Действие напряжения на человека. Электрический ток и его действие на организм человека

Электрический ток оказывает на человека термическое, электролитическое, биологическое и механическое воздействие.

Термическое воздействие тока проявляется ожогами отдель-ных участков тела, нагревом до высокой температуры орга-нов, что вызывает в них значительные функциональные рас-стройства.

Электролитическое воздействие в разложении различных жидкостей организма (воды, крови, лимфы) на ионы, в результатечего происходит нарушение их физико-химического состава и свойств.

Биологическое действие тока проявляется в виде раздраже-ния и возбуждения тканей организма, судорожного сокраще-ния мышц, а также нарушения внутренних биологических процессов.

Механическое воздействие приводит к расслоению, разрыву тканей организма.

Действие электрического тока на человека приводит к трав-мам или гибели людей.

Электрические травмы разделяются на общие (электрические удары) и местные электротравмы (рис. 2.26).

Наибольшую опасность представляют электрические удары.

Электрический удар — это возбуждение живых тканей про-ходящим через человека электрическим током, сопровождаю-щееся судорожными сокращениями мышц; в зависимости от исхода воздействия тока различают четыре степени электриче-ских ударов:

I — судорожное сокращение мышц без потери сознания;

II — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;

III — потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

IV — клиническая смерть, т. е. отсутствие дыхания и крово-обращения.

Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок — тяжелая нервно-реф-лекторная реакция организма на сильное раздражение электрическим током. Шоковое состояние длится от нескольких десят-ков минут до суток, после чего может наступить гибель или выздоровление в результате интенсивных лечебных мероприятий.

Рис. 2.26. Классификация электрических травм

Местные электротравмы — это местные нарушения целостно-сти тканей организма. К местным электротравмам относятся:

- электрический ожог — бывает токовым и дуговым; токовый ожог связан с прохождением тока через тело человека и яв-ляется следствием преобразования электрической энергии в тепловую (как правило, возникает при относительно не-высоких напряжениях электрической сети); при высоких напряжениях электрической сети между проводником тока и телом человека может образоваться электрическая дуга, возникает более тяжелый ожог — дуговой, т. к. электриче-ская дуга обладает очень большой температурой — свы-ше 3500 °С;


- электрические знаки — пятна серого или бледно-желтого цвета на поверхности кожи человека, образующиеся в мес-те контакта с проводником тока; как правило, знаки име-ют круглую или овальную форму с размерами 1-5 мм; эта травма не представляет серьезной опасности и достаточно
быстро проходит;

- металлизация кожи проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной, с тече-нием времени пораженная кожа сходит; поражение же глаз может закончиться ухудшением или даже потерей зрения;

- электроофтальмия — воспаление наружных оболочек глаз под действием потока ультрафиолетовых лучей, испускае-мых электрической дугой; по этой причине нельзя смот-реть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зрения, при сильном поражении лечение может быть слож-ным и длительным; на электрическую дугу без специальных защитных очков или масок смотреть нельзя;

- механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходяще-го через человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровенос-ных сосудов, а также вывихи суставов, разрывы связок идаже переломы костей; кроме того, при испуге и шоке че-ловек может упасть с высоты и получить травму.

Как видим, электрический ток очень опасен и обращение с ним требует большой осторожности и знания мер обеспечения электробезопасности.

Параметры, определяющие тяжесть поражения электриче-ским током (рис. 2.27). Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в про-мышленности и в быту, человек начинает ощущать при силе тока 0,6... 1,5 мА (мА — миллиампер равен 0,001 А). Этот ток на-зывают пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА — резкая боль охватывает всю руку и сопровожда-ется судорожными сокращениями мышц кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпускающим током.


При токе величиной 25...50 мА происходят нарушения в ра-боте легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Рис. 2.27. Параметры, определяющие тяжесть поражения электрическим током

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца — судорожные неритмичные со-кращения сердца; сердце перестает работать как насос, перекачи-вающий кровь. Такой ток называется пороговым фибрилляционным током. Ток более 5А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Частота тока. Наиболее опасен ток промышленной часто-ты — 50 Гц. Постоянный ток и ток больших частот менее опа-сен, и пороговые значения для него больше.

Так, для постоян-ного тока:

Пороговый ощутимый ток — 5...7 мА;

Пороговый неотпускающий ток — 50...80 мА;

Фибрилляционный ток — 300 мА.

Путь протекания тока . Опасность поражения электрическим током зависит от пути протекания тока через тело человека, так как путь определяет долю общего тока, которая проходит через сердце. Наиболее опасен путь «правая рука—ноги» (как раз пра-вой рукой чаще всего работает человек). Затем по степени сни-жения опасности идут: «левая рука—ноги», «рука—рука», «но-ги—ноги». На рис. 2.28 изображены возможные пути протекания тока через человека.

Рис. 2.28. Характерные пути тока в теле человека: 1 — рука-рука; 2 — правая рука-ноги; 3 — левая рука-ноги; 4 — правая рука-правая нога; 5 — правая рука-левая нога; 6 — левая рука-левая нога; 7 — левая рука-правая нога; 8 — обе руки-обе ноги; 9 — нога-нога; 10 — голова-руки; 11 — голова-ноги; 12 — голова-правая рука: 13 — голова-левая рука; 14 — голова-правая нога; 15 — голова-левая нога

Время воздействия электрического тока. Чем продолжитель-нее протекает ток через человека, тем он опаснее. При протекании электрического тока через человека в месте контакта с про-водником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные по-следствия воздействия тока на организм.

Определяющую роль в поражающем действии тока играет ве-личина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включен-ным человек. По закону Ома сила электрического тока /равна электрическому напряжению U, деленному на сопротивление электрической цепи R: 1= U/R.

Таким образом, чем больше напряжение, тем больше и опас-нее электрический ток. Чем больше электрическое сопротивле-ние цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивле-ний всех участков, составляющих цепь (проводников, пола, обу-ви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чис-той и неповрежденной коже может изменяться в довольно ши-роких пределах — от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление челове-ка вносит наружный слой кожи — эпидермис , состоящий из ороговевших клеток. Сопротивление внутренних тканей тела не-большое — всего лишь 300...500 Ом.

Поэтому при нежной, влаж-ной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень не-большим. Человек с такой кожей наиболее уязвим для электри-ческого тока. У девушек более нежная кожа и тонкий слой эпи-дермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком сни-жается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния — сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва — 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый — 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный — 30 и 0,3 кОм; земляной — 20 и 0,3 кОм; из керамической плитки — 25 и 0,3 кОм. Как видим, при влаж-ных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, осо-бенно на воде, необходимо соблюдать особую осторожность и при-нимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого коли-чества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах при-меняются напряжения в десятки и сотни тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R..

