупроводника. Материалом для получения второго (невыпрямляющего) контакта сn - германием служит олово или золото с небольшим количеством донорной примеси. Можно поверхность пластиныn- германия залудить и потом к ней припаять внешний вывод. Однако проблема получения невыпрямляющих контактов весьма сложная.

Затем диод протравливают и промывают деионизованной водой. Его покрывают слоем вещества (лаки, кремнийорганические соединения и т. п.), защищающего от вредного влияния атмосферных газов и па­ров воды. Так изготовляют плоскостные диоды и триоды.

В методе термической диффузии на поверхность полупроводнико­вой пластины наносят тонкий слой соответствующего элемента, атомы которого в условиях нагрева в вакуумной печи диффундируют в толщу полупроводника и создают нужный тип проводимости. Используют также метод газовой диффузии в твердый полупроводник. В связи с развитием микроминиатюризации радиоаппаратуры и, в частности, для создания твердых схем диффузия находит себе применение в соче­тании с напылением проводящих пленок на том же кристалле.

В последнее время применяются так называемые эпитаксиальные пленки. Их получают наращиванием полупроводника на основной кристалл. Пленки должны точно повторять кристаллическую струк­туру подложки, но могут отличаться типом проводимости, вследствие чего можно создать р - n- переходы с заданной концентрацией носите­лей зарядов, получить низкоомные слои на высокоомных полупровод­никах и наоборот. Широко используются в промышленности методы наращивания эпитаксиальных пленок кремния и германия в случае восстановления тетрахлоридов очень чистым водородом при повышен­ной температуре:

SiCl 4 + 2Н 2
4НС1 + Si

GeCl 4 + 2Н 2
4НС1 + Ge

Атомы кремния и германия выделяются из тетрахлоридов под дей­ствием водорода в потоке газов (газотранспортные реакции) и обычно осаждаются эпитаксиально на горячих подложках. Легирующие при­меси вводят, добавляя летучие вещества в тетрахлорид или в систему газообразных веществ в виде отдельного потока, регулируемого иголь­чатыми вентилями. Этим методом выращивают многослойные монокрис­таллические пленки с контролируемым содержанием и распределением примесей в слоях. Метод требует очень высокой чистоты и точности обработки поверхности полупроводника, являющегося подложкой. Для изготовления так называемых поверхностно-барьерных триодов осаждают электролизом, например, индий на германий и т.д.

По электрическим свойствам материалы делятся на диэлектрики, проводники, полупроводники и сверхпроводники. Они отличаются друг от друга по величине удельного сопротивления, характеру изменения его в зависимости от температуры и механизму проводимости.

Диэлектрики. В отличие от металлов, кристаллы простых веществ, образованных неметаллами, обычно не обладают заметной электронной проводимостью; они представляют собой диэлектрики. Хотя в этом случае тоже возможно образование энергетических зон, но здесь зона проводимости отдельна от валентной зоны запрещённой зоной, т.е. значительным энергическим промежутком. Энергия слабого электрического поля оказывается недостаточной для преодоления этого промежутка, и электроны не переходят из валентной зоны в зону проводимости. Таким образом, в изоляторах электроны не могут свободно перемещаться по кристаллу и служить переносчиками электрического тока. Вид химической связи в основном ионный или ковалентный. Свободные носители заряда отсутствуют. Между валентной зоной и зоной проводимостью находиться широкая запрещённая зона. Основные диэлектрики: соли, оксиды, стекло, полиэтилен, резина и др. Диэлектрики поляризуются в электрическом поле. Под действием электростатического поля положение и величина эффективных зарядов атомов диэлектрика изменяются, при этом внутри диэлектрика возникает собственное энергетическое поле, направленное противоположно к внешнему. Имеются также диэлектрики с высокой диэлектрической проницаемостью. Это обусловлено наличием самопроизвольно поляризующихся областей.

Полупроводники. При нагревании они близки к проводникам, а при охлаждении к диэлектрикам. Из простых это P, I, B, Se. Также многие бинарные соединения ZnO, FeO. Зависимость электрических свойств от температуры и освещённости объясняется электронным строением их кристаллов. Здесь, как и у изоляторов, валентная зона отделена от зоны проводимости запрещённой зоной. Однако ширина запрещённой зоны, в случае полупроводников не велика. Поэтому при повышении температуры или освещённости электроны, занимающие верхние уровни валентной зоны, могут переходить в зону проводимости и участвовать в переносе электрического тока. С повышением освещённости или температуры число электронов, переходящих в зону проводимости, возрастает, в соответствии с этим увеличивается и электрическая проводимость полупроводника. В полупроводниках с ковалентной химической связью, появление электронов в зоне проводимости одновременно создаёт его вакансию в валентной зоне. Данная вакансия на конкретной молекулярной орбитали может заполняться электронами других занятых ближайших МО. Такой переход электронов внутри валентной зоне как бы создаёт движение вакансий с одного МО на другую МО. Поэтому электрический ток в полупроводнике определяется движением электронов в зоне проводимости и в валентной зоне. Полупроводники применяются в радиоэлектронике.


Проводники. С повышением температуры они увеличивают свою проводимость. Носителями заряда служат электроны. Валентная зона и зона проводимости электронной структуры пересекаются. Это позволяет электронам из валентной зоны при небольшом возбуждении переходить на молекулярные орбитали зоны проводимости, а это значит, что электрон с другой вероятностью появляется в той или иной точке компактного металла. Проводники используются для передачи электроэнергии. Среди проводников выделяются: металлы (Al, Cu, Fe) и сплавы высокой проводимостью (латунный, бронзовый, алюминиевый).

