Усі бічні ребра правильної піраміди рівні. Основні властивості правильної піраміди


Визначення. Бічна грань- Це трикутник, у якого один кут лежить у вершині піраміди, а протилежна йому сторона збігається зі стороною основи (багатокутника).

Визначення. Бічні ребра- це спільні сторони бічних граней. У піраміди стільки ребер, скільки кутів у багатокутника.

Визначення. Висота піраміди- Це перпендикуляр, опущений з вершини на основу піраміди.

Визначення. Апофема- Це перпендикуляр бічної грані піраміди, опущений з вершини піраміди до сторони основи.

Визначення. Діагональний переріз- це переріз піраміди площиною, що проходить через вершину піраміди та діагональ основи.

Визначення. Правильна піраміда- це піраміда, в якій основою є правильний багатокутник, а висота опускається до центру основи.


Об'єм та площа поверхні піраміди

Формули. Об'єм пірамідичерез площу основи та висоту:


Властивості піраміди

Якщо всі бічні ребра рівні, навколо основи піраміди можна описати коло, а центр основи збігається з центром кола. Також перпендикуляр, опущений із вершини, проходить через центр основи (кола).

Якщо бічні ребра рівні, всі вони нахилені до площині підстави під однаковими кутами.

Бічні ребра рівні тоді, коли вони утворюють із площиною основи рівні кути або якщо навколо основи піраміди можна описати коло.

Якщо бічні грані нахилені до площини основи під одним кутом, то в основу піраміди можна вписати коло, а вершина піраміди проектується до її центру.

Якщо бічні грані нахилені до поверхні підстави під одним кутом, то апофеми бічних граней рівні.


Властивості правильної піраміди

1. Вершина піраміди рівновіддалена від усіх кутів основи.

2. Усі бічні ребра рівні.

3. Усі бічні ребра нахилені під однаковими кутами до основи.

4. Апофеми всіх бічних граней рівні.

5. Площі всіх бічних граней рівні.

6. Усі грані мають однакові двогранні (плоські) кути.

7. Навколо піраміди можна описати сферу. Центром описаної сфери буде точка перетину перпендикулярів, що проходять через середину ребер.

8. До піраміди можна вписати сферу. Центром вписаної сфери буде точка перетину бісектрис, що виходять із кута між ребром і основою.

9. Якщо центр вписаної сфери збігається з центром описаної сфери, то сума плоских кутів при вершині дорівнює π або навпаки один кут дорівнює π/n , де n - це кількість кутів в основі піраміди.


Зв'язок піраміди зі сферою

Навколо піраміди можна описати сферу тоді, коли в основі піраміди лежить багатогранник навколо якого можна описати коло (необхідна та достатня умова). Центром сфери буде точка перетину площин, що проходять перпендикулярно через середини бічних ребер піраміди.

Навколо будь-якої трикутної чи правильної піраміди можна описати сферу.

У піраміду можна вписати сферу, якщо бісекторні площини внутрішніх двогранних кутів піраміди перетинаються в одній точці (необхідна та достатня умова). Ця точка буде осередком сфери.


Зв'язок піраміди з конусом

Конус називається вписаним у піраміду, якщо їх вершини збігаються, а основа конуса вписана в основу піраміди.

Конус можна вписати до піраміди, якщо апофеми піраміди рівні між собою.

Конус називається описаним навколо піраміди, якщо їх вершини збігаються, а основа конуса описана навколо основи піраміди.

Конус можна описати навколо піраміди, якщо всі бічні ребра піраміди рівні між собою.


Зв'язок піраміди з циліндром

Піраміда називається вписаною в циліндр, якщо вершина піраміди лежить на одній основі циліндра, а основа піраміди вписана в іншу основу циліндра.

Циліндр можна описати навколо піраміди, якщо навколо основи піраміди можна описати коло.


Визначення. Усічена піраміда (пірамідальна призма)- це багатогранник, який знаходиться між основою піраміди та площиною перерізу, паралельною основі. Таким чином піраміда має більшу основу і меншу основу, яка подібна до більшої. Бічні грані є трапецією.

Визначення. Трикутна піраміда (чотиригранник)- це піраміда в якій три грані та основа є довільними трикутниками.

