Числовая последовательность может иметь. Числовые последовательности

Определение .
Числовой последовательностью { x n } называется закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.

Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице

Последовательность как качество личности – склонность неотступно следовать чему-либо, неуклонно проводить в жизнь что-либо, осуществлять действия, которые непрерывно следуют одно за другим.

Один знатный купец, прослышав об удивительных способностях набожного старца, пришел к нему в пещеру с просьбой: «О, достопочтенный праведник! Напиши для моей семьи какое-нибудь доброе пожелание. Я очень люблю своих детей и внуков. И я хочу, чтобы они были счастливы. Дай нам свой завет». Благочестивый старец взял бумагу, перо — и купец тут же получил то, о чем спрашивал. Пожелание было очень кратким: «Умер дед, умер сын, умер внук». — Что ты такое здесь написал, сумасшедший?! – замахал руками разгневанный купец. – Разве я пришел к тебе за проклятиями? — Ты ничего не понял, — ответил праведник. – Все мы когда-нибудь вернемся к Отцу Небесному. Но проклятием было бы, если б я написал: «Умер внук, умер сын, умер дед». А эта последовательность правильная. Если вы уйдете в таком порядке, это будет счастьем.

Последовательный человек – герой нашего времени, в котором как никогда высоко ценятся практически-аналитический склад ума, здоровый прагматизм и реализм. Работодатели, представляющие крупные организации с амбициозными целями и задачами, отдают предпочтение людям, у которых последовательность стала ярко выраженным качеством личности. В претендентах их прельщает надежность, предсказуемость, рассудительность, решительность и убежденность в своих взглядах. Любому руководителю будет по душе уверенный в себе человек, который выверенными, отточенными и непоколебимыми действиями последовательно кратчайшим путем выполняет поставленную перед ним задачу.

Последовательность – родная сестра целеустремленности – способности решительно, упорно и настойчиво стремиться к реализации своей цели. Последовательный человек не уронит цель, он знает свой путь и никуда с него не свернет. Путь к высокой цели может быть извилист и долог. Стороннему наблюдателю могут показаться абсурдными какие-то отдельные действия последовательности. А «ларчик просто открывается» — она четко видит конечный результат своих действий. Отдельные действия складываются в логическую цепочку, приводящую последовательность к задуманной цели.

Последовательность – любимица цели, ей внутренне присущи постоянство и сосредоточенность на каком-то виде работ, без которых невозможно достичь сколько-нибудь достойной цели. Последовательный человек непрерывно, не отвлекаясь от поставленной задачи, выполняет до конца одно дело и только затем переходит к другому. Он точно и правильно распределяет время по этапам и периодам, при этом постоянно обдумывая, где и как можно сэкономить время.

Зачастую люди заигрывают с последовательностью и, не будучи ее настоящим обладателем, тут же получают от жизни поучительный урок за ее иллюзию. Необдуманно и скоропалительно приняв какое-то решение вчера, они уже утром не находят себе места – быть непоследовательным стыдно и неавторитетно. Поэтому вчерашнее решение, каким бы глупым оно ни было, приходится неохотно выполнять, чтобы не «уронить честь мундира». Но, вдруг, выясняется его противоречивость и вредность для дела. Включать упрямство? Себе еще больше навредить. Пойти на попятную? Будут говорить, что у него семь пятниц на неделе. И начинается шараханье в мыслях, действиях и поступках. Человека лихорадит страх перед наказанием, но и перед начальством невыгодно обнажать фрагментарность своей натуры. В итоге лжепретенденту на последовательность дорого обходится иллюзия своей личностной целостности.

Последовательность всегда высоко котировалась общественным мнением, считалась одним из атрибутов справедливости, поэтому люди унаследовали от своих далеких предков стремление выглядеть последовательными в своих словах и делах. Она всегда ассоциировалась с интеллектуальностью, силой, логикой, рациональностью, стабильностью и честностью. Как сказал великий английский физик Майкл Фарадей, последовательность порой одобряется в большей степени, чем правота. Когда Фарадея как-то после лекции спросили, не считает ли он, что ненавидимый им ученый соперник всегда неправ, Фарадей сердито посмотрел на спрашивающего и ответил: «Он не до такой степени последователен». Непоследовательный человек – невыгодный социальный статус как символ легкомыслия, непостоянства и ненадежности. С ним никто не хочет иметь дела. Вполне понятно, почему люди опасаются прослыть непоследовательными – это прямая угроза оказаться на общественных задворках.

Страх быть непоследовательным – удивительно интересный и привлекательный объект манипуляцией людьми. Последовательность, как большое человеческое достоинство, как прекрасное качество личности, становится крючком, за который манипуляторы цепляют люди ради достижения своих корыстных целей. Дело в том, что атрибутом последовательности является автоматизм, определенная машинальность в выполнении своих действий. В целом автоматизм рационален и полезен, позволяя человеку не задумываться каждый раз над каждым своим действием и, тем самым, экономить массу времени.