Особенности хим.связи в металлическом и атомном кристалле. По прочности металлическая решётка находиться между атомными и молекулярными металлическими решётками. Это связано с тем, что металлической связи характерны черты ковалентной связи и отдельные черты дальнодействующей связи. Металлическая решётка бывает и малопрочная (ртуть). Упрощенно металлическая решетка представляется в виде положительно заряженных ионов, располагаю­щихся в узлах ее, и электро­нов, двигающихся между ни­ми. Атомы металлов, с харак­терным для них дефицитом валентных электронов, долж­ны иметь как можно больше соседних атомов, чтобы этот дефицит компенсировать за счет электронов соседей. Кристаллическое состояние вещества. Существуют вещества, в кристаллах которых значительную роль играют не­сколько видов взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентнымй связями локализо­ванного и делокализованного характера, а в других - межмолекулярной свя­зью. Поэтому решетку графита можно рассматривать и как атомную, и как металлическую, и как молекулярную. В узлах атомных решеток находятся атомы; они связаны друг с другом ковалентной связью. Веществ, обладающих атомными решетками, сравнительно мало. К ним при­надлежат алмаз, кремний и некоторые неорганические соединения. Эти вещества характеризуются высокой твердостью (алмаз). Они тугоплавкие и практически не растворимы. Такие из свойст обусловлены прочностью ковалентной связи.

Чистые i - полупроводники практически не используют. В них специально вводят атомы других элементов (примеси) трехвалентных (алюминий, галлий, индий, бор) или пятивалентных (мышьяк, фосфор, сурьма) элементов или их соединений. При этом на 107…108 атомов i - полупроводника вводят один атом примеси. Атомы пятивалентной примеси называются донорами: они увеличивают число свободных электронов. Каждый атом такой примеси добавляет один лишний электрон. При этом лишних дырок не образуется. Примесный атом в структуре полупроводника превращается в неподвижный положительно заряженный ион. Проводимость полупроводника теперь будет определяться в основном числом свободных электронов примеси. В целом такой тип проводимости называют проводимостью n–типа, а сам полупроводник – полупроводником n–типа.

При введении трехвалентной примеси одна из валентных связей полупроводника оказывается незаполненной, что эквивалентно образованию дырки и неподвижного отрицательно заряженного иона примеси. Таким образом, в этом случае увеличивается концентрация дырок. Примеси такого типа называются акцепторами, а проводимость, обусловленная введением акцепторной примеси, называют проводимостью р–типа. Полупроводник данного вида называют полупроводником р–типа.

Преобладающие носители заряда в полупроводнике называются основными. Так в полупроводнике n–типа основными носителями являются электроны, а неосновными – дырки, а в полупроводнике р–типа основными носителями являются дырки, а неосновными – электроны. Как видим, в отличие от проводимости проводников, в которых ток обусловлен направленным движением только электронов, в полупроводниках ток может быть обусловлен двумя типами носителей – электронами и дырками.

22.Энтропия и ее изменение при химических реакциях.

Мера вероятности состояния системы принятых называть - Энтропия(S)- величина пропорциональная log числа равновероятных микросостояний которыми может быть реализовано данное макросостояние(Т,Р,V). Энтропия имеет размерность энергии, деленной на температуру. Выражают в [ДЖ/моль*кельвин]. S возрастает при переходе в-ва из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристалло, при расширении шазов, при хим.взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы в результате которых упорядоченность системы возрастает(конденсация, полимеризация, сжатие, уменьшения числа частиц), сопровождаются уменьшением энтропии.

23.Энергия Гиббса. Условия самопроизвольного протекания химических процессов.

Энергия Гиббса(G)- называемая также изобарно-термическим потенциалом или свободной порцией при постоянном давлении. G связана с H,S,T: G=H-TS. Если реакция осуществляется при постоянных P и Т, то ∆ G= ∆ H-T ∆ S. При постоянстве температуры и давления хим.реакции могут самопроизвольно протекать только в таком направлении, при котором энергия Гиббса системы уменьшается. При низких температурах самопроизвольно могут протекать экзотермические реакции, а при высоких – рекции сопровождающиеся влечение энтропии.

24.Предмет химической кинетики. Скорость химических реакций и факторы, влияющие на нее при гомогенных и гетерогенных процессах.

Хим.кинетика- раздел химии изучающий скорости хим.реакций. Скорость хим.реакции измеряется количеством в-ва, вступившего в реакцию или образующегося в результате реакции в единицу времени в единице объема системы(для гомогенной реакции) или на единице площади поверхности раздела фаз(для гетерогенной реакции). В случае гомогенного процесса протекающего при постоянном объеме, скорость гомогенной реакции измеряется изменением концентрации какого-либо из реагирующих в-в за единицу времени. Скорость реакции зависит от природы реагирующих в-в их концентрации, температуры и от присутствия в системе катализаторов. Влияние температуры. Зависимость скорости реакции от температуры определяется константой скорости. Правило Вант-Гоффа: при повышении температуры скорость большинства химических реакций возрастает в 2-4 раза при нагревании на каждые 10 градусов. V(T 2)/V(T 1)=y (T2-T1)|10

25.Влияние концентрации на скорость химической реакции. Закон действующих масс.

Закон действующих масс(основной закон химической кинетики): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. A+2BàAB 2 u=k[A][B][B]=k[A][B] 2 , где k-константа скорости реакции, значение которой зависит от природы реагирующих вещ-в. При гетерогенных реакциях концентрации веществ, находящихся в твердой фазе, обычно не изменяются в ходе реакции и поэтому не включаются в уравнение закона действия масс. CaCO 3 (к.)àCaO(к.)+CO 2 (г.) u=k,т.е u=const,т.к. CaCo 3 – твердо в-во.