У чотиригранник чотири грані та чотири вершини та шість ребер, де будь-які два ребра не мають спільних вершин але не стикаються.

Кожна вершина складається з трьох граней та ребер, які утворюють тригранний кут.

Відрізок, що з'єднує вершину чотиригранника із центром протилежної грані називається медіаною чотиригранника(GM).

Бімедіаноюназивається відрізок, що з'єднує середини протилежних ребер, які не стикаються (KL).

Усі бімедіани та медіани чотиригранника перетинаються в одній точці (S). При цьому бімедіани діляться навпіл, а медіани щодо 3:1, починаючи з вершини.

Визначення. Похила піраміда- це піраміда в якій одне з ребер утворює тупий кут (β) з основою.

Визначення. Прямокутна піраміда- це піраміда в якій одна з бічних граней перпендикулярна до основи.

Визначення. Гострокутна піраміда- це піраміда в якій апофема більше половини довжини сторони основи.

Визначення. Тупокутна піраміда- це піраміда в якій апофема менше половини довжини сторони основи.

Визначення. Правильний тетраедр- чотиригранник, у якого всі чотири грані - рівносторонні трикутники. Він є одним із п'яти правильних багатокутників. У правильного тетраедра всі двогранні кути (між гранями) та тригранні кути (при вершині) рівні.

Визначення. Прямокутний тетраедрназивається чотиригранник у якого прямий кут між трьома ребрами при вершині (ребра перпендикулярні). Три грані утворюють прямокутний трикутний куті грані є прямокутними трикутниками, а основа є довільним трикутником. Апофема будь-якої межі дорівнює половині боку основи, яку падає апофема.

Визначення. Рівногранний тетраедрназивається чотиригранник у якого бічні грані рівні між собою, а основа – правильний трикутник. У такого тетраедра грані це рівнобедрені трикутники.

Визначення. Ортоцентричний тетраедрназивається чотиригранник, у якого всі висоти (перпендикуляри), що опущені з вершини до протилежної грані, перетинаються в одній точці.

Визначення. Зіркова піраміданазивається багатогранник, у якого основою є зірка.

Визначення. Біпіраміда- багатогранник, що складається із двох різних пірамід (також можуть бути зрізані піраміди), що мають загальну основу, а вершини лежать по різні боки від площини основи.

піраміда. Усічена піраміда

Пірамідоюназивається багатогранник, одна з граней якого багатокутник ( заснування ), а всі інші грані – трикутники із загальною вершиною ( бічні грані ) (рис. 15). Піраміда називається правильною якщо її основою є правильний багатокутник і вершина піраміди проектується в центр основи (рис. 16). Трикутна піраміда, у якої всі ребра рівні, називається тетраедром .



Боковим ребромпіраміди називається сторона бічної грані, що не належить основи Висотою піраміди називається відстань від її вершини до площини основи. Усі бічні ребра правильної піраміди рівні між собою, всі бічні грані – рівні рівнобедрені трикутники. Висота бічної грані правильної піраміди, проведена з вершини, називається апофемою . Діагональним перетином називається переріз піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.

Площею бічної поверхніпіраміди називається сума площ усіх бічних граней. Площею повної поверхні називається сума площ усіх бічних граней та підстави.

Теореми

1. Якщо у піраміді всі бічні ребра рівнонахилені до площини основи, то вершина піраміди проектується в центр кола описаного біля основи.

2. Якщо в піраміді всі бічні ребра мають рівні довжини, то вершина піраміди проектується в центр кола описаного біля основи.

3. Якщо в піраміді всі грані рівнонахилені до площини основи, то вершина піраміди проектується в центр кола, вписаного в основу.

Для обчислення обсягу довільної піраміди вірна формула:

де V- Об `єм;

S осн– площа основи;

H- Висота піраміди.

Для правильної піраміди вірні формули:

де p– периметр основи;

h а- Апофема;

H- Висота;

S повний

S бік

S осн– площа основи;

V- Об'єм правильної піраміди.

