Что изучает квантовая химия. Конспект лекций по квантовой химии

Климент Аркадиевич Тимирязев родился 22 мая (по старому стилю) 1843 г. в Петербурге, на Галерной улице. Позже семья переехала на Васильевский остров.

В 1860 г. Тимирязев поступил в Петербургский университет. В 1861 г. за участие в студенческих волнениях Климента Аркадиевича вынудили покинуть стены университета. Только в 1863 г. Тимирязев смог возобновить занятия в университете в качестве вольнослушателя.

В 1864 г. Климент Аркадиевич написал студенческую научную работу о печеночных мхах. В ботанике в то время было немного известно о растительных организмах. Сочинение Тимирязева было удостоено золотой медали.

Осенью 1865 г. Климент Аркадиевич закончил занятия в университете. В этом же году вышла в свет первая книга Тимирязева "Краткий очерк теории Дарвина".

18 февраля 1866 г. К. А. Тимирязев получил диплом об окончании Петербургского университета.

В начале января 1868 г. открылся I съезд русских естествоиспытателей и врачей. Со своим докладом на нем выступил Климент Аркадиевич. Его сообщение называлось "Прибор для исследования воздушного питания листьев и о применении искусственного освещения к подобного рода исследованиям".

Участникам съезда естествоиспытателей и врачей молодой ученый демонстрировал прибор, который в любых условиях - в лаборатории, в поле, в лесу - обеспечивал исследование воздушного питания зеленого листа. Прибор давал ответы на вопросы: сколько углекислоты поглотил зеленый лист? Cколько пищи принял в себя?

Второй частью научного сообщения Тимирязева было выяснение вопроса: происходит ли усвоение углекислоты при искусственном освещении? Новый прибор давал исследователю возможность ответить и на этот вопрос. Результаты исследования показали, что при искусственном свете процесс усвоения углекислоты растением значительно уменьшается.

Совет Петербургского университета вынес решение о предоставлении Тимирязеву на два года научной командировки за границу. Климент Аркадиевич уехал в Гейдельберг, где начал работать в местном университете, в лаборатории Бунзена.

Работая в лаборатории, Тимирязев открыл в составе хлорофилла вещество, которое определяет его характерные оптические свойства. Это вещество Климент Аркадиевич назвал хлорофиллином. Тимирязеву удалось выделить хлорофиллин в чистом виде.

Климент Аркадиевич доказал, что действие солнечных лучей изменяет состав этого вещества, подобно действию кислот: в обоих случаях хлорофилл буреет, превращается в филлоксантин.

Кандидатура Тимирязева была предложена на должность преподавателя по кафедре ботаники в Петровскую Академию (г. Москва). Соответствующее официальное уведомление было послано Клименту Аркадиевичу за границу.

Тимирязев принял предложение Академии, и 22 ноября 1869 г. состоялось его избрание на преподавательскую должность.

В начале сентября 1870 г. Климент Аркадиевич прибыл в Москву и поселился вблизи Академии.

В лице Климента Аркадиевича академия получила преподавателя, близкого ей по духу.

В мае 1871 г. в Петербургском университете Тимирязев защитил диссертацию на степень магистра на тему "Спектральный анализ хлорофилла". Через два месяца после защиты Климента Аркадиевича избрали экстраординарным профессором Петровской Академии.

В 1872 г. Климента Аркадиевича пригласили на должность внештатного преподавателя Московского университета. Осенью этого года он прочел вступительную лекцию в университетской аудитории. С этого времени и до конца жизни Тимирязев был связан с Московским университетом. Климент Аркадиевич и его идейные друзья составили в университете сплоченную группу передовых ученых.

В 1875 г. в Петербургском университете Тимирязев защитил докторскую диссертацию на тему "Об усвоении света растением". Из всех волн лучистой энергии солнца, достигающих зеленых зерен хлорофилла, наибольшей энергией обладают волны красного света: под их действием интенсивнее всего идет процесс фотосинтеза, так как они несут зеленому листу наибольшее количество энергии.

Таков был важнейший вывод из докторской диссертации Климента Аркадиевича Тимирязева.

В 1877 г. Климента Аркадиевича избрали экстраординарным профессором Московского университета.

В 1878 г. вышло первое издание книги Тимирязева "Жизнь растений", в основу который был положен курс лекций по физиологии растений, читаемый автором в большой аудитории Московского музея прикладных наук (ныне Политехнический музей).

На VI съезде русских естествоиспытателей и врачей в Петербурге Тимирязев представил доклады: "Количественный анализ хлорофилла", "Новый метод для изучения процесса дыхания и разложения углекислоты растений", "Объективное изучение закона абсорбции и количественное изучение смесей двух хлорофилловых пигментов", "Клейковина как материал для осмотических исследований в применении к хлорофиллу", "О физиологическом значении хлорофилла".

В 1884 г. Климента Аркадиевича утвердили ординарным профессором Московского университета.

Значительный вклад в науку исследований Климента Аркадьевича послужил его избранию в 1890 г. членом-корреспондентом Российской Академии Наук.

Климент Аркадьевич Тимирязев умер 28 апреля 1920 г. Его похоронили на Ваганьковском кладбище.

