Закон больцмана распределения молекул в гравитационном поле. Распределение больцмана

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm , можно получить уравнение

Разделяя переменные, получим

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

Пусть давление на поверхности равно p 0 , тогда полученное уравнение легко преобразовать к виду

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT :

где m 0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

Полное число частиц в системе может быть записано в виде

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV . Тогда для этой вероятности запишем

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.


Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?

Это объясняется тем, что при подъеме из потока частиц выбывают наиболее медленные, т.е. «наиболее холодные». Поэтому расчет энергии ведется по меньшему числу частиц, которые на исходной высоте были в среднем «более горячими». Иначе говоря, если с нулевой высоты на высоту прибыло какое-то число частиц, то их средняя энергия на высоте равна средней энергии всех частиц на нулевой высоте, часть которых не смогла достигнуть высоты из-за малой кинетической энергии. Однако если на нулевой высоте рассчитать среднюю энергию частиц, достигших высоты , то она больше средней энергии всех частиц на нулевой высоте. Поэтому можно сказать, что средняя энергия частиц на высоте действительно уменьшилась и в этом смысле они «охладились» при подъеме. Однако средняя энергия всех частиц на нулевой высоте и высоте одинакова, т.е. и температура одинакова. С другой стороны, уменьшение плотности частиц с высотой также является следствием выбывания частиц из потока.

Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Для количественного рассмотрения вопроса о потере атмосферы планетами необходимо принять во внимание распределение молекул по скоростям. Силу земного притяжения могут преодолеть лишь молекулы, скорость которых превосходит вторую космическую. Эти молекулы находятся в «хвосте» распределения Максвелла и их относительное число незначительно. Тем не менее за значительные промежутки времени потеря молекул является чувствительной. Поскольку вторая космическая скорость у тяжелых планет больше, чем у легких, интенсивность потери атмосферы у массивных небесных тел меньше, чем у легких, т.е. легкие планеты теряют атмосферу быстрее, чем тяжелые. Время потери атмосферы зависит также от радиуса планеты, состава атмосферы и т.д. Полный количественный анализ этого вопроса является сложной задачей.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Для того чтобы тяжелые частицы не «осели на дно», распределились в достаточно большом слое на высоте, необходимо чтобы их потенциальная энергия была достаточно малой. Этого можно достигнуть, помещая частицы в жидкость, плотность которой лишь на немного меньше плотности материала частиц. Обозначив плотность и объем частиц и , а плотность жидкости – , видим, что сила, действующая на частицу, равна . Следовательно, потенциальная энергия такой частицы на высоте от дна сосуда равна

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r 0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kT ln2/ = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r 0) = kT ln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r 0) = 2,53×10 -3 кг/м 3 . Поскольку r 0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

При рассмотрении закона распределения Максвелла предполагалось, что молекулы равномерно распределяются по всему объему сосуда, что справедливо, если объем сосуда небольшой.

Для больших объемов равномерность распределения молекул по объему нарушается из-за действия силы тяжести, вследствие чего плот­ность, а следовательно, и число молекул в единице объема будут неодинаковым.

Рассмотрим молекулы газа, находящегося в поле тяготения Земли.

Выясним зависимость давления атмосферы от высоты над поверхно­стью Земли. Допустим, на поверхности Земли (h = 0) давление атмосфе­ры P 0 . На высоте h оно равно P. При увеличении высоты на dh давление уменьшится на dP:

dP = - ρgdh (9.49)

[ρ - плотность воздуха на данной высоте, ρ = mn 0 , где m - масса моле­кулы, n 0 - концентрация молекул].

Используя соотношение P = n 0 kТ, получаем

Полагая, что на некоторой высоте h Т = соnst, g = соnst, разделяя пе­ременные, интегрируем выражение (9.50):

Получаем

(9.51) - барометрическая формула .

Барометрическая формула показывает зависимость давления газа от высоты над поверхностью Земли.

Если учесть, что концентрация молекул воздуха в атмосфере определяет дав­ление, то формулу (9.51) можно записать в виде

Из формулы (9.52) следует, что с понижением температуры число частиц на высоте, отличной от нуля, убывает и при Т = 0К обращается в нуль, т. е. при 0К все молекулы расположились бы на земной поверх­ности.

Так как потенциальная энергия молекул на различной высоте раз­лична и на высоте h определяется по формуле где Е П = mgh, то [см.

- закон Больцмана , показывающий распределение участвующих в теп­ловом движении молекул в потенциальном поле сил, в частности в поле силы тяжести.

Методика решения задач

В задачах данного типа используют свойства распределения Максвелла и Больцмана.

Пример 3.3. Определите среднюю арифметическую скорость <υ˃ молекул идеального газа, плотность которого при давлении 35 кПа составляет 0,3 кг/м 3 .