Билет №26 Энергия Активации. Влиян. Т на V

Энергия активации- некоторая избыточная энергия (по сравнению со средней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т.е привело к образованию нового в-ва. С ростом температуры число активных молекул быстро увеличивается, что приводит к резкому возрастанию скорости реакции. ((Уравнение Аррениуса: k=ZPe - E a /RT, Z-число столкновений молекул в секунду в единице объема; e=2, 718..; R-универсальная газовая постоянная = 8,314 Дж/моль*К; Т- температура, К; Р- так называемый стерический множитель.))

26.Энергия активации. Влияние температуры на скорость химической реакции.

положительным , а во втором - отрицательным.

27.Энергия активации. Представление о катализе. Катализаторы и ингибиторы

Энергия активации- некоторая избыточная энергия (по сравнению со средней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т.е привело к образованию нового в-ва. Катализатор – в-во, не расходующееся в результате протекания реакции, но влияющее на ее скорость. Катализ – явление изменения скорости реакции под действием таких веществ. Бывают катализаторы как ускоряющие протекание реакции, так и замедляющие ее. В первом случае катализ называется положительным , а во втором - отрицательным.

Ингибиторы- катализаторы, уменьшающие скорость реакции.

28. Реакции простые и сложные. Лимитирующая стадия химического процесса.

Простые: происх. между простыми в-ми. Сложные: между сложными. Большинство химических реакций идут не в одну стадию, но и одностадийная реакция может кинетически осложняться, если она обратима. К кинетически сложным реакциям относят также последовательные(Последовательными называют реакции с промежуточными стадиями, когда продукт предыдущей стадии служит исходным веществом для последующей При k 1 >> k 2 все исходное вещество может превратиться в промежуточный продукт В, прежде чем начнется вторая реакция. Скорость всей реакции определяется второй стадией. При k 1 << k 2 концентрация промежуточного продукта мала, поскольку он не успевает накапливаться; эта стадия определяет скорость реакции в целом. Таким образом, скорость определяется самой медленной стадией (принцип лимитирующей стадии)). параллельные(Реакции, в которых исходные вещества способны образовывать разные продукты реакции или одно вещество одновременно способно реагировать с несколькими веществами, называются параллельными.), цепные(К цепным реакциям относят реакции, протекающие с образованием свободных радикалов, способных превращать реагенты в конечные продукты, поддерживая постоянство свободных радикалов или даже увеличивая их (разветвленная цепная реакция). Стадия определяющая скорость протекания реакции – есть лимитирующая стадия.

29.Константа равновесия. Возможность смещения равновесия химической реакции в прямом и обратном направлениях. Принцип Ле-Шателье.

Константа равновесия: величина с помощью которой описывается равновесие между веществами в растворе, преимущественно между газами и жидкостями. Зависит только от температуры. Равновесный закон действующих масс: отношения произведения молярных концентраций продуктов к произведению молярных концентраций реагентов взятых в степенях равных стехиометрическим коэффициентам есть величина постоянная при данной температуре =Kр [C]с[D]d/[A]a[B]b=K. Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. При увеличении концентрации одного из веществ равновесие смещается в сторону расхода этого вещ-ва. При увеличении давления равновесие сдвигается в сторону уменьшения числа молекул газов т.е. в сторону понижения давления. При повышении температуры равновесие смещается в сторону эндотермической реакции. Принцип Ле-Шателье: Если на систему, находящуюся в равновесии, оказать какое либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, которое уменьшит указанное воздействие.

30.Область жидкого состояния вещества. Диаграмма состояния воды.

Жидкостью называется физическое тело, обладающее двумя отличительными особенностями: незначительным изменением своего объема под действием больших внешних сил и текучестью, то есть изменением своей формы под действием даже незначительных внешних сил. Плотность жидкостей уменьшается с увеличением температуры. Исключение представляет вода в диапазоне температур от 0 до 4 0 С, когда ее плотность увеличивается, достигая наибольшего значения при температуре 4 0 С r = 1000 кг/м 3 . Диаграмма состояния воды показывает графическое изображение зависимости между величинами, характеризующими состояние системы и фазовыми превращениями в системе.

31.Способы выражения количественного состава растворов: массовая, объемная и мольная доли. Массовая, молярная и нормальная концентрации, моляльность.

Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов). Раствор находящийся в равновесии с растворяющимся веществом называется насыщенным. Раствор с низким содержанием растворённых веществ- разбавленный, наоборот-концентрированный. Способы выражения: 1. Массовая доля: отношение массы растворённого вещества к массе раствора. 2. Мольная доля: отношение кол-ва растворённого вещ-ва к сумме кол-в всех веществ составляющих раствор. N=n2\(n1+n2) 3. Молярность(Cm): отношение кол-ва вещ-ва к объёму раствора. 4. Моляльность(m): отношение кол-ва вещ-ва к массе р-ля. 5. Эквивалентная или нормальная конц-ия(Сн): отношение числа эквивалентов к объёму раствора. V1\V2=N2\N1 Объёмы растворов реагирующих веществ обратно пропорциональны их нормальностям. Объемная доля растворенного в-ва представляет собой отношение объема компонента, содержащегося в системе, к общему объему системы(ф=V(растворен)/V(раствора)*100%).

32.Растворы. Тепловые эффекты при растворении.