Тимирязев Климент Аркадьевич

Т имирязев (Климент Аркадьевич) - профессор Московского университета, родился в Петербурге в 1843 г. Первоначальное образование получил дома. В 1861 г. поступил в Петербургский университет на камеральный факультет, потом перешел на физико-математический, курс которого окончил в 1866 г. со степенью кандидата и был удостоен золотой медали за сочинение "О печеночных мхах" (не напечатано). В 1868 г. появился в печати его первый научный труд "Прибор для исследования разложения углекислоты" и в том же году Тимирязев был отправлен за границу для подготовления к профессуре. Он работал у Гофмейстера, Бунзена, Кирхгофа, Бертло и слушал лекции Гельмгольца, Клода Бернара и др. Вернувшись в Россию, Тимирязев защитил магистерскую диссертацию ("Спектральный анализ хлорофилла", 1871) и был назначен профессором Петровской сельскохозяйственной академии в Москве. Здесь он читал лекции по всем отделам ботаники, пока не был оставлен за штатом в виду закрытия академии (в 1892 г.). В 1875 г. Тимирязев доктор ботаники за сочинение "Об усвоении света растением", а в 1877 г. приглашен в Московский университет на кафедру анатомии и физиологии растений, которую продолжает занимать и поныне. Читал также лекции на женских "коллективных курсах" в Москве. Кроме того, Тимирязев состоит председателем ботанического отделения общества любителей естествознания при Московском университете. Научные труды Тимирязева, отличающиеся единством плана, строгой последовательностью, точностью методов и изяществом экспериментальной техники, посвящены вопросу о разложении атмосферной углекислоты зелеными растениями под влиянием солнечной энергии и немало способствовали уяснению этой важнейшей и интереснейшей главы растительной физиологии. Изучение состава и оптических свойств зеленого пигмента растений (хлорофилла), его генезиса, физических и химических условий разложения углекислоты, определение составных частей солнечного луча, принимающих участие в этом явлении, выяснение судьбы этих лучей в растении и, наконец, изучение количественного отношения между поглощенной энергией и произведенной работой - таковы задачи, намеченные еще в первых работах Тимирязева и в значительной степени разрешенные в его последующих трудах. К этому следует прибавить, что Тимирязев первый ввел в России опыты с культурой растений в искусственных почвах. Первая теплица для этой цели была устроена им в Петровской академии еще в начале 70-х годов, т. е. вскоре после появления этого рода приспособлений в Германии. Позже такая же теплица была устроена им в Петровской академии еще в начале 70-х годов, т. е. вскоре после появления этого рода приспособлений в Германии. Позже такая же теплица была устроена Тимирязевым на всероссийской выставке в Нижнем Новгороде. Выдающиеся научные заслуги Тимирязева доставили ему звание члена-корреспондента Академии Наук, почетного члена харьковского и Санкт-Петербургского университетов, вольноэкономического общества и многих других ученых обществ и учреждений. Среди образованного русского общества Тимирязев пользуется широкой известностью, как популяризатор естествознания. Его популярно-научные лекции и статьи, вошедшие в сборники "Публичные лекции и речи" (Москва, 1888), "Некоторые основные задачи современного естествознания" (Москва, 1895), "Земледелие и физиология растений" (Москва, 1893), "Чарльз Дарвин и его учение" (4 изд., Москва, 1898) являются счастливым соединением строгой научности, ясности изложения, блестящего стиля. Его "Жизнь растения" (5-е изд., Москва, 1898; переведенное на иностранные языки), представляет собой образец общедоступного курса физиологии растений. В своих популярно-научных произведениях Тимирязев является стойким и последовательным сторонником механического воззрения на природу физиологических явлений и горячим защитником и популяризатором дарвинизма. Список 27 научных работ Тимирязева, появившихся до 1884 г., помещен в приложении к его речи "L"etat actuel de nos connaissances sur la fonction chlorophyllienne" ("Bulletin du Congres internation. de Botanique a St.-Peterbourg", 1884). После 1884 г. появилась: "L"effet chimique et l"effet physiologique de la lumiere sur la chlorophylle" ("Comptes Rendus", 1885), "Chemische und physiologische Wirkung des Lichtes auf das Chlorophyll" ("Chemisch. Centralblatt", 1885, № 17), "La protophylline dans les plantes etiolees" ("Compt. Rendus", 1889), "Enregistrement photographique de la fonction chlorophyllienne par la plante vivante" ("Compt. Rendus", CX, 1890), "Фотохимическое действие крайних лучей видимого спектра" ("Труды Отделения Физических Наук общества Любителей Естествознания", т. V, 1893), "La protophylline naturelle et la protophylline artificielle" ("Comptes R.", 1895) и др. Кроме того, Тимирязеву принадлежит исследование газового обмена в корневых желвачках бобовых растений ("Труды Санкт-Петербургского Общества Естествоиспытателей", т. XXIII). Под редакцией Тимирязева вышло в русском переводе "Собрание сочинений" Ч. Дарвина и другие книги.

Другие интересные биографии.

Физиолог-ботаник, дарвинист.

Происходили Тимирязевы из старинного дворянского рода, но отец Тимирязева всегда считал себя заядлым республиканцем. С армией в Отечественной войне года он дошел до Парижа, откуда был отозван в Петербург за вольнодумство. В Петербурге служил директором таможни. На вопрос, какую карьеру он готовит для сыновей, Тимирязев-старший шутливо, но и с долей серьезности отвечал: «Какую карьеру?… А вот какую… Сошью пять синих блуз, как у французских рабочих, куплю пять ружей и пойдем мы – на Зимний дворец!.» . Понятно, что высказывания такого рода не могли не сказаться на развитии его карьеры: должность директора таможни была упразднена и Тимирязев-старший остался не у дел.

«…С пятнадцатилетнего возраста, – вспоминал Тимирязев, – моя левая рука не израсходовала ни одного гроша, которого не заработала бы правая. Зарабатывание средств существования, как всегда бывает при таких условиях, стояло на первом плане, а занятие наукой было делом страсти, в часы досуга, свободные от занятий, вызванных нуждой. Зато я мог утешать себя мыслью, что делаю это на собственный страх, а не сижу на горбу темных тружеников, как дети помещиков и купеческие сынки. Только со временем сама , взятая мною с боя, стала для меня источником удовлетворения не только умственных, но и материальных потребностей жизни – сначала своих, а потом и семьи. Но тогда я уже имел нравственное право сознавать, что мой научный труд представлял собою общественную ценность, по крайней мере такую же, как и тот, которым я зарабатывал свое пропитание раньше».

В 1861 году Тимирязев поступил в Петербургский университет на камеральный факультет. С камерального он вскоре перевелся на естественный. Из профессоров с особенной благодарностью всю жизнь вспоминал А. И. Бекетова и . Собственно, и физиологию растений как предмет постоянных занятий, он выбрал благодаря Менделееву, не раз бравшему его с собой на полевые исследования, связанные с изучением действия минеральных удобрений.