Роберт Б. Чалдини заметил: «Поскольку нам обычно полезно быть последовательными, мы поддаемся искушению быть таковыми автоматически, даже в ситуациях, когда это неблагоразумно. Если последовательность проявляется бездумно, она может быть гибельной… Автоматическое стремление к последовательности является своего рода щитом, выставляемым мышлением. Неудивительно, что этот механизм интенсивно используется теми, кто предпочитает, чтобы мы реагировали на их требования не задумываясь. Для подобного рода эксплуататоров наше автоматическое стремление к последовательности является золотой жилой. Они умеют так ловко заставить нас проигрывать свои «магнитофонные записи последовательности», когда им это выгодно, что мы даже не осознаем, что нас поймали. В великолепно отточенном стиле джиу-джитсу такие люди выстраивают взаимоотношения с нами таким образом, что наше собственное желание быть последовательным приносит им прямую выгоду».

Рассмотрим прием манипуляторов «Начинай с малого». Однажды сказав «Да», подтвердив свое согласие, в дальнейшем человек становится более уступчивым и сговорчивым. Уступив в мелочах, следующую просьбу, если она будет логическим продолжением первой просьбы, человек выполняет, отталкиваясь только от принципа последовательности. «Мы уезжаем в отпуск,- говорит сосед, — у нас к Вам огромная просьба – поливать цветы в квартире. Вот ключи». Вы даете согласие и чувствуете себя бескорыстным человеком, чуть ли не альтруистом. Спустя полгода он опять обращается к Вам: «Мы улетаем с женой на две недели в Тайланд. Опять к Вам огромная просьба – поливать цветы и поухаживать за нашим песиком. Его надо утром и вечером выгуливать, а корм мы Вам оставляем». Вам уже неудобно быть непоследовательным, можно, конечно, отказаться, но Вы уже понимаете, как неприятно потом будет на душе, ведь Вы – альтруист, надо соответствовать высокому значению этого слова.

К приемам манипуляции на стремлении людей быть последовательными можно также отнести письменное согласие. Большинство людей, подписываясь под каким-либо заявлением или анкетой, в дальнейшем автоматически начинают защищать то, что там было прописано, даже если подпись ставилась на «автопилоте», машинально или под влиянием обстоятельств.

«Хорошо» себя зарекомендовал прием «публичное заявление о хорошем положении дел». Когда с людей хотят выудить деньги на благотворительность, начинают издалека: например с вопросов о финансовом состоянии фирмы или самого человека. «Как ваша фирма чувствует себя на рынке? Считаете ли вы себя преуспевающим и активным человеком?». Когда люди расслабляются, идет атака: «Согласитесь ли вы помочь нуждающимся?» Людям, заявившим о хорошем состоянии дел, уже тяжело быть непоследовательными. Манипуляторы довольно потирают руки и радуются, что люди наделены таким качеством личности как «кормилица ты наша, Последовательность!»

Петр Ковалев

Материал из Википедии - свободной энциклопедии

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов .

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество X элементов произвольной природы. | Всякое отображение f\colon\mathbb{N}\to X множества натуральных чисел \mathbb{N} в заданное множество X называется последовательностью (элементов множества X).

Образ натурального числа n, а именно, элемент x_n=f(n), называется n-ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Подмножество f\left[\mathbb{N}\right] множества X, которое образовано элементами последовательности, называется носителем последовательности : пока индекс пробегает множество натуральных чисел, точка, «изображающая» последовательность, «перемещается» по носителю.
  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • Не следует смешивать носитель последовательности и саму последовательность! Например, точка a\in X как одноточечное подмножество \{a\}\subset X является носителем стационарной последовательности вида a,a,a,\dots.
  • Любое отображение множества \mathbb{N} в себя также является последовательностью.
  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

x_1,\quad x_2,\quad x_3,\quad\dots

принято компактно записывать при помощи круглых скобок:

(x_n) или (x_n)_{n=1}^{\infty}

иногда используются фигурные скобки:

\{x_n\}_{n=1}^{\infty}

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

(x_n)_{n=1}^N,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также

Напишите отзыв о статье "Последовательность"

Примечания

Литература

  • Последовательность // Энциклопедический словарь юного математика / Сост. А. П. Савин. - М .: Педагогика , 1985. - С. 242-245. - 352 с.