Раствор- гомогенная система которая состоит по крайней мере из 2 веществ, одно из которых находится в избытке. Растворение похоже на хим. Реакцию но состав раствора может изменятся в широких пределах. Кроме того в свойствах растворов обнаруживаются свойства отдельных компонентов. Таким образом раствор занимает промежуточную стадию между хим. Соед. И механическими смесями. В зависимости от размера частиц подразделяются на: Истинные (частицы-молекулы, ионы <10 -7) коллоидные (макромолекулы, ионные пары, атомы металлов10 -7 10 -5). Термодинамические факторы процесса растворения: Большинство веществ растворяются в жидкости с поглощением теплоты, но это не всегда так. Кол-во теплоты, поглощающейся(или выделяющейся) при растворении одного моля вещества, называется теплотой растворения этого вещества. При растворении энергия затрачивается на разрушение кристаллов растр. В-ва т.е. происходит поглощение энергии, если этого не наблюдается значит между растворителем и растр. В-ом происходит химическое взаимодействие. Такие соединения – сольваты. Растворимость твёрдых веществ повышается с увеличением Т, газов - наоборот.

33.Растворимость. Коэффициент растворимости. Селективные растворители и их использование в процессах осушки и очистки природных газов.

Растворимость-способность в-ва растворятся в том или ином растворителе. Мерой растворимости в-ва при данных условиях служит содержание его в насыщенных растворах.; равновесная концентрация растворённого в-ва в его насыщенном растворе. Если в 100г. Воды раствор. Более 10г. В-ва –хорошо растворимое. Число единиц массы безводного в-ва насыщающего при НУ 100г. Единиц массы р-ля – есть коэффициент растворимости. Температура при которой ограниченная растворимость становится неограниченной называется критической температурой растворения Селективный растворитель: Диметилформамид Основные промышленные применения

34.Представление об идеальных растворах. Влияние концентрации растворенного вещества на давление насыщенного пара раствора, его температуру кипения и кристаллизации (закон Рауля и следствия из него).

Идеальный раствор

Закон Рауля: Относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества. (Po-P)/Po=N Второй закон Рауляпонижение температуры кипения и повышение температуры замерзания раствора прямо пропорционально молярной концентрации раствора.

35.Явление электролитической диссоциации. Степень диссоциации. Классификация электролитов по степени диссоциации. Сильные и слабые электролиты.

Явление электролитической диссоциации: при растворении соли в воде ионы, образующие данный электролит, под действием полярных молекул воды отрываются друг от друга и перераспределяются м/у молекулами растворителя. Степень диссоциации- это отношение числа молекул, распавшихся на ионы, к общему числу растворенных молекул. Чем более полярен растворитель, тем больше степень диссоциации в нем данного электролита. Электролиты, степень диссоциации которых даже в относительно концентрированных растворах велика(à1), называют сильными(почти все соли, мин.соли: H 2 SO 4 , HNO 3 , HI, HMnO 4 ; основания щел и щел-зем металлов), а электролиты, степень диссоциации которых даже в разбавленных растворах мала,-слабыми(Почти все орг. кислоты, некоторые мин.кислоты: H 2 CO 3 , H 2 S, многие гидрооксиды металлов).

36.Электролитическая диссоциация. Факторы, влияющие на диссоциацию электролитов. Слабые электролиты. Константа диссоциации слабых электролитов.

Электролитическая диссоциация- самопроизвольный процесс распада электролита в растворе с образованием положительно и отрицательно заряженных ионов, или соответственно катионов и анионов. 1)Чем более полярен растворитель, тем больше степень диссоциации в нем данного электролита. 2)повышение температуры, как правило, увеличивает диссоциацию и при нагревании степень диссоциации возрастает. 3)при уменьшении концентрации электролита, т.е. при его разбавлении, степень дисс. увеличивается. Электролиты, степень диссоциации которых даже в разбавленных растворах мала,- слабые(Почти все орг. кислоты, некоторые мин.кислоты: H 2 CO 3 , H 2 S, многие гидрооксиды металлов). Константа диссоциации сл.электролитов- это отношение произведения концентраций продуктов реакции к концентрации реагентов.

37.Диссоциация слабых электролитов. Количественные характеристики процесса диссоциации: степень и константа диссоциации. Закон разбавления Освальда.

Константа диссоциации сл.электролитов- это отношение произведения концентраций продуктов реакции к концентрации реагентов. Константа диссоциации – константа равновесия отвечающая диссоциации слабого электролита. Зависит от природы электролита и растворителя, температуры но не зависит от концентрации. Характеризует способность данного в-ва распадаться на ионы. Чем больше К тем лучше в-во диссоциирует. Кислоты и основания диссоциируют ступенчато. Каждая ступень диссоциации характеризуется своей константой. Так, трехосновная ортофосфорная кислота H 3 PO 4 диссоциирует следующим образом….Константа равновесия K р этой реакции и есть K д: Kp=/Если выразить равновесные концентрации через концентрацию слабого электролита C и его степень диссоциации α, то получим Kд=(C*a*C*a)/C(1-a)=(C*a 2)/(1-a). Это соотношение называют законом разбавления Оствальда. Для очень слабых электролитов при α << 1 это уравнение упрощается:. Kд=(C*a 2)

38.Диссоциация воды. Понятие «водородный показатель». Кислые и щелочные среды. Понятие о кислотно-основных индикаторах.