«…В наше время мы любили университет, как теперь, может быть, не любят, – вспоминал Тимирязев, – да и не без основания. Для меня лично была все. К этому чувству не примешивалось никаких соображений о карьере, не потому, что я находился в особых благоприятных обстоятельствах, – нет, я сам зарабатывал свое пропитание, а просто мысли о карьере, о будущем не было места в голове: слишком полна она была настоящим. Но вот налетела буря в образе недоброй памяти министра Путятина с его пресловутыми матрикулами. Приходилось или подчиниться новому, полицейскому строю, или отказаться от университета, может быть, навсегда от науки, – и тысячи из нас не поколебались в выборе. Дело было, конечно, не в каких-то матрикулах, а в убеждении, что мы в своей скромной доле делаем общее дело, даем отпор первому дуновению реакции, в убеждении, что сдаваться перед этой реакцией позорно».

Матрикулы – специальная подписка об отказе от участия в каких бы то ни было общественных беспорядках. Многие студенты отказались от матрикулов, подав специальные прошения.

Подали такие прошения и Тимирязев с братом.

Пристав участка тщетно пытался уговорить братьев забрать прошения, – они твердо отказались. «Тогда вы будете высланы из Петербурга на место своего рождения!» – заявил пристав и услышал в ответ, что братьев это нисколько не страшит, потому что родились они не просто в Петрограде, но даже на вверенном приставу участке.

В университет Тимирязев вернулся через год – в качестве вольнослушателя.

Тогда же он выполнил первые научные работы, опубликовал на страницах газет и журналов множество популярных очерков. Некоторые из них составили позже книгу «Краткий очерк теории Дарвина».

В 1865 году Тимирязев окончил университет, получив степень кандидата наук и Золотую медаль за работу «О печеночных мхах».

Летом того же года, по рекомендации Бекетова, Тимирязев был послан за границу. «По-настоящему, я должен дать вам инструкцию, – сказал Бекетов Тимирязеву, – но предпочитаю, чтобы вы сами себе ее написали; тогда мы увидим, отдаете ли вы себе ясный отчет, куда и зачем едете».

В течение двух лет Тимирязев работал в Германии и Франции, – сперва в Гейдельберге у профессоров Г. Кирхгофа и Р. Бунзена, затем в Париже у основателя научной агрономии Ж. Буссенго и химика П. Бертло.

Вернувшись в Россию, Тимирязев получил место профессора ботаники в Петровско-Разумовской (ныне носящей его имя) сельскохозяйственной академии.

В следующем году он защитил магистерскую диссертацию «Спектральный анализ хлорофилла», а в 1875 году – докторскую диссертацию «Об усвоении света растением».

Постоянная горячая пропаганда дарвинизма вызвала в одной из газет злобную заметку князя Мещерского: «Профессор Петровской академии Тимирязев на казенный счет изгоняет Бога из природы», о чем не раз позже с улыбкой вспоминал сам Тимирязев.

В 1877 году Тимирязев возглавил кафедру анатомии и физиологии растений Московского университета.

На этой кафедре он проработал тридцать четыре года.

«…Я им любовался, – писал известный писатель Андрей Белый. – Взволнованный, нервный, с тончайшим лицом, на котором как прядала смена сквозных выражений, особенно ярких при паузах, когда он, вытянув корпус вперед, а ногой отступая, как в па менуэтном, готовился голосом, мыслью, рукою и прядью нестись на привзвизге, – таким прилетал он в большую физическую аудиторию, где он читал и куда притекали со всех факультетов и курсов, чтоб встретить его громом аплодисментов и криков: влетев в сюртуке, обтягивающем тончайшую талию, он, громом встреченный, бег обрывал и отпрядывал, точно танцор перед его смутившею импровизацией тысячного визави в сложном акте свершаемой эвритмии; стоял, полуизогнутый, но как протянутый или притянутый к нам, взвесив в воздухе очень худую изящную руку; переволнованный, вдруг просветляясь, сияя глазами, улыбкой цветя, становяся чуть розовым, кланяясь; и протягивал, чуть-чуть потрясая, нервнейшие руки… На первую лекцию к третьему курсу под топанье, аплодисменты влетал он с арбузом под мышкою; знали, что этот арбуз он оставит; арбуз будет съеден студентами; он – демонстрация клеточки: редкий пример, что ее можно видеть глазами; Тимирязев резал кусочки арбуза и их меж рядами пускал…»

Оставил портрет ученого и другой знаменитый писатель – В. Г. Короленко, тоже учившийся у Тимирязева.

«…Высокий худощавый блондин с прекрасными большими глазами, еще молодой, подвижный и нервный, он был как-то по-своему изящен во всем. Свои опыты над хлорофиллом, доставившие ему европейскую известность, он даже с внешней стороны обставлял с художественным вкусом. Говорил он сначала неважно, порой тянул и заикался. Но когда воодушевлялся, что случалось особенно на лекциях по физиологии растений, то все недостатки речи исчезали, и он совершенно овладевал аудиторией».

В 1899 году, после мощных студенческих волнений в столице, правительство приняло постановление, по которому бунтующих учащихся можно было отдавать в солдаты.

В январе 1901 года постановление было применено к ста восьмидесяти трем киевским студентам.

Конечно, москвичи тут же солидаризовались с киевлянами.

В отместку за это сразу пятьсот студентов Московского университета были арестованы.

Когда 28 февраля в газете «Русские ведомости» появилось обращение московской профессуры, призывающее студентов прекратить беспорядки и вернуться к занятиям, подписи Тимирязева под обращением не было. Знаменитый профессор мотивировал отсутствие своей подписи тем, что по действующему уставу высших учебных заведений профессора не должны были разбирать или обсуждать какие-либо дела, касающиеся поведения студентов.

Более того, Тимирязев предложил отменить постановление 1899 года.