Значительное влияние на исход поражения при электротравмах оказывают индивидуальные особенности человека.

Характер воздействия тока (табл.) зависит от массы человека и его фи-зического состояния. Здоровые и физически крепкие люди легче переносят электрические удары. Повышенная восприимчивость к электрическому току отмечена у лиц, страдающих болезнями кожи, сердечно-сосудистой системы, органов внутренней секре-ции, нервными и др.

Табл. Характер воздействия тока

Ток, прохо-дящий через тело чело-века, мА Переменный (50 Гц) ток Постоянный ток
0,5 -1,5 Начало ощущений: слабый зуд, пощи-пывание кожи Не ощущается
2-4 Ощущение распространяется на запя-стье; слегка сводит мышцы Не ощущается
5-7 Болевые ощущения усиливаются во всей кисти; судороги; слабые боли во всей руке до предплечья Начало ощущений: сла-бый нагрев кожи под электродами
8-10 Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов Усиление ощущения на-грева кожи
10 - 15 Едва переносимые боли во всей руке. Руки невозможно оторвать от электро-дов. С увеличением продолжительно-сти протекания тока усиливаются Значительный нагрев под электродами и в приле-гающей области кожи
20-25 Сильные боли. Руки парализуются мгновенно, оторвать их от электродов невозможно. Дыхание затруднено Ощущение внутреннего нагрева, незначительное сокращение мышц рук
25 -50 Очень сильная боль в руках и в груди. Дыхание крайне затруднено. При дли-тельном воздействии может наступить остановка дыхания или ослабление сердечной деятельности с потерей сознания Сильный нагрев, боли и судороги в руках. При отрыве рук от электродов возникают сильные боли
50-80 Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном воздействии может насту-пить фибрилляция сердца Очень сильный поверхно-стный и внутренний на-грев. Сильные боли в руке и в области груди. Руки невозможно ото-рвать от электродов из-за, сильных болей при отры-ве
80-100 Фибрилляция сердца через 2-3 с; еще через несколько секунд - остановка дыхания То же действие, выра-женное сильнее. При длительном действии остановка дыхания
То же действие за меньшее время Фибрилляция сердца через 2-3 с; еще через несколько секунд оста-новка дыхания
более 5000 Фибрилляция сердца не наступает; возможна временная остановка его в период протекания тока. При протекании тока в течение не-скольких секунд тяжелые ожоги и разрушение тканей

Более уязвимы к воздействию электрического тока люди, име-ющие повышенную потливость. Повышенная температура окружа-ющей среды и высокая влажность не единственная причина высо-кой потливости, интенсивное потоотделение часто наблюдается при вегетативных расстройствах нервной системы, а также в ре-зультате испуга, волнения.

В состоянии возбуждения нервной системы, депрессии, утом-ления, опьянения и после него люди более чувствительны к про-текающему току.

Предельно допустимые напряжения прикосновения и токи для человека устанавливаются ГОСТ 12.1.038—82* (табл. 2.14) при аварийном режиме работы электроустановок постоянного тока частотой 50 и 400 Гц. Для переменного тока частотой 50 Гц до-пустимое значение напряжения прикосновения составляет 2 В, а силы тока — 0,3 мА, для тока частотой 400 Гц соответственно — 2 В и 0,4 мА; для постоянного тока — 8 В и 1 мА. Указан-ные данные приведены для продолжительности воздействия тока не более 10 мин в сутки.

Таблица 2.14. Предельно допустимые уровни напряжения и токов

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воздей-ствия тока U а, с
0,01...0,08 0,1 0,2 0,3 0,4 0,5 0,6 0.7 0,8 0,9 1,0 Св. 1,0
Перемен-ный, 50 Гц U а, В I а, мА 36 6
Перемен-ный, 400 Гц U а, В I а, мА 36 8
Постоянный U а, В I а, мА 40 15

Анализ схем включения человека в электрическую цепь

Так как от сопротивления электрической цепи R существен-но зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения.

Наиболее распространены электрические сети, в которых ну-левой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно — по виду они одинаковы. Разобраться можно используя специальный прибор — определитель фазы.

На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам.

Двухфазное включение в цепь. Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным про-водам или проводникам тока, соединенным с ними (рис. 2.29).

В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука—рука», i. е. сопротивление цепи будет включать только сопротивление тела (Я).

а)

Рис. 2.29. Двухфазное включение в цепь: а — изолированная нейтраль; б — за-земленная нейтраль

Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380/220 В, то сила тока, проходящего через че-ловека, будет равна

I ч = U л /R ч = 380 В / 1000 Ом = 0,38 А = 380 мА.

Это смертельно опасный ток. Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разо-рвет электрическую цепь), ибо время воздействия в этом случае является определяющим.

Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора, аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью).

Однофазное включение в цепь в сети с заземленной нейтралью (рис. 2.30). В этом случае ток проходит через человека по пути «рука—ноги» или «рука—рука», а человек будет находиться под фазным напряжением.

В первом случае сопротивление цепи будет определяться со-противлением тела человека (R ч, обуви (R o 6), основания (R oc), на котором стоит человек, сопротивлением заземления нейтрали (R н), и через человека потечет ток

I ч = U ф /(R ч + R o б + R 0 C + R н).

Сопротивление нейтрали R H невелико, и им можно принебречь по сравнению с другими сопротивлениями цепи. Для оцен-ки величины протекающего через человека тока примем напряжение сети 380/220 В. Если на человеке надета изолирующая сухая обувь (кожаная, резиновая), он стоит на сухом деревянном иолу, сопротивление цепи будет большим, а сила тока по закону Ома небольшой.

Например, сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм. Ток, проходящий через человека

I ч = 220 В / (30 000 + 100 000 + 1000) Ом = = 0,00168 А = 1,68 мА.

Этот ток близок к пороговому ощутимому току. Человек по-чувствует протекание тока, прекратит работу, устранит неис-правность.

Если человек стоит на влажной земле в сырой обуви или боси-ком, через тело будет проходить ток

I Ч = 220 В / (3000 + 1000) Ом = 0,055 А = 55 мА.

Этот ток может вызвать нарушение в работе легких и сердца, а при длительном воздействии и смерть.

Если человек стоит на влажной почве в сухих и целых резино-вых сапогах, через тело проходит ток

I ч = 220 В / (500 000 + 1000) Ом = 0,0004 А = 0,4 мА.