Отрывок, характеризующий Последовательность

В числе перебираемых лиц для предмета разговора общество Жюли попало на Ростовых.
– Очень, говорят, плохи дела их, – сказала Жюли. – И он так бестолков – сам граф. Разумовские хотели купить его дом и подмосковную, и все это тянется. Он дорожится.
– Нет, кажется, на днях состоится продажа, – сказал кто то. – Хотя теперь и безумно покупать что нибудь в Москве.
– Отчего? – сказала Жюли. – Неужели вы думаете, что есть опасность для Москвы?
– Отчего же вы едете?
– Я? Вот странно. Я еду, потому… ну потому, что все едут, и потом я не Иоанна д"Арк и не амазонка.
– Ну, да, да, дайте мне еще тряпочек.
– Ежели он сумеет повести дела, он может заплатить все долги, – продолжал ополченец про Ростова.
– Добрый старик, но очень pauvre sire [плох]. И зачем они живут тут так долго? Они давно хотели ехать в деревню. Натали, кажется, здорова теперь? – хитро улыбаясь, спросила Жюли у Пьера.
– Они ждут меньшого сына, – сказал Пьер. – Он поступил в казаки Оболенского и поехал в Белую Церковь. Там формируется полк. А теперь они перевели его в мой полк и ждут каждый день. Граф давно хотел ехать, но графиня ни за что не согласна выехать из Москвы, пока не приедет сын.
– Я их третьего дня видела у Архаровых. Натали опять похорошела и повеселела. Она пела один романс. Как все легко проходит у некоторых людей!
– Что проходит? – недовольно спросил Пьер. Жюли улыбнулась.
– Вы знаете, граф, что такие рыцари, как вы, бывают только в романах madame Suza.
– Какой рыцарь? Отчего? – краснея, спросил Пьер.
– Ну, полноте, милый граф, c"est la fable de tout Moscou. Je vous admire, ma parole d"honneur. [это вся Москва знает. Право, я вам удивляюсь.]
– Штраф! Штраф! – сказал ополченец.
– Ну, хорошо. Нельзя говорить, как скучно!
– Qu"est ce qui est la fable de tout Moscou? [Что знает вся Москва?] – вставая, сказал сердито Пьер.
– Полноте, граф. Вы знаете!
– Ничего не знаю, – сказал Пьер.
– Я знаю, что вы дружны были с Натали, и потому… Нет, я всегда дружнее с Верой. Cette chere Vera! [Эта милая Вера!]
– Non, madame, [Нет, сударыня.] – продолжал Пьер недовольным тоном. – Я вовсе не взял на себя роль рыцаря Ростовой, и я уже почти месяц не был у них. Но я не понимаю жестокость…
– Qui s"excuse – s"accuse, [Кто извиняется, тот обвиняет себя.] – улыбаясь и махая корпией, говорила Жюли и, чтобы за ней осталось последнее слово, сейчас же переменила разговор. – Каково, я нынче узнала: бедная Мари Волконская приехала вчера в Москву. Вы слышали, она потеряла отца?
– Неужели! Где она? Я бы очень желал увидать ее, – сказал Пьер.
– Я вчера провела с ней вечер. Она нынче или завтра утром едет в подмосковную с племянником.
– Ну что она, как? – сказал Пьер.
– Ничего, грустна. Но знаете, кто ее спас? Это целый роман. Nicolas Ростов. Ее окружили, хотели убить, ранили ее людей. Он бросился и спас ее…
– Еще роман, – сказал ополченец. – Решительно это общее бегство сделано, чтобы все старые невесты шли замуж. Catiche – одна, княжна Болконская – другая.
– Вы знаете, что я в самом деле думаю, что она un petit peu amoureuse du jeune homme. [немножечко влюблена в молодого человека.]
– Штраф! Штраф! Штраф!
– Но как же это по русски сказать?..

Когда Пьер вернулся домой, ему подали две принесенные в этот день афиши Растопчина.
В первой говорилось о том, что слух, будто графом Растопчиным запрещен выезд из Москвы, – несправедлив и что, напротив, граф Растопчин рад, что из Москвы уезжают барыни и купеческие жены. «Меньше страху, меньше новостей, – говорилось в афише, – но я жизнью отвечаю, что злодей в Москве не будет». Эти слова в первый раз ясно ыоказали Пьеру, что французы будут в Москве. Во второй афише говорилось, что главная квартира наша в Вязьме, что граф Витгснштейн победил французов, но что так как многие жители желают вооружиться, то для них есть приготовленное в арсенале оружие: сабли, пистолеты, ружья, которые жители могут получать по дешевой цене. Тон афиш был уже не такой шутливый, как в прежних чигиринских разговорах. Пьер задумался над этими афишами. Очевидно, та страшная грозовая туча, которую он призывал всеми силами своей души и которая вместе с тем возбуждала в нем невольный ужас, – очевидно, туча эта приближалась.

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...