Усіченою пірамідоюназивається частина піраміди, укладена між основою та січною площиною, паралельною основі піраміди (рис. 17). Правильною усіченою пірамідою називається частина правильної піраміди, укладена між основою та січною площиною, паралельною основі піраміди.

Основизрізаної піраміди – подібні багатокутники. Бічні грані - Трапеції. Висотою усіченої піраміди називається відстань між її основами. Діагоналлю усіченої піраміди називається відрізок, що з'єднує її вершини, що не лежать в одній грані. Діагональним перетином називається переріз усіченої піраміди площиною, що проходить через два бічні ребра, що не належать одній грані.


Для усіченої піраміди справедливі формули:

(4)

де S 1 , S 2 – площі верхньої та нижньої основ;

S повний- Площа повної поверхні;

S бік- Площа бічної поверхні;

H- Висота;

V- Об'єм зрізаної піраміди.

Для правильної усіченої піраміди вірна формула:

де p 1 , p 2 – периметри основ;

h а- Апофема правильної усіченої піраміди.

приклад 1.У правильній трикутній піраміді двогранний кут при підставі дорівнює 60 º. Знайти тангенс кута нахилу бокового ребра до площини основи.

Рішення.Зробимо рисунок (рис. 18).


Піраміда правильна, отже, в основі рівносторонній трикутник і всі бічні грані рівні рівнобедрені трикутники. Двогранний кут при основі – це кут нахилу бічної грані піраміди до площини основи. Лінійним кутом буде кут aміж двома перпендикулярами: і. Вершина піраміди проектується в центрі трикутника (центр описаного кола та вписаного кола в трикутник АВС). Кут нахилу бокового ребра (наприклад SB) – це кут між самим ребром та його проекцією на площину основи. Для ребра SBцим кутом буде кут SBD. Щоб знайти тангенс необхідно знати катети SOі OB. Нехай довжина відрізка BDдорівнює 3 а. Крапкою Провідрізок BDділиться на частини: і З знаходимо SO: З знаходимо:

Відповідь:

приклад 2.Знайти об'єм правильної зрізаної чотирикутної піраміди, якщо діагоналі її основ дорівнюють см і см, а висота 4 см.

Рішення.Для знаходження об'єму зрізаної піраміди скористаємося формулою (4). Щоб знайти площі основ необхідно знайти сторони квадратів-підстав, знаючи їх діагоналі. Сторони підстав рівні відповідно 2 см і 8 см. Значить площі підстав і Підставивши всі дані у формулу, обчислимо обсяг усіченої піраміди:

Відповідь: 112 см 3 .

приклад 3.Знайти площу бічної грані правильної трикутної усіченої піраміди, сторони основ якої дорівнюють 10 см і 4 см, а висота піраміди 2 см.

Рішення.Зробимо рисунок (рис. 19).


Бічна грань цієї піраміди є рівнобокою трапецією. Для обчислення площі трапеції необхідно знати основи та висоту. Підстави дано за умовою, залишається невідомою лише висота. Її знайдемо з де А 1 Еперпендикуляр з точки А 1 на площину нижньої основи, A 1 D- Перпендикуляр з А 1 на АС. А 1 Е= 2 см, оскільки це висота піраміди. Для знаходження DEзробимо додатково малюнок, у якому зобразимо вид зверху (рис. 20). Крапка Про– проекція центрів верхньої та нижньої основ. оскільки (див. рис. 20) і з іншого боку ОК– радіус вписаної в коло та ОМ- Радіус вписаної в колі:

MK = DE.

За теоремою Піфагора з

Площа бічної грані:


Відповідь:

приклад 4.В основі піраміди лежить рівнобока трапеція, основа якої аі b (a> b). Кожна бічна грань утворює з площиною основи піраміди кут рівний j. Знайти площу повної поверхні піраміди.

Рішення.Зробимо рисунок (рис. 21). Площа повної поверхні піраміди SABCDдорівнює сумі площ та площі трапеції ABCD.

Скористаємося твердженням, що й усі грані піраміди рівнонахилені до площині основи, то вершина проектується у центр вписаної основу окружности. Крапка Про- Проекція вершини Sна основу піраміди. Трикутник SODє ортогональною проекцією трикутника CSDна площину основи. За теоремою про площу ортогональної проекції плоскої фігури отримаємо:


Аналогічно і означає Таким чином, завдання звелося до знаходження площі трапеції. АВСD. Зобразимо трапецію ABCDокремо (рис.22). Крапка Про- Центр вписаної в трапецію кола.