Вода достаточно плохо диссоциирует. Но всё же обладает измеримой проводимостью. Вода диссоциирует на катионы водорода и анионы гидроксила. Так как степень диссоциации воды крайне мала то концентрация недиссоциированных молекул H2O в воде практически равна общей концентрации воды. Для воды и разбавленных водных растворов при неизменной температуре произведение ионов водорода и гидроксил -ионов есть величина постоянная = ионное произведение воды.=10 -14 . Растворы в которых концентрации ионов водорода = концентрации ионов гидроксила называются нейтральными(=10 -7). Если водорода больше(>10 -7) то кислый, если гидроксила(<10 -7) то основной но произведение ВСЕГДА остаётся постоянным. Кислотность или щелочность среды выражается водородным показателем pH=-lg Методы измерения: колориметрический и потенциометрический.

39.Диссоциация сильных электролитов. Активность ионов в растворах. Коэффициент активности. Представление о ионной силе раствора.

В водных растворах сильные электролиты полностью диссоциируют. Поэтому число ионов в них больше чем в слабых при той же концентрации. Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:H 2 SO 4 >H + +HSO 4 - Каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой. Активность иона – его условная эффективная концентрация соответственно которой он действует в хим. реакциях. A=Ci*f где f-коэффицент активности различный для разных ионов зависит от условий и концетрации. В конц. р-рах f<1 а с разбавлением стремится к 1. В разбавленных растворах коэф. акт. данного иона зависит лишь от ионной силы и его заряда. Где ионная сила раствора есть полусумма произведений концентраций всех находящихся в растворе ионов на квадрат их заряда. L=1/2*(C 1 z 1 2 +C 2 z 2 2 +…).

40.Кислоты и основания. Основные положения теории кислот и оснований Аррениуса, Бренстеда-Лоури, Льюиса

Теория кислот и оснований Аррениуса (1887). Теория о процессах диссоциации в водных растворах; в соответствии с ней кислоты представляют собой вещества, которые в водных растворах отдают положительные ионы водорода; основания представляют собой вещества, которые в водном растворе отдают отрицательные гидроксид-ионы. Кислота -> Анион (кислотный остаток) + Н + Основание -* Катион + ОН~ По Аррениусу между кислотой и основанием не существует функциональной связи. Только взаимодействие катионов водорода с гидроксид-ионами с об­разованием воды является по Аррениусу кислотно-основной реакцией: Н + + ОН - = Н 2 О Теория кислот и оснований Брёнстеда-Лоури (1923) Теория о процессах в водных и неводных растворах; кислоты являются час­тицами, которые способны отдавать протоны (доноры протонов); основа­ниями являются частицы, которые способны присоединять протоны (акцеп­торы протонов). Кислота (равносильно) Основание + Н + Для каждой кислоты существует сопряженное основание, которое имеет на один протон меньше (и наоборот). Каждая кислота и каждое основание, ко­торые находятся в такой функциональной связи, являются сопряженной па­рой кислота/основание. Кислотная и основная функции частиц не зависят от их заряда. Кислоты: HCI, H 2 SO 4 NH + , H 3 0 + , НSО 4 . Основания: NH 3 , ОН", СО|-, СН 3 СОО-, + . Кислотно-основная реакция по Брёнстеду заключается в переносе протонов между двумя сопряженными парами кислот и оснований. HCI = Н + + CI-Н 2 0 + Н + = Н 3 О + HCI + Н 2 О= Н 3 О + + CI- Амфолиты представляют собой частицы, которые в зависимости от другого участника реакции функционируют как кислота или как основание. Н 2 0, НСО 3 , Н 2 РО 4 , НРО|-. Кислоты, основания и амфолиты называются протолитами. Теория кислот и оснований Льюиса (1923) Теория с расширением понятия кислот и оснований на основе электронной конфигурации; в соответствии с ней кислоты являются акцепторами электронной пары (электрофильные частицы с электронными вакансиями в их внешней электронной оболочке), основания являются донорами электрон­ной пары (нуклеофильные частицы, в которых свободной является как мини­мум одна электронная пара). Кислоты: BF 3 , AICI 3 , H + , Cu 2+ . Основания: МН 3 , Н 2 О, ОН". Кислотно-основная реакция является взаимодействием кислоты Льюиса с основанием Льюиса с образованием аддукта Льюиса. BF 3 + NH 3 F 3 B -NH 3 Кислота Льюиса Основание Льюиса Аддукт Льюиса По Льюису кислотно-основными будут и реакции комплексообразования. Cu 2+ + 4NH 3 = 2+

41.Гидролиз. Общие закономерности гидролиза солей. Факторы, влияющие на процесс гидролиза. Гидролиз солей различной природы.

Гидролиз солей – процесс взаимодействия в-ва с водой, при котором составные части в-ва взаимодействуют с составными частями воды, образуя слабодиссоциирующие ионы или молекулы. При гидролизе происходит изменение реакции среды. Гидролизу подвергаются соединения различных классов. Гидролизу будут подвергаться соли, образованные: а)сл.основание и сильн.кислотой. б)сл.кислотой и силь.основание в)сл.кислотой и сл. основанием.; Соли образованные силь.основ и силь.кисл (NaCl ,NaNO 3). Гидролиз является процессом обратимым: чем слабее электролит, образующий соль, тем глубже протекает процесс гидролиза. Гидролиз протекает тем полнее, чем слабее электролит, образовавший соль, чем выше температура и чем больше разбавление раствора.

42.Количественные характеристики процесса гидролиза: степень и константа гидролиза. Напишите уравнения реакций гидролиза солей Al 2 (SO 4) 3 , Na 2 CO 3 , Сr 2 (СO 3) 3 , КNO 3 в молекулярной и ионно-молекулярной формах.