Воздействие такого тока человек может даже не почувство-вать. Однако даже небольшая трещина или прокол на подошве сапога может резко уменьшить сопротивление резиновой по-дошвы и сделать работу опасной.

Перед тем как приступить к работе с электрическими устройствами (особенно длительное время не находящимися в эксплуатации), их необходи-мо тщательно осмотреть на предмет отсутствия повреждений изоляции. Электрические устройства необходимо протереть от пыли и, если они влажные — просушить. Мокрые электрические устройства эксплуатиро-вать нельзя! Электрический инструмент, приборы, аппаратуру лучше хра-нить в полиэтиленовых пакетах, чтобы исключить попадание в них пыли или влаги. Работать надо в обуви. Если надежность электрического уст-ройства вызывает сомнения, надо подстраховаться — подложить под ноги сухой деревянный настил или резиновый коврик. Можно использовать рези-новые перчатки.

Рис. 2.30. Однофазное прикосновение в сети с заземленной нейтралью: а — нор-мальный режим работы; б — аварийный режим работы (повреждена вторая фаза)

Второй путь протекания тока возникает тогда, когда второй рукой человек соприкасается с электропроводящими предмета-ми, соединенными с землей (корпусом заземленного станка, металлической или железобетонной конструкцией здания, влажной деревянной стеной, водопроводной трубой, отопительной бата-реей и т. п.). В этом случае ток протекает по пути наименьшего электрического сопротивления. Указанные предметы практиче-ски накоротко соединены с землей, их электрическое сопротив-ление очень мало. Поэтому сопротивление цепи равно сопро-тивлению тела и через человека потечет ток

I ч = U Ф / R Ч = 220 В / 1000 Ом = 0,22 А = 220 мА.

Эта величина тока смертельно опасна .

При работе с электрическими устройствами не прикасайтесь второй рукой к предметам, которые могут быть электрически соединены с землей. Работа в сырых помещениях, при наличии вблизи от человека хорошо прово-дящих предметов, соединенных с землей, представляет исключительно вы-сокую опасность и требует соблюдения повышенных мер электрической безопасности.

В аварийном режиме (рис. 2.30, б), когда одна из фаз сети (другая фаза сети, отличная от фазы, к которой прикоснулся че-ловек) оказалась замкнутой на землю, происходит перераспреде-ление напряжения, и напряжение исправных фаз отличается от фазного напряжения сети. Прикасаясь к исправной фазе, чело-век попадает под напряжение, которое больше фазного, но меньше линейного. Поэтому при любом пути протекания тока этот случай более опасен.

Однофазное включение в цепь в сети с изолированной нейтра-лью (рис. 2.31). На производстве для электроснабжения силовых электроустановок находят применение трехпроводные электри-ческие сети с изолированной нейтралью. В таких сетях отсутст-вует четвертый заземленный нулевой провод, а имеются только три фазных провода. На этой схеме прямоугольниками условно показаны электрические сопротивления г А, г в, г с изоляции про-вода каждой фазы и емкости С А, С в, С с каждой фазы относи-тельно земли. Для упрощения анализа примем r A = r B =r c =r, л С А = С £ = С с = С


б)

Рис. 2.31. Однофазное прикосновение в сети с изолированной нейтралью: а — нормальный режим работы; б — аварийный режим работы (повреждена вторая фаза)

Если человек прикоснется к одному из проводов или к како-му-нибудь предмету, электрически соединенному с ним, ток по-течет через человека, обувь, основание и через изоляцию и ем-кость проводов будет стекать на два других провода. Таким образом, образуется замкнутая электрическая цепь, в которую, в отличие от ранее рассмотренных случаев, включено сопротивле-ние изоляции фаз. Так как электрическое сопротивление ис-правной изоляции составляет десятки и сотни килоом, то общее электрическое сопротивление цепи значительно больше сопро-тивления цепи, образующейся в сети с заземленным нулевым проводом. Т. е. ток через человека в такой сети будет меньше, и прикосновение к одной из фаз сети с изолированной нейтралью безопаснее.

Ток через человека в этом случае определяется по следую-щей формуле:

где R ич = R ч + R об + R ос — электрическое сопротивление цепи че-ловека, ω = 2π f — круговая частота тока, рад/с (для тока про-мышленной частоты f = 50 Гц, поэтому ω = 100π).

Если емкость фаз невелика (это имеет место для непротя-женных воздушных сетей), можно принять С ≈ 0. Тогда выраже-ние для величины тока через человека примет вид:

Например, если сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм, а сопротивление изоляции фаз 300 кОм, ток, который проходит через человека (для сети 380/220 В), будет равен

I ч = 3 ? 220 В / Ом = = 0,00095 А = 0,95 мА.

Такой ток человек может даже не почувствовать .

Даже если не учитывать сопротивление цепи человека (человек стоит на влажной земле в сырой обуви), проходящий через человека ток будет безопасен:

I ч = 3 ? 220 В / 300 000 Ом = 0,0022 А = 2,2 мА.

Таким образом, хорошая изоляция фаз является залогом обеспечения безопасности. Однако при разветвленных электри-ческих сетях добиться этого нелегко. У протяженных и разветв-ленных сетей с большим числом потребителей сопротивление изоляции мало, и опасность возрастает.

Для протяженных электрических сетей, особенно кабельных линий, емкостью фаз нельзя пренебрегать (С≠0). Даже при очень хорошей изоляции фаз (r = ∞) ток потечет через человека через емкостное сопротивление фаз, и его величина будет опре-деляться по формуле:

I ч =

Таким образом, протяженные электрические цепи промыш-ленных предприятий, обладающие высокой емкостью, обладают высокой опасностью, даже при хорошей изоляции фаз.

При нарушении же изоляции какой-либо фазы прикоснове-ние к сети с изолированной нейтралью становится более опас-ным, чем к сети с заземленным нулевым проводом. В аварийном режиме работы (рис. 2.31, б) ток, проходящий через человека, прикоснувшегося к исправной фазе, будет стекать по цепи за-мыкания на земле на аварийную фазу, и его величина будет оп-ределяться формулой:

I ч = U л / (R ич +R з).

Так как сопротивление замыкания R з аварийной фазы на земле обычно мало, то человек будет находиться под линейным напряжением, а сопротивление образовавшейся цепи будет рав-но сопротивлению цепи человека R з , что очень опасно.

По этим соображениям, а также из-за удобства использова-ния (возможность получения напряжения 220 и 380 В) четырехпроводные сети с заземленным нулевым проводом на напряже-ние 380/220 В получили наибольшее распространение.