Так як в трапецію можна вписати коло, то або З по теоремі Піфагора маємо

Відеоурок 2: Завдання на піраміду. Об'єм піраміди

Відеоурок 3: Завдання на піраміду. Правильна піраміда

Лекція: Піраміда, її основа, бічні ребра, висота, бічна поверхня; трикутна піраміда; правильна піраміда

Піраміда, її властивості

Піраміда- це об'ємне тіло, яке має в основі багатокутник, а всі її грані складаються з трикутників.

Окремим випадком піраміди є конус, в основі якого лежить коло.


Розглянемо основні елементи піраміди:


Апофема– це відрізок, який з'єднує вершину піраміди із серединою нижнього ребра бічної грані. Інакше кажучи, це висота грані піраміди.


На малюнку можна побачити трикутники ADS, ABS, BCS, CDS. Якщо уважно подивитися на назви, можна побачити, що кожен трикутник має у своїй назві одну загальну літеру – S. Тобто це означає, що всі бічні грані (трикутники) сходяться на одній точці, яка називається вершиною піраміди.


Відрізок ОS, який з'єднує вершину з точкою перетину діагоналей основи (у разі трикутників – у точці перетину висот), називається заввишки піраміди.


Діагональним перетином називають площину, яка проходить через вершину піраміди, а також одну з діагоналей основи.


Так як бічна поверхня піраміди складається з трикутників, то для знаходження загальної площі бічної поверхні необхідно знайти площі кожної грані та скласти їх. Кількість і форма граней залежить від форми та розмірів сторін багатокутника, що лежить в основі.


Єдина площина у піраміді, якій не належить її вершина, називається основоюпіраміди.

На малюнку ми бачимо, що в основі лежить паралелограм, проте може бути будь-який довільний багатокутник.

Властивості:


Розглянемо перший випадок піраміди, у якому вона має ребра однакової довжини:

  • Навколо основи такої піраміди можна описати коло. Якщо спроектувати вершину такої піраміди, то її проекція буде в центрі кола.
  • Кути при основі піраміди у кожної грані однакові.
  • При цьому достатньою умовою до того, що навколо основи піраміди можна описати коло, а так само вважати, що всі ребра різної довжини, можна вважати однакові кути між основою та кожним рубом граней.

Якщо Вам трапилася піраміда, у якої кути між бічними гранями та основою рівні, то справедливі такі властивості:

  • Ви зможете описати коло навколо основи піраміди, вершина якої проектується точно в центр.
  • Якщо провести у кожній бічній грані висоти до основи, вони будуть рівної довжини.
  • Щоб знайти площу бічної поверхні такої піраміди, достатньо знайти периметр основи та помножити його на половину довжини висоти.
  • S бп = 0,5P oc H.
  • Види піраміди.
  • Залежно від того, який багатокутник лежить в основі піраміди, вони можуть бути трикутними, чотирикутними та ін. Якщо в основі піраміди лежить правильний багатокутник (з рівними сторонами), то така піраміда називатиметься правильною.

Правильна трикутна піраміда

Вступ

Коли ми почали вивчати стереометричні фігури, торкнулися теми «Піраміда». Нам сподобалася ця тема, тому що піраміда часто-густо вживається в архітектурі. І оскільки наша майбутня професія архітектора, надихнувшись цією фігурою, ми думаємо, що вона зможе підштовхнути нас до чудових проектів.

Міцність архітектурних споруд, найважливіша їх якість. Зв'язуючи міцність, по-перше, з тими матеріалами, з яких вони створені, а, по-друге, з особливостями конструктивних рішень, виявляється, міцність споруди пов'язана безпосередньо з тією геометричною формою, яка є для нього базовою.

Іншими словами, йдеться про ту геометричну фігуру, яка може розглядатися як модель відповідної архітектурної форми. Виявляється, що геометрична форма також визначає міцність архітектурної споруди.