Степень гидролиза – доля в-ва подвергшееся гидролизу. Зависит: от константы равновесия, от температуры, от концентрации соли. Константа гидролиза – это отношение произведения концентраций кислоты и основания к концентрации образовавшейся соли. 1) Al 2 (SO 4) 3 +H 2 O=2AlOHSO 4 +H 2 SO 4 (сл. + сильн.)

2) Na 2 CO 3 +H 2 O=NaHCO 3 +NaOH (сильн. + сл.)

3) Cr 2 (CO 3) 3 +H 2 O=Cr(OH) 3 | - +H 2 CO 3 (сл. +сл.)

4)KNO 3 гидролизу не подвергается (сильн. + сильн.)

43.Равновесие в гетерогенных системах. Произведение растворимости. Условия образования и растворения осадков.

К равновесным системам следует отнести также и систему труднорастворимый электролит – его насыщенный раствор. В этом случае мы имеем дело с динамическим гетерогенным равновесием осадок-его насыщенный раствор. Например CaSO 4 =Ca 2+ +SO 4 2- Константа равновесия для этого процесса будет иметь вид: K=[ Ca 2+ ][ SO 4 2- ]\[ CaSO 4 ] но так как конц. тверд. соли есть Const, то Ур-е имеет вид K=[ Ca 2+ ][ SO 4 2- ] В насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной Т. И обозначается произведением растворимости (ПР). Характеризует количественно способность электролита растворяться. Численное значение находится исходя из растворимости. НО Произведение растворимости вычисленное без учёта коэффициентов растворимости является постоянной величиной только для малорастворимых электролитов. ПК – произведение концентраций ионов в степенях, соответствующих стехиометрическим коэффициентам для системы в неравновесном состоянии. Зная ПК и сравнив его с ПР, можно установить, растворится или выпадет осадок при данной температуре: если ПК = ПР, ΔG = 0 – система находится в состоянии равновесия (раствор насыщенный).Если ПК < ПР, ΔG < 0 – самопроизвольно протекает процесс растворения осадка. Если ПК > ПР, ΔG > 0 – возможен только обратный процесс – выпадение осадка.

44.Жесткость природных вод. Временная и постоянная жесткость. Способы устранения жесткости. Представление о системе водоподготовки.

Минералогический состав пресной воды определяет ее жесткость (устранимую и постоянную), что требует специальной обработки перед использованием в нагревательных системах для предотвращения образования накипи. Природная вода, содержащая большое количество растворенных солей кальция и магния, называется жесткой. Соли, обуславливающие жесткость воды, не являются вредными для здоровья человека. Но наличие в воде, предназначенной для питья, большого количества магния, например, не желательно, так как он ухудшает вкус воды. Выражается в (моль/литр) ранее выражалась в градусах жёсткости. Различают жесткость: общую, временную, постоянную, карбонатную и некарбонатную.Общей называется суммарная концентрация ионов Са 2+ ,Mg 2+ и Fe 2+ в воде, выраженная в мг-экв/л. Постоянной жесткостью называется часть общей жесткости воды, остающаяся после кипячения воды при атмосферном давлении в течение 1 часа. Временной жесткостью называется часть общей жесткости, удаляющаяся кипячением воды при атмосферном давлении в течение определенного времени. Она равна разности между общей и постоянной жесткостью. Способы устранения жесткости: кипячение и применение фильтров. Система водоподготовки: 1.Грубая очистка (отделение грубодисп. систем, осаждение катионов тяжёлых металлов, газообмен при помощи кислорода) 2. Тонкая очистка (фильтрование взвешенных веществ)3.адсорбция (удаление микрозагрязнений, Аренов и пахучих веществ)4.Дезинфекция (окисление микроорганизмов).

45.Окислительно-восстановительные реакции. Окисление и восстановление. Типичные окислители и восстановители.

Окислительно-восстановительные реакции – такие реакции, в результате которых изменяется степень окисленности одного из реагирующих в-в. Окислённость – неравномерность распределения электронов между атомами. Элемент атомы которого смещаются в сторону другого элемента – «+» Окислённость, Элемент, к атомам которого смещаются электроны – «-» окисленность. Окисление – отдача атомом электронов, сопровождающаяся повышением его степени окисленнности. Восстановление- присоединение атомом электронов, приводящее к понижению его степени окисленности. Вещество в состав которого входит окисляющийся элемент – восстановитель., а вещество, содержащее восстанавливающий элемент – окислитель. Типичные восстановители: активные металлы (щелочные и щелочноземельные, Zn, Al, Fe, и др. Me 0 –ne à Me + n), а также некоторые неметаллы, H 2 и C (в виде угля или кокса). Тип. окислители -типичные неметаллы (F 2 ,Cl 2 ,Br 2 ,I 2 , O 2), галогены, выступая в кач. окислителей, приобретают степень окисленности -1 (от F к I окислительные св-ва ослабевают).

46.Типы окислительно-восстановительных реакций. Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Приведите примеры реакций каждого типа.