«…Профессор Тимирязев, – отмечено в протоколе заседания Университетского Совета 28 февраля 1901 года, – соглашаясь с пользой комиссии для исследования причин последних явлений университетской жизни и средств для водворения более нормального ее течения, просят разрешения г-на председателя высказать несколько слов по двум вопросам, обсуждение которых ему представляется более существенным в переживаемую тревожную минуту…

Более существенный пункт касается вопроса, затронутого профессором Тимирязевым уже в заседании 24 февраля. Он глубоко убежден, что только одно ходатайство хотя бы о временной приостановке действия временных правил может успокоить благоразумную часть студенчества, которая готова на всякие жертвы, руководствуясь одним желанием разделить ответственность за совершившееся со своими товарищами. Представляя это заявление, как это ему подсказывает его совесть, профессор Тимирязев не просит даже о голосовании его предложения, а принимает его всецело на свою ответственность, настаивая на своем праве, чтобы оно было занесено в протокол и доведено до сведения министерства.

На замечание г-на президента, что в самый разгар возбуждения умов такое ходатайство не может рассчитывать на успех, профессор Тимирязев возразил, что при спокойном течении университетской жизни он не имел бы ни случая, ни возможности высказать свое заявление, а когда предписание о применении временных правил будет получено, эта возможность исчезнет окончательно и потому именно переживаемый момент он считает единственно удобным для доведения его заявления до сведения начальства…»

Как Тимирязев и думал, его предложение было отклонено, а попечитель Московского учебного округа вынес ему выговор за «уклонение от влияния на студентов в интересах их успокоения».

В знак протеста Тимирязев подал в отставку.

«…Я человек самолюбивый, – писал он профессору П. А. Некрасову, члену Совета, – а самолюбивый человек не прячется за спины товарищей, не кричит: меня обидели, пожалейте меня! Вам, без сомнения, известны случаи из моей университетской жизни, когда я не боялся оставаться не только в ничтожном меньшинстве, но и в полном одиночестве».

Опасаясь еще больших волнений, коллеги упросили Тимирязева отозвать прошение об отставке.

Газета «Русское слово» писала:

«…Редко бывают такие трогательные встречи, какая была устроена 18 октября в университете проф. К. А. Тимирязеву, который должен был в первый раз в этом году читать лекцию! В громадной аудитории собралось так много студентов, что они не только сидели по несколько человек на одном месте, не только были заняты все проходы, но даже для того, чтобы аплодировать, нужно было поднимать руки над головой. От медиков 3-го и 5-го курсов, от естественников 1-го и 3-го курсов были прочитаны адреса, приветствовавшие начало лекций многоуважаемого Клементия Аркадьевича, искренне выражавшие ему свою любовь и уважение, высказывавшие радость по поводу того, что упорно ходившие слухи о выходе в отставку любимого профессора не оправдались.

После чтения адресов забросанный цветами Клементий Аркадьевич, перецеловав читавших студентов, со слезами на глазах, взволнованным голосом сказал приблизительно следующее: «Господа, я пришел сюда, чтобы читать лекцию по физиологии растений, но вижу, что нужно сказать нечто более обширное. Я всегда был уверен в сочувствии ко мне с вашей стороны, но того, что теперь происходит, я никогда не ожидал. Считаю своим долгом исповедаться перед вами. Я исповедую три добродетели: веру, надежду и любовь; я люблю науку как средство достижения истины, веры в прогресс и надеюсь на вас».

Слова эти были покрыты аплодисментами».

Проблема, которой Тимирязев занимался всю жизнь, была столь широка, что выходила за границы физиологии. Он первый заговорил о космической роли земных растений, о той роли, которую они играют в передаче солнечной энергии всей нашей планете.

Ученых давно интересовало, как развиваются растения.

Интерес этот был выражен в двух вопросах, сформулированных в свое время Р. Майером и Г. Гельмгольцем – основателями закона сохранения энергии. «Действительно ли тот свет, который падает на живое растение, получает иное потребление, чем тот свет, который падает на мертвые тела?» И – «Точно ли живая сила исчезающих при поглощении их листом солнечных лучей соответствует накопляющемуся запасу химических сил растения?»

На оба вопроса дал ответ Тимирязев.

Многочисленные предшественники Тимирязева, занимавшиеся проблемой синтеза органического вещества в растениях, установили, что образование в растениях органического вещества из неорганического идет главным образом в листьях – при помощи наполняющих их микроскопических хлорофилловых зерен, а необходимый для создания органического вещества углерод растения черпают прямо из воздуха, в котором всегда присутствует углекислый газ. Последний под действием света разлагается на кислород и углерод. Выделившийся чистый кислород уходит в атмосферу, а вот углерод идет на постройку вещества растения, таким образом – через растение – питая весь животный мир.

«…Я был первым ботаником, заговорившим о законе сохранения энергии, – писал Тимирязев в книге „Солнце, жизнь и хлорофилл“, – и соответственно с этим заменившим слово „свет“ выражением „лучистая энергия“. Став на эту точку зрения учения об энергии, я первым высказал мысль, что логичнее ожидать, что процесс разложения углекислоты должен зависеть от энергии солнечных лучей, а не от их яркости».

Процесс, изученный Тимирязевым, был назван фотосинтезом.

Долгое время было неясно, как, собственно, протекает фотосинтез, каков химический состав хлорофилловых зерен, какие лучи сложного солнечного света и как действуют при этом?

Основная заслуга Тимирязева заключается как раз в экспериментальной и теоретической разработке фотосинтеза. Он первый показал, что интенсивность протекающего процесса пропорциональна поглощенной энергии при относительно слабом свете, а при сильном освещении достигает определенной величины и уже более не растет. То есть, Тимирязев открыл явление светового насыщения фотосинтеза; он экспериментально обнаружил, что имеются два максимума поглощения света растением, которые лежат в области красных и синих лучей спектра и доказал приложимость закона сохранения энергии к процессу фотосинтеза. В то время у Тимирязева еще не было возможности провести полный физический и химический анализ хлорофилла, однако данные, полученные во время опытов, позволили ему сделать ряд смелых заключений и высказать гипотезы, впоследствии получившие подтверждение.