Мы рассмотрели далеко не все возможные схемы электриче-ских сетей и варианты прикосновения. На производстве вы мо-жете иметь дело с более сложными схемами электроснабжения, находящимися под значительно большими напряжениями, а значит, и более опасными. Однако основные выводы и рекомен-дации для обеспечения безопасности практически такие же.

⇐ ПредыдущаяСтр 4 из 9Следующая ⇒

Эл. ток проходя через организм человека производит термическое, электрическое и механическое воздействие, являющееся обычным физико — термическим процессом, присущим как живой так и не живой материей; одновременно Эл. ток производит и биологическое действие, которое является специфическим процессом, свойственным лишь живой ткани.

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве до высокой температуры кровеносных сосудов, нервов, сердца, мозга и других органов, находящихся на пути тока, что вызывает в них функциональные расстройства.

Электрическое действие тока выражается в разложении органической жидкости, в том числе и крови, что сопровождается значительными нарушениями.

Механическое (динамическое) действие тока выражается в расслоении, разрыве и др. повреждениях тканей организма, в том числе мышечной, стенок кровеносных сосудов легочной ткани в результате динамического эффект, а также мгновенного взрывоподобного образования пара от перегретой током тканевой жидкости и крови.

Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме.

Выделяют два вида электрических травм: местные, когда возникают местные повреждения организма общие электротравмы, так называемые электрические удары, когда повреждается весь организм из-за нарушения нормальной деятельности жизненно важных органов и систем.

Местная электротравма – ярко выраженное нарушение целостности тканей тела в конкретном месте, в том числе костных тканей, вызванное воздействием эл. тока. Опасность местных травм и сложность их лечения зависит от места, характера и степени повреждения ткани. Это электроожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия.

Электроожог — самая распространенная электротравма: ожоги возникают у примерно 63% пострадавших от эл. тока, причем 23% из них сопровождаются эл. знаками и металлизацией кожи.

В зависимости от условий возникновения различают два вида ожога: токовый или контактный и дуговой.

Токовый или контактный- это ожог возникает в электоустановках относительно небольшого напряжения – не выше 2 кВ. При более высоких напряжениях, как правило образуется эл. дуга или искра, в следствии которых и возникает ожог другого вида – дугового. Токовые ожоги образуются у 38% пострадавших от эл. тока, в большинстве случаев они являются ожогами I и II степени; при напряжении выше 380 В возникают и более тяжелые ожоги III и IV степеней.

Дуговой ожог наблюдается в электроустановках различного напряжения. При этом в установках до 6 кВ ожоги являются следствием случайных коротких замыканий, например при работах под напряжением на щитах и сборках до 1000В, где измерения производятся переносными приборами (электроизмерительными клещами).

В качестве примера можно привести случай. При ремонте щита 380В под напряжением, эл. монтер стоя на деревянном полу, случайно замкнул проводом ножи рубильника. Возникшая эл. дуга вызвала ожоги I и II степени лица, шеи и правой руки монтера. При этом ток через него не проходил. Ожоги руки возникли от возгорания одежды.

Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой резко очерченные пятна серого или бледно- желтого цвета на поверхности тела, подверженного действию тока. Обычно знаки имеют круглую или овальную форму и размеры 1-5 мм с углублением в центре. Обычно электрические знаки безболезненны и лечение заканчивается благополучно: с течением времени верхний слой кожи сходит и пораженное место приобретает первоначальный цвет, эластичность и чувствительность. Эти знаки появляются примерно у 11% пострадавших от тока.

Металлизация кожи — проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием эл. дуги. Такое явление встречается при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой. Пораженный участок кожи имеет шероховатую поверхность. Пострадавший ощущает на пораженном участке боль от ожогов под действием теплоты занесенного в кожу металла и испытывает напряжение кожи от присутствия в ней инородного тела. Металлизация кожи наблюдается у 10 % пострадавших от эл. тока. В большинстве случаев одновременно с металлизацией возникает дуговой ожог, который почти всегда вызывает более тяжелые поражения, чем металлизация.

Механические повреждения являются в большинстве случаев следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы сухожилий, кожи, кровеносных сосудов и первой ткани; могут иметь место вывихи суставов и даже переломы костей. Разумеется, электротравмами не считаются аналогичные травмы, вызванные падением человека с высоты, ушибами о предметы в результате воздействия тока.

Механические повреждения происходят при работе в основном в установках до 1000В при относительно длительном нахождении человека под напряжением.

В качестве примера случай:

При монтаже подстанции рабочий взялся рукой за смонтированную шину, идущую по стене сверху вниз и оказавшуюся под напряжением 220В относительно земли, в результате случайного контакта с временной электропроводкой. Рабочий, испытывая сильные судорожные сокращения мышц сознания не потерял, но не мог разжать руку и позвать на помощь. Под действием тока он пробыл несколько секунд, пока его не освободили другие рабочие увидевшие, что он сидит на корточках в неудобном положении и держится вытянутой рукой за шину. По медицинскому заключению у рабочего произошел вывих плеча и перелом шейки лопатки руки.

Электроофтальмия- воспаление наружных оболочек глаз, роговицы и коньюктивы (слизистой оболочки, покрывающей глазное яблоко), возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые энергично поглощаются клетками организма и вызывают в них химические изменения.

Электрический удар – является следствием протекания тока через тело человека; при этом под угрозой поражения является весь организм. В зависимости от исхода поражения электрические удары можно условно разделить на следующие пять степеней:

судорожное, едва ощутимое сокращение мышц;

судорожное сокращение мышц, сопровождающееся сильными, едва переносимыми болями, без потери сознания;

судорожное сокращение мышц с потерей сознания, но с сохранением дыхания и работой сердца;

потеря сознания и нарушение сердечной деятельности или дыхания;

клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Исход воздействия эл. тока на организм человека зависит от ряда факторов, в том числе от значения и длительности прохождения тока через его тело. Рода и частоты тока, а так же от индивидуальных свойств человека. Эл. удар, даже если он не приводит к смерти, может вызывать сердечные расстройства в организме, которые проявляются сразу после воздействия тока или через несколько часов, дней и даже месяцев.

Ощутимый ток.

Человек начинает ощущать воздействие проходящего через него тока в среднем около 1,1 мА при переменно токе 50 Гц и около 6 мА при постоянном. Это воздействие ограничивается при переменном токе слабым зудом и легким пощипыванием, а при постоянном токе — ощущение нагрева кожи на участке касающемся токоведущих частей.

Не отпускающий ток.

Увеличение тока сверх ощутимого порога вызывает у человека судороги мышц и болезненные ощущения, которые с ростом тока усиливаются и распространяются на все большие участки тела. При токе в среднем около 15 мА (50 Гц), боль становится едва переносимой, а судороги мышц рук оказываются настолько значительными, что человек не в состоянии их преодолевать. В результате он не может разжать руку.