Дано: Р=35кПа=35∙10 3 Па; ρ=0,3 кг/м 3 .

Найти : <υ˃ .

Решение: Согласно основному уравнению молекулярно-кинетической теории идеальных газов,

где n – концентрация молекул; m 0 - масса одной молекулы; кв ˃ .- средняя квадратичная скорость молекул.

Учитывая, что , а, получаем

Так как плотность газа

где m – масса газа; V - его объём; N - число молекул газа, уравнение (1) можно записать в виде

или . Подставляя это выражение в формулу (2), находим искомую среднюю арифметическую скорость:

Ответ: <υ˃=545 м/с.

Пример 3.5. Найти относительное число газа, скорость которого отличается не более чем на δη = 1% значения средней квадратичной скорости.

Дано: δη = 1%.

Найти :

Решение В распределении Максвелла

подставим значение

; δυ = υ кв δη.

Относительное число молекул будет

Ответ :

Пример 3.6. При какой температуре газа число молекул со скоростями в заданном интервале υ, υ + dυ будет максимальной? Масса каждой молекулы m.

Для нахождения искомой температуры необходимо исследовать функцию распределения Максвелла на экстремум .

Пример 3.7. Вычислить наиболее вероятную, среднюю и среднюю квадратичную скорости молекул идеального газа, у которого при нормальном атмосферном давлении плотность ρ = 1кг/м 3 .

Умножив числитель и знаменатель в подкоренных выражениях (3.4) на число Авогадро N а, получим следующие формулы для скоростей:

Запишем уравнение Менделеева-Клапейрона, введя в него плотность

Определим отсюда величину и, подставив её в выражения, определяющие скорость молекул, получим:

Пример 3.4. Идеальный газ с молярной массой M находится в однородном поле тяжести, ускорение свободного падения в котором g. Найти давление газа как функцию высоты h, если при h = 0 давление Р = Р 0 , а температура меняется с высотой как T = T 0 (1 - α·h), где α – положительная постоянная.

При увеличении высоты на бесконечно малую величину давление получает приращение dP = - ρgdh, где ρ - плотность газа. Знак минус появился, так как с увеличением высоты давление уменьшилось.

Поскольку рассматривается идеальный газ, плотность ρ может быть найдена из уравнения Mенделеева-Клапейрона:

Подставим значение плотности ρ и температуры Т, получим разделяя переменные:

Интегрируя это выражение, находим зависимость давления газа от высоты h:

Так как при h = 0 Р = Р 0 получаем значение постоянной интегрирования С = Р 0 . Окончательно функция Р(h) имеет вид

Необходимо отметить, что, так как давление является величиной положительной, полученная формула справедлива для высот .

Пример. Французский физик Ж.Перрен, наблюдал под микроскопом изменение концентрации взвешенных в воде (ρ=1г/см 3 ) шариков гуммигута (ρ 1 =1,25г/см 3 ) с изменением высоты, экспериментально определил постоянную Авогадро. Определите это значение, если температура взвеси Т=298К, радиус шариков =0,21 мкм, а при расстоянии между двумя слоями Δ h =30мкм число шариков гуммигута в одном слое в два раза больше, чем в другом.

Дано: ρ=1г/см 3 =1000кг/м 3 ; ρ=1,25 г/см 3 =1250кг/м 3 ; Т=280 К; r =0,21мкм=0,21∙10 -6 м; Δ h =30мкм=3∙10 -5 м; .

Найти : N A .

Решение. Барометрическую формулу

Используя уравнение состояния P=nkT, можно преобразовать для высот h 1 и h 2 к виду

и ,

где n 0 , n 1 и n 2 - соответственно концентрация молекул на высоте h 0 , h 1 и h 2 ; М – молярная масса; g- ускорение свободного падения; R- молярная газовая постоянная.

Прологарифмировав выражение (1), получим

Масса частицы ; m=ρV=ρπr 3 . Подставив эти формулы в (2) и учитывая поправку на закон Архимеда, получим

Откуда искомое выражение для постоянной Авогадро

Ответ: N A =6,02∙10 23 моль -1 .

Пример. Какова температура Т азота, если средняя длина свободного пробега <ℓ˃ молекул азота при давлении Р=8кПа составляет 1мкм. Эффективный диаметр молекул азота d =0,38нм. .

Дано: <ℓ˃ =1мкм=1∙10 -6 м; Р=8кПа=8∙10 3 Па; d=0,38нм=0,38∙10 -9 м;

Найти : Т.

Решение. Согласно уравнению состояния идеального газа

где n – концентрация молекул; k - постоянная Больцмана.

откуда . Подставив эту формулу в выражение (1), найдём искомую температуру азота

Ответ: Т=372 К.