Тимирязев первый предположил, что хлорофилл может находиться в растениях в двух формах – в восстановленной и в окисленной. При этом и та и другая форма в процессе фотосинтеза могут переходить одна в другую. Окисленная форма хлорофилла, реагируя с углекислым газом воздуха, выделяет кислород и образует соединения хлорофилла с окисью углерода, превращаясь в восстановленную форму хлорофилла. А последняя взаимодействует с водой, окисляется и дает первый продукт синтеза – формальдегид, который затем превращается в крахмал, и переходит в первоначальную окисленную форму.

Конечно, в действительности это более усложненный процесс, но Тимирязев верно построил модель, в которой хлорофилл всегда служит своеобразным передатчиком углерода растению, подобно тому, как кровь служит для передачи кислорода животному организму. Кстати, на схожести указанных процессов построен сюжет прекрасного научно-фантастического романа рано погибшего талантливого уральского писателя Ю. Ярового «Зеленая кровь».

Тимирязев мечтал, что когда-нибудь «…физиологи выяснят в малейших подробностях явления, происходящие в хлорофилловом зерне, химики разъяснят и воспроизведут вне организма его процессы синтеза, имеющие результатом образование сложнейших органических тел, углеводов и белков, исходя из углекислоты; физики дадут теорию фотохимических явлений и выгоднейшей утилизации солнечной энергии в химических процессах; а когда все будет сделано, то есть разъяснено, тогда явится находчивый изобретатель и предложит изумленному миру аппарат, подражающий хлорофилловому зерну, – с одного конца получающий даровой воздух и солнечный свет, а с другого подающий печеные хлебы, и тогда всякому станет понятно, что находились люди, так настойчиво ломавшие себе головы над разрешением такого, казалось бы, праздного вопроса: почему и зачем растение зелено?»

Исследования, посвященные фотосинтезу, принесли Тимирязеву мировую славу. Он был избран членом Лондонского королевского общества, почетным доктором Кембриджского, Женевского университетов, а также университета Глазго, действительным членом Эдинбургского и Манчестерского ботанических обществ. Только в России Тимирязев остался всего лишь членом-корреспондентом Петербургской академии наук.

Впрочем, дело тут заключалось в политике.

Даже из Петровской академии, преобразованной Тимирязевым в Сельскохозяйственный институт, его уволили за неуступчивость и пропаганду дарвинизма. А в 1898 году его уволили и из числа штатных профессоров Московского университета.

Некоторое время Тимирязев читал лекции внештатно, но в 1902 году навсегда оставил преподавательскую деятельность, взяв на себя лишь заведование ботаническим кабинетом.

В 1911 году, вместе с другими профессорами, Тимирязев окончательно покинул Московский университет в знак протеста против реакционной политики тогдашнего министра просвещения.

Оказавшись вне стен научных учреждений, Тимирязев полностью отдался делу популяризации. Иногда он превращал в книгу цикл прочитанных лекций, иногда объединял в книгу различные статьи. Все его работы отличались несомненным талантом, а такие книги, как «Чарльз Дарвин и его учение», «Жизнь растения», «Солнце, жизнь и хлорофилл», «Земледелие и физиология растений», «Наука и демократия», читаются и сейчас.

В 1903 году, выступая в Лондонском королевском обществе, Тимирязев так начал лекцию «Космическая роль растения»:

«Когда Гулливер в первый раз осматривал академию в Лагадо, ему прежде всего бросился в глаза человек сухопарого вида, сидевший, уставив глаза на огурец, запаянный в стеклянном сосуде. На вопрос Гулливера диковинный человек пояснил ему, что вот он уже восемь лет как погружен в созерцание этого предмета в надежде разрешить задачу улавливания солнечных лучей и их дальнейшего применения. Для первого знакомства я должен откровенно признаться, что перед вами именно такой чудак. Более тридцати пяти лет провел я, уставившись, если не на зеленый огурец, закупоренный в стеклянную посуду, то на нечто вполне равнозначное – на зеленый лист в стеклянной трубке, ломая себе голову над разрешением вопроса о запасании впрок солнечных лучей!.».

С 1864 года Тимирязев постоянно выступал в защиту дарвинизма.

Он сразу понял, что выход в свет знаменитой книги Чарльза Дарвина «О происхождении видов путем естественного отбора, или сохранение приспособленных (благоприятствуемых) рас в борьбе за существование» открыл новую эпоху в истории мировой науки.

Кстати, на русский язык «Происхождение видов» перевел именно Тимирязев.

Что же касается сущности собственного научного метода, прочно связанного с дарвинизмом, Тимирязев объяснял его так:

«…Я главным образом стараюсь объяснить взаимные отношения, в которых должны находиться два основные метода исследования живых существ: метод экспериментально-физиологический и историко-биологический. Непониманием взаимного отношения этих двух путей исследования, служащих опорой и продолжением один другому, грешат еще многие современные натуралисты, как у нас, так и на Западе. Между биологами можно еще встретить таких, которые думают, что раз произнесено слово борьба за существование, то этим все объяснено, и готовы с негодованием или глумлением, только обнаруживающими их незнание, отнестись ко всякому применению к живым существам физических методов исследования. Точно так же между физиологами можно встретить таких, которые полагают, что раскрытие приспособлений живого организма выходит из пределов строго научного исследования. С самых первых шагов своей научной деятельности я пытался доказать односторонность этих точек зрения, взятых в отдельности, и плодотворность их гармонического слияния в одно стройное целое. Где кончается задача непосредственно физиологического опыта, перед физиологией открывается обширная область историко-биологического исследования, и, наоборот, всякое историко-биологическое исследование в качестве необходимых начальных своих посылок должно основываться на фактах, добытых всегда более точным экспериментально-физиологическим путем».

Тимирязеву принадлежат многие фундаментальные работы по истории человеческой мысли: «Основные черты истории развития биологии в XIX веке» (1908), «Развитие естествознания в России в эпоху 60-х годов» (1908), «Пробуждение естествознания в третьей четверти века» (1907), «Наука. Очерк развития естествознания за три века» (1920), «Главнейшие успехи ботаники в начале XX столетия» (1920). Огромное число статей было написано им для энциклопедического словаря братьев Гранат.