Наибольший постоянный ток при котором человек еще в состоянии выдержать боль, возникающую в момент отрыва рук от электродов, составляет примерно 50- 80 мА. Этот ток и принят условно за порог не отпускающих токов при постоянном напряжении.

Переменный ток.

Увеличение частоты от 0 до 50 Гц приводит к повышению опасности поражения, но дальнейшее повышение частоты, несмотря на рост тока, проходящего через тело, сопровождается снижением опасности поражения, которая полностью исчезает при 450 – 500 кГц. Проще говоря, ток частотой 450-500 кГц не может вызвать смертельного поражения вследствие прекращения работы сердца или легких. Правда, эти токи сохраняют опасность ожогов.

Постоянный ток.

Примерно в 4 -5 раз безопаснее переменного. Если при переменном токе по болевым ощущениям человек в состоянии вынести 42В, то при постоянном токе 110В. Это объясняется тем, что ток проходя через тело вызывает более слабое сокращение мышц.

⇐ Предыдущая123456789Следующая ⇒

Читайте также:

ВОЗДЕЙСТВИЕ ЭЛЕКТРОТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА. Протекая через тело человека, электрический ток производит термическое, электролитическое, механическое и биологическое действия.

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве до высокой температуры кровеносных сосудов, нервов, сердца, мозга и др. органов, находящихся на пути тока, что вызывает в них серьезные функциональные расстройства (т. е. расстройства специфической деятельности органов).

Электролитическое действие тока выражается в разложении органической жидкости, в т. ч. крови, что сопровождается значительными нарушениями ее физико-химического состава.

Механическое действие тока проявляется в возникновении значительного давления в кровеносных сосудах и тканях организма при испарении крови и др. жидкости, а также в смещении и механическом напряжении их под влиянием электродинамических сил. При этом могут произойти тяжелые повреждения различных тканей и сосудов.

Биологическое действие тока проявляется в раздражении внутренних биоэлектрических процессов, протекающих в нормально действующем организме и теснейшим образом связанных с его жизненными функциями. Раздражение живых тканей электрическим током вызывает в них ответную реакцию - возбуждение, являющееся одним из основных физиологических процессов и характеризующееся тем, что живые образования переходят от состояния относительного физиологического покоя в состояние специфической для них деятельности. Так, возбуждение мышечной ткани, обусловленное проходящим через нее током, проявляется в виде непроизвольных сокращений мышцы, т. е.

Действие электрического тока на человека

двигательных эффектов. Нарушение биоэлектрических процессов заключается в следующем. В живой ткани и в первую очередь в мышцах (в т. ч. в сердечной мышце), а также в центральной и периферической нервных системах постоянно возникают электрические потенциалы - биопотенциалы, которые связаны с возникновением и распространением процесса возбуждения, т. е. с переходом живой ткани в состояние активной деятельности. Внешний электрический ток, воздействуя с биотоком, значение которого весьма мало, может нарушить нормальный характер его действия на ткани и органы человека, подавить биотоки и тем самым вызвать специфические расстройства в организме вплоть до его гибели.

В таблице приведены данные о прохождении тока через тело человека по пути "рука - рука" или "рука - нога".

Характер воздействия электротока на организм человека

Значение тока, мА Переменный ток промышленной частоты Постоянный ток
0,6-1,5 Слабый зуд, пощипывание кожи под электродами Не ощущается
2,0-4,0 Ощущение тока распространяется на запястье, слегка сводит руку Не ощущается
5,0-7,0 Болевые ощущения усиливаются в кисти руки, сопровождаясь судорогами. Слабые боли - во всей руке. Удается преодолеть судорожное сокращение мышц и разжать руку, в которой зажат электрод Слабое ощущение нагрева кожи под электродом
8,0-10 Сильные боли и судороги во всей руке. Трудно, но можно оторвать руку от электрода Усиление ощущения нагрева кожи
10-15 Едва переносимые боли во всей руке со временем усиливаются.

Невозможно оторвать руку от электрода

Еще большее усиление ощущения нагрева как под электродами, так и в прилегающих областях кожи
20-25 Руки парализует мгновенно, оторвать их от электродов невозможно. Сильные боли, дыхание затруднено Еще большее усиление нагрева кожи, возникновение ощущения внутреннего нагрева. Незначительные сокращения мышц рук
25-50 Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном протекании тока может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц
50-80 Дыхание парализуется через несколько секунд. Нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца Ощущение очень сильного поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания. Руки невозможно оторвать от электродов из-за сильных болей в момент нарушения контакта
Фибрилляция сердца через 20-30 с; еще через несколько секунд - паралич дыхания
Более 5000 Дыхание парализуется немедленно - через доли секунды. Фибрилляция сердца обычно не наступает, возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) -тяжелые ожоги, разрушение тканей. Как правило, исход смертельный

В качестве защитных средств от поражения электрическим током применяют преимущественно изделия из диэлектриков (резина, бакелит, электрокартон, фарфор и др.). В ряде случаев допускается также применение в качестве защитного средства дерева, проваренного в льняном или другом высыхающем масле (но не в парафиновом).

В соответствии с правилами безопасности все защитные средства по степени надежности подразделяют на основные и дополнительные (табл. 83). Основными являются те защитные средства, посредством которых допускается прикосновение к токоведущим частям, находящимся под напряжением и изоляция которых надежно выдерживает рабочее напряжение электроустановок. Дополнительные защитные средства предназначены для усиления действия основных средств и применяются одновременно с ними.

_____________________

Предыдущая123456789101112131415Следующая

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых , ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых , воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих , переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых, воздействие тока вызывает у человека резкую реакцию одергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения.

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов, электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы , или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельности наиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

……………….

Влияние электрического тока на организм человека
1.1 Виды поражений электрическим током

Проходя через организм, электрический ток производит 3 вида воздействия: термическое, электролитическое и биологическое.
Термическое действие проявляется в ожогах наружных и внутренних участков тела, нагреве кровеносных сосудов и крови и т.п., что вызывает в них серьёзные функциональные расстройства.
Электролитическое в разложении крови и другой органической жидкости, вызывая тем самым значительные нарушения их физико-химических составов и ткани в целом.
Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и лёгких. При этом могут возникнуть различные нарушения в организме, включая механическое повреждение тканей, а также нарушение и даже полное прекращение деятельности органов дыхания и кровообращения.
Различают два основных вида поражения организма: электрические травмы и электрические удары. Часто оба вида поражения сопутствуют друг другу. Тем не менее они различны и должны рассматриваться раздельно.
1.1.1 Электрические травмы
Электрические травмы это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей.
Опасность электрических травм и сложность их лечения обуславливаются характером и степенью повреждения тканей, а также реакцией организма на это повреждение.
Обычно травмы излечиваются, и работоспособность пострадавшего восстанавливается полностью или частично. Иногда (обычно при тяжёлых ожогах) человек погибает.