Пример. При температуре Т=280 К и некотором давлении средняя длина <ℓ 1 ˃ свободного пробега молекул равна 0,1 мкм. Определите среднее число столкновений молекул в 1с, если давление в сосуде уменьшить до 0,02 первоначального давления. Температуру считать постоянной, а эффективный диаметр молекулы кислорода принять равным 0,36нм.

Дано: Т=280 К; <ℓ 1 ˃ =0,1мкм=0,1∙10 -6 м; М=32∙10 -3 кг/моль; ; d=0,36нм=0,36∙10 -9 м;

Найти : .

Решение. Среднее число . молекулы к средней длине её свободного пробега <ℓ 2 ˃. при том же давлении:

где средняя скорость молекул определяется по формуле

где R – молярная газовая постоянная; М – молярная масса вещества.

Из формул иP=nkT следует, что средняя длина свободного пробега молекул обратно пропорциональна давлению:

откуда . Подставив это выражение в формулу (1) и учитывая (2), получаем искомое среднее число столкновений молекул в 1с:

Ответ:

Дано: P =100мкПа=10 -4 Па; r =15см=0,15 м; T=273 К; d=0,38нм=0,38∙10 -9 м.

Найти :

Решение. Вакуум можно считать высоким, если средняя длина свободного пробега молекул газа гораздо больше линейных размеров сосуда, т.е. должно выполняться условие

Средняя длина свободного пробега молекул газа

(учли P=nkT).

Вычисляя, получаем =58,8 м, т.е 58,8 м ˃˃0,3 м.

Ответ: да, вакуум высокий.

Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа. Пусть Р давление газа на высоте h. Тогда давление на высоте h+dh будет P+dP, а разность давлений dP будет равна весу газа mg в объеме V с площадью основания S = 1 м 2 и высотой dh (V=Sdh), отнесенному к S.

Выразим плотность газа ρ через давление P из уравнения Менделеева-Клапейрона

Проинтегрируем отдельно левую и правую части уравнения. Считая температуру постоянной T=const, получим lnP = - , где С – постоянная интегрирования. Выражение для давления будет Постоянную интегрирования определяют из граничного условия. Еслиh = 0, то С = Р 0 и тогда

Это уравнение носит название барометрической формулы и показывает зависимость давления газа от высоты.

Видно, что чем тяжелее молекулы и чем ниже температура, тем быстрее уменьшается давление с увеличением высоты.

Заменим в формуле давление, выразив его через концентрацию молекул из уравнений P = nkT, P 0 = n 0 kT и

где n 0 - концентрация молекул на высоте h=0;

n - концентрация молекул на высоте h≠0.

Данная формула описывает изменение концентрации молекул от высоты h в потенциальном поле земного тяготения и от температуры Т. Можно отметить две тенденции, определяющих распределение молекул по высоте:

1. Притяжение молекул к Земле (mg) стремится расположить их на поверхности Земли.

2. Тепловое движение (kT) стремится разбросать молекулы равномерно по всем высотам от 0 до .

В результате этих конкурирующих процессов распределение молекул газа по высоте имеет промежуточный вид.

Потенциальная энергия молекулы  Р =mgh. Следовательно, полученная формула представляет собой распределение молекул по значениям потенциальной энергии

Это формула функции распределения Больцмана. Здесь n 0 концентрация моле-кул в том месте, где  Р = 0, n –концентрация молекул в той точке простран-ства, где молекула обладает потенциальной энергией  p ≠ 0. Молекулы стремятся расположиться с наибольшей плотностью там, где у них минимальная потенциальная энергия

Закон Максвелла дает распределение молекул по значениям кинетической энергии, а закон Больцмана - по значениям потенциальной энергии.

Больцман доказал, что формула распределения справедлива не только в случае потенциального поля земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Контрольные вопросы

    Что такое степень свободы молекул?

    Чему равно число степеней свободы одно-, двух- и трехатомной молекул?

    Сформулируйте закон распределения энергии по степеням свободы молекул.

    Приведите выражение функции распределения молекул по скоростям.

    По каким формулам определяются среднеарифметическая, наиболее вероятная и среднеквадратичная скорости молекул?

    Каково выражение для функции распределения Больцмана по значениям потенциальной энергии?

Тесты

    чему равно число степеней свободы двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Сколько степеней свободы приходится на вращательное движение у двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Какое из приведенных выражений описывает наиболее вероятную скорость?

закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова

Выражение (45.2) называется барометрической формулой. Она позволяет найти атмос­ферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормаль­ным, то выражение (45.2) может быть записано в виде

где р - давление на высоте h.