Найміцнішою архітектурною спорудою з давніх-давен вважаються єгипетські піраміди. Як відомо, вони мають форму правильних чотирикутних пірамід.

Саме ця геометрична форма забезпечує найбільшу стійкість за рахунок великої площі основи. З іншого боку, форма піраміди забезпечує зменшення маси зі збільшенням висоти над землею. Саме ці дві властивості роблять піраміду стійкою, а отже, і міцною в умовах земного тяжіння.



Мета проекту: дізнатися щось нове про піраміди, поглибити знання та знайти практичне застосування

Для досягнення поставленої мети потрібно вирішити такі завдання:

· Дізнатися історичні відомості про піраміду

· Розглянути піраміду, як геометричну фігуру

· Знайти застосування в житті та архітектурі

· Знайти подібність та відмінність пірамід, розташованих у різних частинах світу


Теоретична частина

Історичні відомості

Початок геометрії піраміди було покладено у Стародавньому Єгипті та Вавилоні, проте активний розвиток отримав у Стародавній Греції. Першим, хто встановив, чому дорівнює обсяг піраміди, був Демокріт, а довів Євдокс Кнідський. Давньогрецький математик Евклід систематизував знання про піраміду в XII томі своїх «Почав», а також вивів перше визначення піраміди: тілесна фігура, обмежена площинами, які сходяться в одній точці.

Усипальниці єгипетських фараонів. Найбільші з них - піраміди Хеопса, Хефрена і Мікеріна в Ель-Гізі в давнину вважалися одним із Семи чудес світу. Зведення піраміди, в якому вже греки і римляни бачили пам'ятник небаченої гордині царів і жорстокості, що прирік весь народ Єгипту на безглузде будівництво, було найважливішим культовим діянням і мало висловлювати, мабуть, містичне тотожність країни та її правителя. Населення країни працювало на будівництві гробниці у вільну від сільськогосподарських робіт частину року. Ряд текстів свідчить про ту увагу і турботу, які самі царі (щоправда, пізнішого часу) приділяли зведенню своєї гробниці та її будівельникам. Відомо також про особливі культові почесті, які виявлялися самій піраміді.


Основні поняття

Пірамідоюназивається багатогранник, основа якого – багатокутник, інші грані – трикутники, мають загальну вершину.

Апофема- Висота бічної грані правильної піраміди, проведена з її вершини;

Бічні грані- трикутники, що сходяться у вершині;

Бічні ребра- загальні сторони бічних граней;

Вершина піраміди- точка, що з'єднує бічні ребра і не лежить у площині основи;

Висота- відрізок перпендикуляра, проведеного через вершину піраміди до площини її основи (кінцями цього відрізка є вершина піраміди та основа перпендикуляра);

Діагональний переріз піраміди- переріз піраміди, що проходить через вершину та діагональ основи;

Заснування- багатокутник, якому належить вершина піраміди.

Основні властивості правильної піраміди

Бічні ребра, бічні грані та апофеми відповідно рівні.

Двогранні кути при основі рівні.

Двогранні кути при бічних ребрах рівні.

Кожна точка висоти рівновіддалена від усіх вершин основи.

Кожна точка висоти рівновіддалена від усіх бічних граней.


Основні формули піраміди

Площа бічної та повної поверхні піраміди.

Площею бічної поверхні піраміди (повної та усіченої) називається сума площ усіх її бічних граней, площею повної поверхні – сума площ усіх її граней.

Теорема: Площа бічної поверхні правильної піраміди дорівнює половині добутку периметра основи апофему піраміди.

p- периметр основи;

h- Апофема.

Площа бічної та повної поверхонь усіченої піраміди.

p 1, p 2 - периметри основ;

h- Апофема.

Р- площа повної поверхні правильної усіченої піраміди;

S бік- площа бічної поверхні правильної усіченої піраміди;

S 1 + S 2- площі основи

Об'єм піраміди

форм вузла об'єму використовується для пірамід будь-якого виду.

H- Висота піраміди.


Кути піраміди

Кути, які утворені бічною гранню та основою піраміди, називаються двогранними кутами при основі піраміди.

Двогранний кут утворюється двома перпендикулярами.