Межмолекулярный тип реакции. Если окислитель и восстановитель находятся в молекулах различных в-в. (H 2 S +4 O 3 +H 2 S -2 =S 0 +H 2 O) Тип Диспропорционирования или самоокисления-самовосстановления. Когда окислитель и восстановитель представлены одним и тем же в-вом с одинаковой степенью окисления (таким двойственным св-вом обладают неметаллы, кроме F 2 и O 2). (Cl 2 0 +NaOHàNaCl - +NaCl +5 O 3 +H 2 O) Внутримолекулярный тип. Если в молекуле сложного в-ва содержатся атомы, один из которых явл. окислителем, другой – восстановителем.(N -3 H 4 N +3 O 2 àN 2 0 +H 2 O) Метод электронного баланса . Последовательность: 1. Составить схему реакции с указанием исходных и образ веществ, отметить элементы, изменяющие в результате реакции степень окисленности, найти окислитель и восстановитель. 2. Составить схемы полуреакций окисления и восстановления с указанием исходных и образующихся реально существующих в условиях реакции ионов и молекул. 3. Уравнять число атомов каждого элемента в левой и правой частях полуреакций; при этом следует помнит, что в водных растворах в реакциях могут участвовать молекулы H 2 O, ионы H + или ион ОН - . 4.Уравнять суммарное число зарядов в обеих частях каждой полуреакции; для этого прибавить к левой и правой частям полуреакции необходимое число электронов. 5. Подобрать множители (основные коэффициенты) для полуреакций так, чтобы число электронов, отдаваемых при окислении, было равно числу электронов, принимаемых при восстановлении. 6. Сложить уравнения полуреакций с учетом найденных основных коэффициентов. 7. Расставить коэффициенты в уравнении реакции.

47.Возникновение скачка потенциала на границе раздела металл/электролит. Стандартный электродный потенциал. Водородный электрод. Стандартный водородный электрод.

В силу того, что у атомов поверхности металлов валентные возможности реализованы не полностью, и на границе металл- электролит возникает промежуточная фаза, состоящая из гидратированных атомов металла. = +ne. Рано или поздно м/у анодным и катодным процессом установится равновесие. В силу стремления металла к окислению к моменту равновесия некоторое кол-во ионов металла остается в раст-ре электролита, а избыточное количество электронов - в металле. На границе раздела возникает скачок потенциала. Скачок потенциала, который возникает на границе раздела фаз, при переходе металла из вакуума в раствор электролита, наз. электродным потенциалом металла. Это – термодинамическая характеристика системы металл-электролит. Чем более активный металл, тем он больше стремиться к окислению, тем больше будет величина скачка потенциала на границе раздела фаз, тем более отрицательный электродный потенциал. Величину электродного потенциала измеряют путем сравнения: определяют разность потенциалов м/у рассматриваемой системой металл-электролит (рабочий электрод) и другой подобной рабочей системой, потенциал которой принят за ноль. Стандартным электродом сравнения является стандарт.(нормальн) водородный электрод – платиновая пластинка, электролитически покрытая губчатой платиной и погруженная в раствор кислоты, через который пропускается водород.. 2H + +2e=H 2 0 Потенциал металла, измеренный при стандартных условиях относительно стандартного водородного электрода сравнения наз. стандартным электродным потенциалом.

48.Ряд стандартных электродных потенциалов. Выводы из ряда стандартных электродных потенциалов.

Когда каждая реакция(окисл\восст) протекает в гальваническом элементе Или при электролизе то каждая реакция происходит на соотв. Электроде, то такие полу-реакции называются электродными процессами. Протекающей в гальваническом элементе о\в реакции соотв ЭДС этого элемента Е связанная с изменением энергии Гиббса dG=-zFE Величины каждой полу-реакции, разность которых составляет ЭДС – электродные потенциалы. E=f1-f2 Величина потенциала зависит от: 1.природы в-в 2.отношение между концентрациями 3. температуры f=f 0 +(2,3RT/)*lg где f 0 -станд электродный потенциал R-газовая постоянная Т- абсолютная температура z- число электронов F-постоянная Фарадея – произведения концентраций веществ участв в процессе в окисленной и восстановленной формах. Стандартный электродный потенциал при концентрациях равных единице. Для построения шкалы Эл. Потенциалов нулём была взята реакция 2H + +2e - =H 2 Стандартный потенциал данного процесса = 0. Все электродные потенциалы выражены в водородной шкале.

49.Гальванические элементы. Химические гальванические элементы. Анод и катод. Анодный и катодный процессы. ЭДС гальванического элемента.

Устройства, в которых энергия химической окислительно-восстановительной реакции превращается в электрическую энергию, называются источниками электрической энергии, или гальваническими элементами. Всякий гальван. элемент сост. из двух электродов – металлов, погруженных в растворы электролитов; последние сообщаются друг с другом – обычно через пористую перегородку. Переход Ме из кристалла в раствор электролита в виде гидротированных ионов с оставлением эквивалентного количества е в кристалле, называется анодным процессом - процесс окисления. Обратным анодному является катодный процесс – объединение каких-либо частиц среды с электронами металла, с восстановлением частиц на поверхности металла. Электродвижущая сила Е(э.д.с.)- максимальное напряжение гальванического элемента, отвечающего обратимому протеканию происходящей в нем реакции.

50.Обратимые и необратимые электроды. Уравнение Нернста. Концентрационный гальванический элемент. Анод и катод в концентрационном элементе.

В результате изучения потенциалов различных электродных процессов установлено, что их величины зависят от следующих факторов: 1) от природы веществ –участников электродного процесса. 2) от соотношения м/у концентрациями этих веществ 3) от температуры системы. Эта зависимость выражается уравнением Нернста (В. Нернст, 1889г.): ф=ф 0 +2,3RT/nF *lg(/). Ф 0 -стандартный электродный потенциал данного процесса – константа, физический смысл которой рассмотрен ниже; R-газовая постоянная; T- абсолютная температура; n- число электронов, принимающих участие в процессе; F- постоянная Фарадея (96500 Кл/моль); и - произведения концентраций в-в, участвующих в процессе в окисленной (Ох) и в восстановленной (Red) формах. Концентрационные элементы состоят из одинаковых электродов, отличающихся активностями потенциалопределяющего иона Действительно, из уравнения Нернста следует, что при ЭДС концентрационного элемента равна ЭДС этих элементов обычно очень мала. Концентрационные элементы используются при определении pH и концентраций труднорастворимых солей.