Барометрическую формулу (45.3) можно преобразовать, если воспользоваться вы­ражением (42.6) p = nkT :

где n – концентрация молекул на высоте h , n 0 – то же, на высоте h = 0. Так как M= m 0 N A (N A – постоянная Авогадро, т 0 масса одной молекулы), a R = kN A , то

где m 0 gh =П - потенциальная энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распределением Больцмана для внешнего потенциаль­ного поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом вне­шнем потенциальном поле, а не только в поле сил тяжести.

24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.

На среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится Это есть закон Больцмана о равномерном распределении средней кинетической энергии по степеням свободы. Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий). Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражениемКинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с Ek дается соотношениемИз уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекулВнутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V). Принято говорить, что внутренняя энергия является функцией состояния.

Распределение Больцмана

Статистика Максвелла - Больцмана - статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом .

Вывод распределения

Из общего распределения Гиббса. Рассмотрим систему частиц, находящуюся в однородном поле. В таком поле каждая молекула идеального газа обладает полной энергией

Где

Кинетическая энергия её поступательного движения, а - потенциальная энергия во внешнем поле, которая зависит от её положения.

Подставим это выражение для энергии в распределение Гиббса для молекулы идеального газа (где - вероятность того, что частица находится в состоянии со значениями координат и импульсов , в интервале )

,

где интеграл состояний равен:

интегрирование ведется по всем возможным значениям переменных. Далее интеграл состояний можно написать в виде:

,

мы находим, что нормированное на единицу распределение Гиббса для молекулы газа при наличии внешнего поля имеет вид:

.

Полученное распределение вероятностей, характеризующее вероятность того, что молекула имеет данный импульс и находится в данном элементе объема, носит название распределение Максвелла - Больцмана .

Некоторые свойства

При рассмотрении распределения Максвелла - Больцмана, бросается в глаза важное свойство - его можно представить как произведение двух множетелей:

.

Первый множитель есть ничто иное как распределение Максвелла, оно характеризует распределение вероятностей по импульсам. Второй множитель зависит только лишь от координат частиц и определяется видом её потенциальной энергии. Он характеризует вероятность обнаружения частицы в объеме dV.

Согласно теории вероятности , распределение Максвелла - Больцмана можно рассматривать как произведение вероятностей двух независимых событий - вероятность данного значения импульса и данного положения молекулы. Первая из них:

представляет распределение Максвелла; вторая вероятность:

Распределение Больцмана. Очевидно, что каждое из них нормировано на единицу.

Независимость вероятностей дает важный результат: вероятность данного значения импульса совершенно не зависит от положения молекулы и, наоборот, вероятность положения молекулы не зависит от её импульса. Это значит что распределение частиц по импульсам (скоростям) не зависит от поля, другими словами остается тем же самым от точки к точке пространства, в котором заключен газ. Меняется лишь вероятность обнаружения частицы или, что то же самое, число частиц.

См.также

Wikimedia Foundation . 2010 .

Смотреть что такое "Распределение Больцмана" в других словарях:

    распределение Больцмана - Bolcmano skirstinys statusas T sritis fizika atitikmenys: angl. Boltzmann distribution; Boltzmann distribution law vok. Boltzmannsche Verteilung, f; Boltzmannsches Verteilungsgesetz, n; Boltzmann Verteilung, f rus. больцмановское распределение,… … Fizikos terminų žodynas

    Статистич. метод описания физ. св в систем, содержащих большое число невзаимодействующих ч ц, движущихся по законам классич. механики (т. е. св в классич. идеального газа). Создана австр. физиком Л. Больцманом в 1868 71. В Б. с. рассматривается… … Физическая энциклопедия

    Распределение Гиббса распределение, определяющее количества частиц в различных квантовых состояниях. Основывается на постулатах статистики: Все доступные микросостояния системы равновероятны. Равновесию соответствует наиболее вероятное… … Википедия

    Физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю.… … Большая советская энциклопедия

    Как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается Статистика Ферми Дирака в статистической физике квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с… … Википедия

    Статистически равновесная ф ция распределения по импульсам р и координатам r ч ц идеального газа, молекулы к рого движутся по законам классич. механики, во внеш. потенц. поле: f(p, r) = Aехр{ (р2/2m+U(r))/kT}. (1) Здесь p2/2m кинетич. энергия… … Физическая энциклопедия

    - (Максвелла Больцмана распределение) равновесное распределение частиц идеального газа по энергиям (E) во внешнем силовом поле (напр., в поле тяготения); определяется функцией распределения f e E/kT, где E сумма кинетической и потенциальной энергий … Большой Энциклопедический словарь

    - (Максвелла Больцмана распределение), равновесное распределение частиц идеального газа по энергиям во внешнем силовом поле (например, в поле тяготения); определяется функцией распределения f ≈ e E/kT, где Е сумма кинетической и потенциальной… … Энциклопедический словарь

    Функция плотности распределения Распределение Максвелла распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и… … Википедия



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...