§ 1. Действие электрического тока на человека и виды поражений.

В таких случаях непосредственной причиной смерти является не электрический ток, а местное повреждение организма, вызванное током. Характерные виды электрических травм электрические ожоги, электрические знаки, металлизация кожи и механические повреждения.
Электрический ожог самая распространённая электрическая травма: ожоги возникают у большей части пострадавших от электрического тока (60-65 %), причём треть их сопровождается другими травмами знаками, металлизацией кожи и механическими повреждениями.
В зависимости от условий возникновения различаются три вида ожогов:
-токовый, или контактный, возникающий при прохождении тока непосредственно через тело человека в результате контакта человека с токоведущей частью; этот вид ожога возникает в электроустановках относительно небольшого напряжения не выше 1-2 кВ и является, как правило, ожогом кожи, то есть внешним повреждением;
-дуговой, обусловленный воздействием на тело человека электрической дуги, но без прохождения тока через тело человека; обычно это ожоги являются результатом случайных коротких замыканий в электроустановках от 220 до 6000 В, например, при работах под напряжением на щитах и сборках, при выполнении измерений переносными приборами и т. п. ;
-смешанный, являющийся результатом действия одновременно обоих указанных факторов, то есть действия электрической дуги и прохождения тока через тело человека; этот ожог возникает, как правило, в установках более высокого напряжения выше 1000 В. При этом дуга образуется между токоведущей частью и человеком, а ток, имеющий обычно большое значение (несколько ампер и даже десятков ампер), проходит через тело человека. В этом случае поражения носят тяжёлый характер и нередко оканчиваются смертью пострадавшего, причём тяжесть поражения возрастает с ростом напряжения электроустановки.
Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой чётко очерченные пятна серого или бледно-жёлтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Часто знаки имеют круглую или овальную форму с углублением в центре; размеры знаков 1-5 мм. Поражённый участок кожи затвердевает подобно мозоли.

⇐ Предыдущая52535455565758596061Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 518 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Воздействие электрического тока

На организм человека

При проектировании и выполнении заземляющих устройств (ЗУ) учитывается вероятность травмирования человека электрическим током, так как нельзя исключить соприкосновение людей с опасными напряжениями, появление которых возможно на частях электроустановок, нормально не находящихся под напряжением. Поэтому с целью обеспечения безопасности людей выполняется защитное заземление . Воздействие электрического тока на организм человека зависит от его величины , продолжительности и пути , по которому он проходит, а также от физического состояния человека . Наибольшую опасность представляет ток, проходящий через область сердца .

Воздействия электрического тока на организм человека чрезвычайно разнообразны. Они зависят от множества факторов.

По характеру воздействия различают: термические, биологические, электролитические, химические и механические повреждения.

Термическое воздействие тока проявляется ожогами отдельных участков тела; почернением и обугливанием кожи и мягких тканей; нагревом до высокой температуры органов, расположенных на пути прохождения электрического тока, кровеносных сосудов и нервных волокон, вызывающим в них функциональные расстройства.

Электролитическое воздействие тока проявляется в разложении различных жидкостей организма на ионы, нарушающем их свойства.

Химическое воздействие тока выражается в возникновении химических реакций в крови, лимфе, нервных волокнах с образованием новых веществ, несвойственных организму.

Биологическое воздействие тока проявляется в раздражении и возбуждении тканей организма, возникновении судорог, остановке дыхания, изменении режима сердечной деятельности.

Механическое воздействие тока приводит к сильным сокращениям мышц, вплоть до их разрыва, к разрывам кожи, кровеносных сосудов, переломах костей, вывихам суставов, расслоению тканей.

По видам поражения различают электротравмы и электрические удары.

Электротравмы — это местные поражения (ожоги, электрические знаки, металлизация кожи, механические повреждения, электроофтальмия).

Электрические удары — это общие поражения, связанные с возбуждением тканей проходящим через них током (нарушения функционирования центральной нервной системы, органов дыхания и кровообращения, потеря сознания, расстройство речи, судороги, нарушение дыхания, вплоть до остановки, мгновенная смерть ).

По степени воздействия на организм человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный .

Ощутимым называется электрический ток, который при прохождении через организм человека вызывает ощутимое раздражение. Ощущение от протекания переменного электрического тока, как правило, начинается от значения 0,6 мА.

Неотпускающим называется ток, который при прохождении через организм человека вызывает непреодолимые судорожные сокращения мышц рук , ног или других частей тела , соприкасающихся с токоведущим проводником. Переменный ток промышленной частоты, протекая по нервным волокнам, поглощает управляющие биотоки коры головного мозга, что приводит к возникновению эффекта «приковывания» к месту прикосновения. Человек не может самостоятельно оторваться от токоведущей части проводника .

Фибрилляционным называется ток, вызывающий при прохождении че­рез организм человека фибрилляцию сердца – разновременные некоординированные сокращения отдельных мышечных волокон сердца, в конечном итоге приводящие к остановке сердца и параличу дыхания .

Степень поражения электрическим током зависит от:

− общего электрического сопротивления или обратного ему параметра — проводимости организма, которые зависят от индивидуальных особенностей тела человека;

− параметров электрической цепи (напряжение, сила и род тока, частота колебаний), под действие которой попал человек;

− пути прохождения тока через тело человека;

− условий включения в электросеть;

− продолжительности воздействия;

− условий внешней среды (температура, влажность, наличие токопроводящей пыли и др.).

Низкое электросопротивление организма способствует более тяжелым последствиям поражения электрическим током. Электросопротивление тела человека снижают такие показатели, как физиологическое и психологическое состояние (утомление, алкогольное опьянение, голод, заболевание, эмоциональное возбуждение).

Общее электрическое сопротивление человеческого организма суммируется из сопротивлений каждого из участков тела, расположенных на пути прохождения тока.

Переменный ток более опасен, чем постоянный, однако при высоком напряжении (более 500 В) опаснее становится постоянный ток.

Путь электрического тока через тело человека во многом определяет степень поражения организма.