«…Что касается обязанностей профессора, раз что и о них зашла речь, – не без юмора писал Тимирязев в „Отповеди антидарвинистам“, – то я замечу, что всякое ремесло, в том числе и профессорское, имеет свои тяжелые и свои священные обязанности . К числу тяжелых обязанностей профессора относится обязанность читать книги толстые и книги глупые, что бывает вдвойне тяжело, когда толстые книги оказываются в то же время и глупыми.

К числу же самых священных обязанностей профессора относится обязанность облегчать своим слушателям чтение толстых и глупых книг, снабжать этих слушателей компасом, при помощи которого они могли бы пробиться через самые непроходимые схоластические дебри, не рискуя в них окончательно заблудиться».

После революции Тимирязев продолжил научную и просветительскую деятельность. Не мало сил отдал он и деятельности общественной. Став членом Московского Совета рабочих, крестьянских и красноармейских депутатов, он прямо ответил на упреки некоторых бывших друзей: «…Можно обвинить большевиков в утопизме, в желании использовать так дорого стоившую русскому народу революцию до конца, сразу осуществить последнее слово социального строительства, но всякий беспристрастный русский человек не может не признать, что за тысячелетнее существование России в рядах правительства нельзя было найти столько честности, ума, знания, таланта и преданности своему народу, как в рядах большевиков».

В марте 1920 года, уже пережив удар, мужественно борясь с болезнью, Тимирязев отправил приветственное письмо Московскому совету, ярко выразившее его отношение к действительности.

«…Избранный товарищами, работающими в вагонных мастерских Московско-Курской железной дороги, – писал он, – я прежде всего спешу выразить свою глубокую признательность и в то же время высказать сожаление, что мои годы и болезнь не позволяют мне присутствовать на сегодняшнем заседании. А вслед за тем передо мной встает вопрос: а чем же я могу оправдать оказанное мне лестное доверие, что могу я принести на служение нашему общему делу?

После изумительных, самоотверженных успехов наших товарищей в рядах Красной Армии, спасших стоявшую на краю гибели нашу Советскую республику и вынудивших тем удивление и уважение наших врагов, – очередь за Красной Армией труда. Все мы – стар и млад, труженики мышц и труженики мысли – должны сомкнуться в эту общую армию труда, чтобы добиться дальнейших плодов этих побед. Война с внешним врагом, война с саботажем внутренним, самая свобода – все это только средства; цель – процветание и счастье народа, а они созидаются только производственным трудом.

Работать, работать, работать!

Вот призывный клич, который должен раздаваться с утра до вечера и с края до края многострадальной страны, имеющей законное право гордиться тем, что она уже свершила, но еще не получившей заслуженной награды за все свои жертвы, за все свои подвиги. Нет в эту минуту труда мелкого, неважного, а и подавно нет труда постыдного. Есть один – необходимый и осмысленный. Но старика может иметь и особый смысл, вольный, не обязательный, не входящий в общенародную смету, – этот труд старика может подогревать энтузиазм молодого, может пристыдить ленивого.

У меня всего одна рука здоровая. Но и она могла бы вертеть рукоятку привода, у меня одна нога здоровая, но и это не помешало бы мне ходить на топчаке. Есть страны, считающие себя свободными, где такой труд вменяется в позорное наказание преступникам, но, повторяю, в нашей свободной стране в переживаемый момент не может быть труда постыдного, позорного. Моя голова стара, но она не отказывается от работы. Может быть, моя долголетняя научная опытность могла бы найти применение в школьных делах или в области земледелия. Наконец, еще одно соображение: когда-то мое убежденное слово находило отклик в ряде поколений учащихся; быть может, и теперь оно при случае поддержит колеблющихся, заставит призадуматься убегающих от общего дела.

Итак, товарищи, все за общую работу, не покладая рук, и да процветет наша советская республика, созданная самоотверженным подвигом рабочих и крестьян и только что у нас на глазах спасенная нашей славной Красной Армией!»

Последним, что прочел умирающий ученый, было письмо , полученное в ответ на посланную ему книгу «Наука и демократия».

«Дорогой Клементий Аркадьевич! Большое спасибо Вам за Вашу книгу и добрые слова. Я был прямо в восторге, читая Ваши замечания против буржуазии и за Советскую власть. Крепко, крепко жму вашу руку и от всей души желаю Вам здоровья, здоровья и здоровья! Ваш В.Ульянов (Ленин)».

Квантовая химия с большим трудом пробивала себе дорогу в лаборатории химиков-экспериментаторов. Её долго воспринимали весьма скептически, поскольку расчёты, произведённые на основе квантово-химических формул, не сходились порой с результатами классических расчётов. Это легко объяснимо – ведь основа всех вычислений в квантовой механике – уравнение Шредингера –может быть решено строго лишь для систем, состоящих из одной или двух частиц – уже молекула водорода являет собой неразрешимую задачу. Поэтому для квантово-химических расчётов применяются определённые допущения, упрощающие задачу, но не искажающие общей картины. Со временем квантово-химические методы вошли в повседневную практику современных химических изысканий. Толчком послужила компьютеризация исследований.

Впрочем, обо всём по порядку.

Рождение квантовой химии

Квантовая химия зародилась в середине 20-х годов XX столетия. Её становление шло параллельно с развитием квантовой механики, служащей фундаментом для перспективной молодой науки. Весьма любопытным является тот факт, что основные приёмы и методы квантовой химии, реализуемые в алгоритмах таких современных вычислительных программ, были разработаны за очень короткий промежуток времени – около 10 лет. Столь резкий взлёт объясняется уникальным стечением следующих обстоятельств.

Чем дальше продвигались химики в изучении строения вещества, тем больше возникало у них вопросов. Почему из атомов водорода образуются только двухатомные молекулы? Почему молекула Н2О имеет форму треугольника, а в СО2 все три атома лежат на одной прямой? Почему состоящие из углерода алмаз – изолятор, а графит – проводник? Подобный список можно продолжать до бесконечности, но ведь эти вопросы относятся к свойствам уже известных веществ, а главная задача химии – получение новых соединений с наперёд заданными, нужными человеку свойствами.