Щоб визначити цей кут, часто потрібно використовувати теорему про три перпендикуляри.

Кути, які утворені бічним ребром та його проекцією на площину основи, називаються кутами між бічним ребром і площиною основи.

Кут, який утворений двома бічними гранями, називається двогранним кутом при бічному ребрі піраміди.

Кут, який утворений двома бічними ребрами однієї грані піраміди, називається кутом при вершині піраміди.


Перерізи піраміди

Поверхня піраміди – це поверхня багатогранника. Кожна її грань є площиною, тому переріз піраміди, заданої січною площиною - це ламана лінія, що складається з окремих прямих.

Діагональний переріз

Перетин піраміди площиною, що проходить через два бічні ребра, що не лежать на одній грані, називається діагональним перетиномпіраміди.

Паралельні перерізи

Теорема:

Якщо піраміда перетнута площиною, паралельною основі, то бічні ребра та висоти піраміди діляться цією площиною на пропорційні частини;

Перерізом цієї площини є багатокутник, подібний до основи;

Площі перерізу та основи відносяться один до одного як квадрати їх відстаней від вершини.

Види піраміди

Правильна піраміда– піраміда, основою якої є правильний багатокутник, і вершина піраміди проектується до центру основи.

У правильної піраміди:

1. бічні ребра рівні

2. бічні грані рівні

3. апофеми рівні

4. двогранні кути при основі рівні

5. двогранні кути при бічних ребрах рівні

6. кожна точка висоти рівновіддалена від усіх вершин основи

7. кожна точка висоти рівновіддалена від усіх бічних граней

Усічена піраміда– частина піраміди, укладена між її основою та січною площиною, паралельною основі.

Підстава та відповідні переріз усіченої піраміди називаються основами усіченої піраміди.

Перпендикуляр, проведений з будь-якої точки однієї основи на площину іншої, називається висотою усіченої піраміди.


Завдання

№1. У правильній чотирикутній піраміді точка О – центр основи, SO=8 см, BD=30 см. Знайдіть бічне ребро SA.


Вирішення задач

№1. У правильній піраміді всі грані та ребра рівні.

Розглянемо OSB: OSB-прямокутний прямокутник, т.к.

SB 2 =SO 2 +OB 2

SB 2 = 64 +225 = 289

Піраміда в архітектурі

Піраміда - монументальна споруда у формі звичайної правильної геометричної піраміди, в якій бічні сторони сходяться в одній точці. За функціональним призначенням піраміди в давнину були місцем поховання або поклоніння культу. Основа піраміди може бути трикутною, чотирикутною або у формі багатокутника з довільним числом вершин, але найпоширенішою версією є чотирикутна основа.

Відомо чимала кількість пірамід, побудованих різними культурами Стародавнього світу в основному як храми або монументи. До великих пірамід відносяться єгипетські піраміди.

По всій землі можна побачити архітектурні споруди у вигляді пірамід. Будівлі-піраміди нагадують про давні часи і дуже гарно виглядають.

Єгипетські піраміди – найбільші архітектурні пам'ятки Стародавнього Єгипту, серед яких одне з «Семи чудес світу» піраміда Хеопса. Від підніжжя до вершини вона досягає 137, 3 м, а до того, як втратила верхівку, висота її була 146, 7 м.

Будівля радіостанції у столиці Словаччини, що нагадує перевернуту піраміду, була збудована у 1983 р. Крім офісів та службових приміщень, всередині обсягу знаходиться досить місткий концертний зал, який має один із найбільших органів у Словаччині.

Лувр, який "мовчить незмінно і велично, як піраміда", протягом століть переніс чимало змін перш, ніж перетворитися на найбільший музей світу. Він народився як фортеця, споруджена Пилипом Августом у 1190 р., яка незабаром перетворилася на королівську резиденцію. У 1793 р. палац стає музеєм. Колекції збагачуються завдяки заповітам чи покупкам.

Поняття піраміди

Визначення 1

Геометрична фігура, утворена багатокутником і точкою, що не лежить у площині, що містить цей багатокутник, з'єднана з усіма вершинами багатокутника називається пірамідою (рис. 1).