Наиболее часто в практике встречаются варианты, показанные на рис 9.8:

Рис.9.8. Варианты путей прохождения электрического тока через тело человека:

1 — «рука-рука»; 2 — «рука-ноги»; 3 — «рука-нога»; 4 — «руки-ноги»; 5 — «нога-нога»;

6 — «голова-ноги»; 7 — «голова-рука»

Наиболее опасными являются те варианты, в которых в зону поражения попадают жизненно важные органы и системы организма головной мозг , сердце, легкие . Это цепи: «голова-руки»; «голова-ноги»; «руки-ноги»; «рука-рука».

Влияние тока на организм человека при условии его прохождения по путям «рука-рука» и «рука-нога» представлено в таблице 9.5.

Таблица 9.5.

Характер воздействия электрического тока на организм

Человека.

Значение тока, мА Характер воздействия
Переменный ток 50 Гц Постоянный ток
0,6 – 1,6 Порог ощущения (начало ощущения) – слабый зуд, пощипывание кожи под проводниками Не ощущается
2 – 4 Ощущение тока распространяется и на запястье руки, слегка сводит руку Не ощущается
5 – 7 Болевые ощущения усиливаются во всей кисти руки, сопровождаясь судорогами; слабые боли ощущаются во всей руке, вплоть до предплечья. Руки, как правило, можно оторвать от проводников. Порог ощущения (начало ощущения) –зуд, впечатление нагрева кожи под проводником
8 – 10 Сильные боли с судороги во всей руке, включая предплечье.

Руки трудно, но в большинстве случаев еще можно оторвать от проводников

Усиление ощущения нагрева
10 – 15 Неотпускающие токи – непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Едва переносимые боли во всей руке. С увеличением продолжительности протекания тока боли усиливаются. Еще большее усиление ощущения нагрева как под проводником, так и в прилегающих областях кожи.
20 – 25 Руки парализуются мгновенно, оторваться от проводников невозможно. Сильные боли, дыхание затруднено. Еще большее усиление ощущения нагрева кожи, возникновение ощущение внутреннего нагрева. Незначительное сокращение мышц рук.
25 – 50 Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания. Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от проводников возникает едва переносимые боли в результате судорожного сокращения мышц.
50 – 80 Паралич дыхания через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца. Неотпускающие токи – руки невозможно оторвать от проводников из-за сильных болей при нарушении контакта. Ощущение очень сильного поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания.
паралич сердца. Паралич дыхания при длительном протекании тока
То же действие за меньшее время Фибрилляция сердца через 2-3с; еще через несколько секунд – паралич сердца.
Более 500 Дыхание парализуется немедленно – через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разрушение тканей.

Наиболее характерными является следующие токи: пороговый ощутимый, пороговый неотпсускающий, пороговый фибрилляционный.

Пороговый ощутимый ток – это наименьшее значение ощутимого тока, т.е. тока, вызывающего при прохождении через организм ощутимые раздражения. Его значение при 50 Гц составляет 0,6 – 1,5 мА. При этом ток 0.63 мА ощущает лишь 1 чел. из тысячи. 1,59 мА — 999 чел.

Тема 12. Действие электрического тока на организм человека, анализ условий электробезопасности

из тысячи и 1,11 мА – 500 чел. из тысячи, т.е. 50 %.

Пороговый неотпускающий ток – это наименьшее значение пропускающего тока, т. е. тока вызывающего при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Его значение при 50 Гц составляет 5 – 25 мА . При этом ток 5,3 мА является неотпускающим лишь для 1 чел. из тысячи, 24,6 мА – для 999 чел. из тысячи и 14,9 мА — для 500 чел. из тысячи, т.е. для 50 % людей.

Пороговый фибрилляционный ток – это наименьшее значение фибрилляционного тока, т. е. тока, вызывающего при прохождении через организм фибрилляцию сердца. Его значение при 50 Гц составляет 50 – 350 мА . При этом ток 67 мА вызывает фибрилляцию лишь у 1 чел. из тысячи, 367 мА — у 999 чел. из тысячи и ток 157 мА — у 500 чел. из тысячи, т. е. у 50% людей.

Фибрилляция сердца – нарушение нормального сердечного ритма. Это состояние характеризуется некоорденированными, асинхронными сокращениями мышечной фибрилльной ткани сердца. При фибрилляции сердце не повреждается, но нарушается ритм его работы, оно не бьется, а трепещет. Прекращается циркуляция крови в организме, и смерть наступает в течение нескольких минут.

Техника безопасности (ТБ) – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия опасных и вредных факторов.

Электробезопасность – защита от электрического тока, электрической дуги, статического и атмосферного электричества.

3.1 Воздействие электрического тока на организм человека

Проходя через тело человека, электрический ток оказывает на него биологические (сокращение мышц, паралич дыхания и сердца, раздражение и возбуждение нервных окончаний), электролитические (разложение крови и плазмы), термические (ожоги, нагрев тканей и биологических сред) и механические (разрыв и расслоение тканей) воздействия.

При воздействии электрических тока или дуги могут возникнуть электрические удары – внутренние, общие поражения организма человека, связанные: с едва ощутимым сокращением мышц; судорожными сокращениями мышц, сопровождающимися сильными болями без потери сознания; потерей сознания и нарушением сердечной деятельности и (или) дыхания; потерей сознания, но с сохранившимся дыханием и работой сердца; состоянием клинической смерти в результате фибрилляции сердца или асфиксии. При местном воздействии электрического тока возникают электротравмы : контактные, дуговые или смешанные электроожоги (четыре степени); металлизация кожи частицами расплавившегося металла; электрические знаки (метки различной формы и цвета, безболезненные, исчезающие со временем); электроофтальмия (воспаление наружной оболочки глаз); механические травмы, вызванные непроизвольным сокращением мышц. Тяжесть поражения электрическим током зависит от силы тока, сопротивления тела человека, пути и времени протекания тока через организм, рода (переменный или постоянный) и частоты тока, условий среды и индивидуальных особенностей человека.

Эквивалентную схему при протекании тока через тело человека можно представить в виде последовательно включенных сопротивлений внутренних органов и кожи (эпидермы) в месте контакта (на входе и выходе) с источником тока (рисунок 3.1). Емкость человеческого тела незначительна, и ее не учитывают в практических расчетах. Сопротивление тела человека при различных расчетах, связанных с обеспечением безопасности, принимают активным и равным 1000 Ом , хотя оно и изменяется в широких пределах. Наибольшим сопротивлением обладает наружный слой кожи толщиной порядка 0,2 мм, состоящий из мертвых ороговевших клеток, наименьшим – спинно-мозговая жидкость. Сухая, чистая, неповрежденная кожа имеет сопротивление значительно больше, чем влажная, с большим pH, потная кожа. С увеличением силы тока и временем его протекания сопротивление тела человека уменьшается. Наибольшая опасность возникает при прохождении тока через головной мозг, легкие, сердце . Наиболее опасным является ток промышленных частот (20 – 1000 Гц) . Постоянный ток напряжений 250 – 300 В менее опасен, чем переменный. Некоторые заболевания человека (сердечно сосудистые, кожные) делают его восприимчивым к электрическому току. Поэтому к обслуживанию электроустановок допускаются лица, прошедшие медицинское освидетельствование.