В решении всех этих проблем важную роль играет относительно молодая наука – квантовая химия, которая не просто ещё одна ветвь химии (наряду с неорганической, органической, коллоидной и другими). Она служит для них теоретическим фундаментом, а её суть состоит в применении квантовой механики для определения как структуры атомов и молекул, так и их возможных превращений.

В принципе основное уравнение квантовой механики – уравнение Шредингера – можно записать для системы, состоящей из многих ядер и электронов (то есть для атомов, молекул, ионов, кристаллов), и его решение в виде волновой функции полностью определит её строение и поведение. Основное препятствие состоит в том, что даже в случае всего двух электронов это уравнение точно не решается, а при увеличении их числа трудности многократно возрастают.

Поэтому с самого начала квантовые химики столкнулись с необходимостью ввода каких-то упрощений. Им пришлось создавать вычислительные методы, часто базирующиеся на нестрогих правилах, изобретательности и интуиции их авторов. А об эффективности метода судили по его способности объяснять уже известные факты и предсказывать новые.

Тогда не существовало единой теории, способной объяснить широкий круг химических явлений. И вот в сотрудничестве с физикой химия стала превращаться в точную науку, перенимая её математический аппарат.

Начало исследованиям в области квантовой химии положила работа Вернера Гейзенберга 1926 года. Он провёл квантово-механический расчёт атома гелия, показав возможность его существования в двух различных состояниях, введя понятие «квантово-механического резонанса».

В 1927 году Вальтер Гейтлер и Фриц Лондон приступили к разработке квантово-механической теории химической связи. Они провели первые приближённые расчёты молекулы водорода.

В 1928 году будущий нобелевский лауреат Лайнус Полинг предложил теорию резонанса, а также выдвинул идею о гибридизации атомных орбиталей. Теория резонанса, основанная на принципах квантовой механики, очень точно описывала молекулы, обладающие простыми химическими связями (связями, образованными одной парой электронов), но совершенно не подходила для моделирования поведения молекул с более сложной структурой.

Мировое признание квантовой химии

Работы В. Гейзенберга (расчёт атома гелия), а также В. Гейтлера и Ф. Лондона (расчёт молекулы водорода) послужили основой квантовой теории многоэлектронных систем. Лайнус Полинг совместно с Джоном Кларком Слейтером разработал качественную химическую теорию – метод электронных пар (более известный как метод валентных связей). Основная идея этого метода заключается в предположении, что при образовании молекулы атомы в значительной степени сохраняют свою электронную конфигурацию (электроны внутренних оболочек), а силы связывания между атомами обусловлены обменом электронов внешних оболочек в результате спаривания спинов (моментов вращения). Также им было введено новое количественное понятие электроотрицательности в 1932 году. Его работы были отмечены Нобелевской премией в 1954 году.

Примерно в это же время Дуглас Хартри, развивая теорию многоэлектронных структур, предложил метод самосогласованного поля и применил его для расчёта атомов и атомных спектров. В названном методе состояние отдельной частицы сложной системы (кристалла, раствора, молекулы и т. п.) определяется усреднённым полем, создаваемым всеми остальными частицами и зависящим от состояния каждой частицы. Тем самым состояние системы согласуется с состояниями её частей (атомов, ионов, электронов), с чем и связано название метода.

В 1930 году академик Владимир Александрович Фок развил метод Хартри, подняв планку точности расчётов.

С атомной орбиты – на молекулярную

В этот же период был разработан один из основополагающих методов квантовой химии – метод молекулярных орбиталей.

В опубликованных на тот момент Эрвином Шрёдингером, Максом Борном и Вернером Гейзенбергом подробных математических выкладках по квантовой химии содержались формулы, которые можно было использовать для описания поведения электронов в атомах. Тем не менее электронная структура молекул поддавалась анализу с очень большим трудом, и в 1927 году Р.С. Малликен, работая с Ф. Хундом в Гёттингенском университете в Германии, предположил, что атомы соединяются в молекулы в процессе, называемом образованием химических связей, таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из её важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов. Р.С. Малликен доказал, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. В 1966 году Р.С. Малликену была присуждена Нобелевская премия по химии «за фундаментальную работу по химическим связям и электронной структуре молекул, проведённую с помощью метода молекулярных орбиталей». «Метод молекулярных орбиталей означает совершенно новое понимание природы химических связей, – сказала Инга Фишер-Джалмар в своём вступительном слове от имени Шведской королевской академии наук. – Существовавшие ранее идеи исходили из представления, что образование химических связей зависит от полного взаимодействия между атомами. Метод молекулярных орбиталей, напротив, опираясь, на положения квантовой механики, отталкивается от взаимодействия между всеми атомными ядрами и всеми электронами молекулы. Этот метод внёс чрезвычайно важный вклад в понимание нами качественного аспекта образования химических связей и электронной структуры молекул».

Ещё одной жемчужиной квантовой химии стала теория кристаллического поля, предложенная немецким учёным Гансом Бете в 1929 году.

Но никто из перечисленных выше учёных не использовал название «квантовая химия» – впервые оно появилось в качестве заглавия монографии великого германо-советского учёного Ганса Густавовича Гельмана. Эмигрировав в 1934 году из Германии, он уже в 1937-м написал и издал фундаментальную монографию «Квантовая химия». Гельман независимо от нобелевского лауреата Ричарда Фейнмана вывел ряд формул, получивших название электростатической теоремы Гельмана–Фейнмана.

Ученик Гельмана, старейший квантовый химик России, сотрудник Института биоорганической химии Михаил Ковнер (1910–2006) пишет, что «эта теорема стала одним из основных инструментов квантовой химии. Но помимо своего чисто прикладного значения она представляла, можно сказать, и философский интерес. Дело в том, что Шредингер, Гейзенберг, Дирак главное внимание уделяли понятию энергии (её определению в классической и квантовой механике), а понятие силы у них отсутствовало. Однако с точки зрения принципа соответствия Бора должна существовать определённая связь между классическими и квантовыми величинами. Именно теорема Гельмана–Фейнмана вводит аналог понятия силы в квантовую механику и тем самым заполняет указанный пробел».