51.Явление поляризации. Поляризация анодная и катодная. Причины, вызывающие поляризацию электродов (концентрационная и активационная поляризации).

При смещении потенциала электрода в положительную или отрицательную сторону на нём начинает происходить окисление или восстановление. Такое явление смещения называется поляризацией. Иначе говоря поляризация позволяет управлять процессом электролиза и делать электроды анодами или катодами смотря к какому источнику подключать. Поляризация электрода в отрицательную сторону связана с процессом восстановления и наоборот. Процесс восстановления- катодный процесс, процесс окисления – анодный процесс. Чем сильнее поляризован электрод тем с большей скоростью идёт реакция. Величина поляризации необходимая для протекания данного электродного процесса с определённой скоростью называется перенапряжением данного электродного процесса.

52.Коррозия металлов. Классификация коррозионных процессов. Химическая и электрохимическая коррозия.

Коррозия- самопроизвольное разрушение металла, происходящего под хим. воздействием окруж. среды. Хим.коррозия- разрушение металла под действием окислителей окружающей среды, если среда не электропроводна. Электрохимическая коррозия. Возникает в хим. средах с ионной проводимостью при наличии контакта разнородных металлов за счет образования гальванических микроэлементов(Подводные части судов, паровые котлы).

53.Способы защиты металлов от коррозии. Химическая обработка среды.

Химическая обработка среды. Изменение св-в коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода(деаэрация) или в добавлении к этому раствору в-в, замедляющих коррозию, - ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле в-ва: моноэтаноламин, карбонат аммония. Уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с насыщенными связями. Защитные действия ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла или каталитически снижают скорость коррозии, а некоторые из них(хроматы и дихроматы) переводят металл в пассивное состояние.

54.Способы защиты металлов от коррозии. Защитные покрытия.

Изменение коррозионных св-в металла достигается его легированием или нанесением на поверхность металла защитных покрытий. Из химически стойких сплавов наиболее широкое применение имеют нержавеющие стали, в состав которых входит до 18% хрома и до 10% никеля. Покрытия применяемые для защиты металлов подразделяются на металлические, неметаллические и образованные в результате химической или электрохимической обработки поверхности металла. В качестве металла для покрытия обычно применяют металлы, образующие на своей поверхности защитные плёнки(Cr, Ni, Zn, Cd, Al, Sn, реже Au, Ag). Неметаллические: лаки, краски, эмали. Фенолоформальдегидные и другие смолы. Для длительной защиты от атмосферной коррозии металлических сооружении, деталей, машин, приборов чеще всего применяются лакокрасочные покрытия. Покрытия создаваемые хим. и электрохим. обработкой металла представляют собой защитные оксидные и солевые плёнки. (оксидтрование Al, фосфатирование стальных изделий).

55.Способы защиты металлов от коррозии. Электрохимическая защита. Протекторная защита. Катодная защита.

К электрохимическим методам защиты металлов относятся катодная защита, протекторная защита и др. При катодной защите защищаемая конструкция или деталь присоединяется к отрицательному полюсу источника электрической энергии и становится катодом. В качестве анодов используются куски железа или специально изготовленные сплавы. При надлежащей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же окисления претерпевает в-во анода. Протекторная защита осуществляется присоединением к защищаемому металлу большого листа, изготовленного из другого, более активного металла – протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте м/у металлами защищаемый металл(Fe) и металл протектора(напр Zn) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железе поляризуется катодно, а Zn- анодно. В результате этого, на железе идет процесс восстановления того окислителя, который присутствует в воде(обычно растворенный кислород), а Zn окисляется. И протекторы и катодная защита применимы в средах, хорошо проводящих электрический ток, например в морской воде. В частности, протекторы широко применяются для защиты подводных частей мрских судов.

57.Химическое взаимодействие металлов с растворами щелочей. Приведите примеры соответствующих уравнений реакций.

Взаимодействие Ме с растворами щелочей. Щелочами металлы окисляться не могут, так как щелочные металлы являются одними из наиболее сильных восстановителей. Поэтому их ионы одни из наиболее слабых окислителей и в водных р-рах практических свойств окислителя не проявляют. Однако в присутствии щелочей окисляющее действие воды может проявиться в большей мере, чем в их отсутствии. При окислении металлов водой образуются гидроксиды и водород. Если оксид и гидроксид относится к амфотерным соединениям, то они будут растворяться в щелочном р-ре. В результате пассивные в чистой воде металлы могут энергично взаимодействовать с растворами щелочей:

Zn+2HOH+2NaOH=Na 2 +H 2 | -

58.Химическое взаимодействие металлов с водой и с растворами солей. Объясните закономерности и приведите примеры соответствующих уравнений реакций.

Ca+2H 2 O=Ca(OH) 2 +H 2 | -

1. металлы более активные вытесняют менее активные из их солей Zn+CuSO 4 =ZnSO 4 +Cu

2. Взаимодействие металла с солями, дающими кислую реакцию среды засчет гидролиза металл., происходит также, как в растворе соответствующей к-ты, если металл, образующий соль, активнее растворяющего металла и кислорода.

Если соль не подвергается гидролизу или дает щелочную реакцию среды, то металл окисляется кислородом, растворенным в электролите. Fe в р-ре AlCl 3: AlCl 3 +2H 2 O=AlOHCl 2 +HCl 2Fe+2HCl=FeCl 2 +H 2 | -



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...