Багатокутник, з якого складена піраміда, називається основою піраміди, що отримуються при з'єднанні з точкою трикутники - бічними гранями піраміди, сторони трикутників - сторонами піраміди, а загальна для всіх трикутників точка - вершиною піраміди.

Види пірамід

Залежно від кількості кутів у основі піраміди її можна назвати трикутною, чотирикутною тощо (рис. 2).

Малюнок 2.

Ще один вид пірамід - правильна піраміда.

Введемо та доведемо властивість правильної піраміди.

Теорема 1

Усі бічні грані правильної піраміди є рівнобедреними трикутниками, які рівні між собою.

Доведення.

Розглянемо правильну $n-$вугільну піраміду з вершиною $S$ заввишки $h=SO$. Опишемо навколо основи коло (рис. 4).

Малюнок 4.

Розглянемо трикутник $SOA$. За теоремою Піфагора, отримаємо

Очевидно, що так визначатиметься будь-яке бічне ребро. Отже, всі бічні ребра рівні між собою, тобто всі бічні грані – рівнобедрені трикутники. Доведемо, що вони між собою рівні. Оскільки основа - правильний багатокутник, то основи всіх бічних граней рівні між собою. Отже, всі бічні грані дорівнюють за III ознакою рівності трикутників.

Теорему доведено.

Введемо тепер таке визначення, пов'язане з поняттям правильної піраміди.

Визначення 3

Апофемою правильної піраміди називається висота її бічної грані.

Очевидно, що за теоремою всі апофеми рівні між собою.

Теорема 2

Площа бічної поверхні правильної піраміди визначається як добуток напівпериметра основи апофему.

Доведення.

Позначимо сторону основи $n-$вугільної піраміди через $a$, а апофему через $d$. Отже, площа бічної грані дорівнює

Так як, за теоремою 1, всі бічні сторони рівні, то

Теорему доведено.

Ще один вид піраміди - усічена піраміда.

Визначення 4

Якщо через звичайну піраміду провести площину, паралельну до її основи, то постать, утворена між цією площиною та площиною основи називається усіченою пірамідою (рис. 5).

Рисунок 5. Усічена піраміда

Боковими гранями усіченої піраміди є трапеції.

Теорема 3

Площа бічної поверхні правильної зрізаної піраміди визначається як добуток суми напівпериметрів підстав на апофему.

Доведення.

Позначимо сторони основ $n-$вугільної піраміди через $a\ і \ b$ відповідно, а апофему через $d$. Отже, площа бічної грані дорівнює

Оскільки всі бічні сторони рівні, то

Теорему доведено.

Приклад завдання

Приклад 1

Знайти площу бічної поверхні зрізаної трикутної піраміди, якщо вона отримана з правильної піраміди зі стороною основи 4 і апофемою 5 шляхом відсікання площиною, що проходить через середню лінію бічних граней.

Рішення.

По теоремі про середню лінію отримаємо, що верхня основа усіченої піраміди дорівнює $4\cdot \frac(1)(2)=2$, а апофема дорівнює $5\cdot \frac(1)(2)=2,5$.

Тоді, за теоремою 3, отримаємо



Останні матеріали розділу:

Київська Русь.  Київська Русь та Україна.  Чи є Росія спадкоємицею Київської Русі, чи українці просто тепер відновлюють свою споконвічну давню державу і не дарма іменують її Україна-Русь Інформація про київську русь
Київська Русь. Київська Русь та Україна. Чи є Росія спадкоємицею Київської Русі, чи українці просто тепер відновлюють свою споконвічну давню державу і не дарма іменують її Україна-Русь Інформація про київську русь

Літописне склепіння «Повість временних літ» — єдине письмове джерело, що підтверджує існування так званої Київської Русі. Яка...

Створення та розвиток метричної системи заходів
Створення та розвиток метричної системи заходів

Міжнародна десяткова система вимірювань, в основу якої покладено використання таких одиниць, як кілограм та метр, називається метричною.

Крок у медицину робоча програма
Крок у медицину робоча програма

У квітні у Першому Московському державному медичному університеті імені І. М. Сєченова відбулася конференція «Старт у медицину». Захід...