Ганс Гельман одним из первых предложил использовать те самые «допущения», чтобы упростить квантово-химические расчёты.

Одна из наиболее существенных трудностей при рассмотрении химических объектов с точки зрения квантовой механики заключается в том, что решения уравнения Шредингера очень сложны. С учётом того что самыми прогрессивными на тот момент вычислительными средствами были арифмометры, нетрудно представить какой сложной задачей было получение адекватного решения: в ходе приближённых вычислений неизбежно накапливались погрешности, соизмеримые с искомой величиной, и работа теряла всякий смысл. Ганс Гельман предложил использовать для решения уравнений данные, взятые из эксперимента.Таким образом, без преувеличения можно сказать, что Ганс Гельман первым разработал полуэмпирический метод решения квантово-химических задач.

Также Гельман ввёл понятие «валентного состояния», в которое переходят атомы при сближении, чем поставил теорию химических реакций на количественную основу.

Компьютерная эра квантовой химии

После Второй мировой войны начался мощный взлёт вычислительной техники. Несмотря на то что компьютеры конца 40-х – начала 50-х годов были очень громоздкими и медленными (по «электронной мощи» современный сотовый телефон превосходит все вычислительные средства, вместе взятые на начало 50-х годов), у них была одна замечательная особенность (как, впрочем, и у современных компьютеров): они могли производить однотипные операции с массивами числовых данных в объёмах, немыслих для человека. Это качество как нельзя лучше подходило для реализации численных (приближённых) расчётов.

Уже на тот момент в квантовой химии стали выделяться две тенденции: полуэмпирические методы и методы, основанные только лишь на теоретической базе, без учёта экспериментальных данных.

В полуэмпирических методах сложные, занимающие до 70 процентов компьютерного времени расчёты «интегралов межэлектронного взаимодействия» заменяются постоянными величинами, или эти интегралы просто обнуляются. Это называется параметризацией интегралов.

Качество полуэмпирических методов можно оценить по двум критериям. Во-первых, по тому, какое количество интегралов параметризуется. Во-вторых, по уровню достоверности экспериментальных данных, которые используются в параметризации.

Развитие полуэмпирических методов происходило в течение 40 лет (примерно с 1950 по 1990 год). Следует отметить, что полуэмпирические методы позволили в своё время продвинуться в исследовании механизмов химических реакций. С появлением достаточно мощных компьютеров они стали мощным инструментом в исследовании сложных химических систем.

Ко второй группе относятся методы, в соответствии с которыми вычисление проводится исключительно на теоретической базе, то есть без введения в расчётную схему каких-либо параметров, полученных экспериментальным путём. При расчёте все величины имеют конкретный физический смысл. Достоинство этих методов – высокая точность и универсальность, но они крайне сложны, поэтому их применение не было широким.

Моделировать, а не перебирать варианты!

На протяжении многих десятилетий химия оставалась наукой в основном экспериментальной. Новые вещества и новые технологии рождались в ходе многочисленных экспериментов, основанных на интуиции исследователя. И вот моделирование с помощью квантово-химических расчётов открывает химикам новые горизонты, когда, возможно, станет ненужной и сама по себе химическая лаборатория. Это относится в первую очередь к разработке эффективных и недорогих катализаторов – основы современных нефте- и газохимических технологий.

Понимание строгой взаимосвязи между молекулярной структурой вещества и его физико-химическими свойствами, в том числе и каталитической активностью, открывает перед исследователем подходы к решению целого ряда практических задач. Как известно, каталитические превращения органических и неорганических веществ лежат в основе большинства химико-технологических процессов. От катализаторов напрямую зависят объёмы выработки целевого продукта, условия проведения процесса, его аппаратное оформление и особенности технологии в целом. Нередко даже экономика производства определяется именно стоимостью катализатора и затратами на его обслуживание.

В такой ситуации одним из приоритетных направлений развития прикладной химии становится разработка научных основ поиска наиболее оптимальных катализаторов для существующих промышленно важных реакций, или же, наоборот, – подбор к уже разработанному катализатору реакции, в результате которой образуется тот или иной целевой продукт химической промышленности с высокими выходом и селективностью. Очевидно, исследователь, поставивший перед собой подобную задачу в одном из её вариантов, будет вынужден рассматривать механизмы элементарных стадий химических процессов, равно как и свойства, и строение реагирующих веществ и катализаторов на микроуровне. Значительную помощь в такой работе может оказать аппарат квантовой химии.

Квантово-химические расчёты могут подтвердить или опровергнуть существование тех или иных интермедиатов, поскольку оно обуславливается возможностью или невозможностью образования соответствующих молекулярных орбиталей. Так, обобщённый квантово-химический принцип объясняет, например, почему димеризация этилена может протекать только в присутствии катализаторов, но практически неосуществима без них.

Справка

Интермедиат (лат. intermedius – средний) – промежуточное вещество с коротким временем жизни, образующееся в ходе химической реакции и затем реагирующие далее до продуктов реакции. Ввиду того, что интермедиаты очень быстро реагируют, их концентрация в реакционной смеси очень мала. Поэтому их образование либо теоретически постулируют, либо обнаруживают при помощи современных физико-химических методов анализа.

Методы квантовой химии, реализованные в компьютерных программных продуктах, легли в основу нового подхода к исследованию свойств, веществ, для которого не требуется ни синтезировать или выделять, ни очищать от примесей, ни проводить физико-химические исследования для получения данных о свойствах химического соединения. При таком подходе к исследованию химических свойств вещества не нужна даже химическая лаборатория как таковая. Бурный прогресс в области вычислительной техники и развитие программного обеспечения привели к научной революции в этой области, и теперь можно изучать неизвестные молекулы, промежуточные соединения, переходные состояния в ходе химических реакций и даже не синтезированные пока химические структуры. Опыт проведения подобных расчётов показывает, что результатам, полученным с помощью адекватных методов, можно доверять и экспериментальная проверка их практически всегда подтверждает.

В этом году Нобелевская премия по химии была присуждена именно за моделирование сложных химических систем.

На фото: Ганс Густавович Гельман. Пионер квантовой химии



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...