Рисунок 3.1 – Схема замещения тела человека

По степени физиологического воздействия можно выделить следующие токи промышленной частоты воздействием более 1 секунды:

0,5 – 1,5 мА – пороговый ощутимый ток (т.е. наименьшее значение тока, которое человек начинает ощущать);

10 – 20 мА – пороговый не отпускающий ток (когда из-за судорожного сокращения рук человек самостоятельно не может освободится от токоведущих частей);

80 – 100 мА – пороговый фибрилляционный ток (расчетный поражающий ток), вызывающий неритмичные судорожные сокращения сердца, называемые фибрилляцией.

Поражение электрическим током возможно лишь в состоянии полного покоя сердца человека. При продолжительности воздействия не более 10 минут в сутки в неаварийном режиме при нормальных метеорологических условиях предельно допустимые значения тока : частотой 50 Гц равно 0,3 мА, частотой 400 Гц – 0,4 мА, постоянного тока – 1 мА.

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Виды воздействия электрического тока на организм

Электрический ток оказывает на организм человека термическое, электролитическое и биологическое действие.
Термическое действие тока проявляется в ожогах отдельных участков тела, а также в нагреве до высоких температур других органов.
Электролитическое действие тока проявляется в разложении органических жидкостей, вызывая значительные нарушения их физико-химического состава.
Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов.

Виды поражения электрическим током человека

Различают два основных вида поражения человека электрическим током:
электрические травмы и электрические удары.
Виды электротравм : местные электротравмы (электрический ожог, электрические знаки, металлизация кожи, механические повреждения, электроофтальмия).
Особую опасность представляют электрические травмы в виде ожогов. Электрический ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Электроожоги излечиваются значительно труднее и медленнее обычных термических, сопровождаются внезапно возникающими кровотечениями, омертвением отдельных участков тела.
Металлизация кожи-проникновение в ее верхние слои мельчайших частичек металла, расплавившегося под действием электрической дуги. Пострадавший в месте поражения испытывает напряжение кожи от присутствия в ней инородного тела и боль от ожога за счет раскаленного металла. Металлизация наблюдается примерно у 10 % пострадавших.
Механические повреждения возникают в результате резких, судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов, нервной ткани, а также вывихи суставов и переломы костей.
Электроофтальмия — воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые поглощаются клетками и вызывают в них химические изменения. Такое облучение возможно при наличии электрической дуги.
Электрические знаки представляют собой четко очерченные пятна серого или бледножелтого цвета круглой или овальной формы с углублением в центре, иногда в виде царапин, ушибов, бородавок, кровоизлияний в коже, мозолей, иногда напоминают форму молнии. В основном электрические знаки безболезненны. Знаки возникают у 20% пострадавших от тока.

Последствия воздействия электрического тока на человека. Электрический удар

— это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся сокращениями мышц. Исход при этом может быть от легкого поражения до смертельного.
Различают смерть клиническую и биологическую.
Клиническая (или «мнимая») — смерть переходное состояние от жизни к смерти, наступающее с момента прекращения деятельности сердца и легких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз резко расширены и не реагируют на свет. Однако в этот период жизнь в организме еще полностью не угасла, ибо ткани его еще не подвергаются распаду и в известной степени сохраняют жизнеспособность. Длительность клинической смерти составляет 4 -6 мин., у здорового человека — 7-8 мин.

Причины смерти от электрического тока

Фибрилляция сердца.
Причинами смерти от электрического тока могут быть прекращение дыхания, прекращение работы сердца и электрический шок. Возможно также одновременное действие всех трех причин.
Прекращение работы сердца — результат прямого воздействия тока на мышцу сердца, т.е. прохождение тока в области сердца или рефлекторно через центральную нервную систему, когда путь тока лежит вне этой области. В обоих случаях может произойти остановка сердца или наступить его фибрилляция.
Фибрилляция сердца — хаотические разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце не в состоянии гнать кровь по сосудам.

Своеобразная тяжелая нервно-рефлекторная реакция организма в ответ на чрезмерное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель человека в результате полного угасания жизненно важных функций, или выздоровление как результат своевременного активного лечебного вмешательства.

Факторы, влияющие на исход поражения

Исход воздействия электрического тока на человека зависит от многих факторов: от рода тока (переменный или постоянный); при переменном токе — от его частоты), значения тока (или напряжения), длительности его протекания, а также от физического и психического состояния человека.
Наиболее опасным для человека является с частотой 50 — 500 Гц. Способность самостоятельного освобождения от тока такой частоты у большинства людей сохраняется при очень малом токе (до 10 мА), постоянный ток тоже опасен, но самостоятельно освободиться от него можно при несколько больших значениях (до 20 — 25 мА). Безопасным можно считать ток порядка 70 микроампер.
Ток, проходящий через тело человека, зависит от напряжения электроустановки и сопротивления всех элементовцепи, по которой он протекает, в том числе от сопротивления тела человека. Электрическое сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних тканей. Наибольшее сопротивление имеет верхний роговой слой кожи, толщина которого составляет доли мм. Если кожа сухая, неповрежденная, сопротивление ее велико к при напряжении 10 В составляет около 100000 Ом. При наличии повреждений на теле его сопротивление снижается до 1000 Ом и менее (например, при повреждении кожи в месте контакта с токоведущей частью). Чем выше напряжение, тем скорее возможен пробой кожи.

Какое напряжение является «безопасным»?

Каждый работающий должен твердо помнить, что БЕЗОПАСНОГО НАПРЯЖЕНИЯ НЕ СУЩЕСТВУЕТ и что нельзя прикасаться к токоведущим частям независимо от того, под каким напряжением они находятся. При необходимости работы на оборудовании или вблизи его, которое может оказаться под напряжением (металлические конструкции РУ, корпуса оборудования и др.части), следует применять средства защиты: заземление, изоляцию, изолирующие инструменты.
Длительность воздействия — один из основных факторов, влияющих на исход поражения. Чем меньше время воздействия (менее I сек), тем меньше вероятность поражения.
Если на пути тока оказываются жизненно важные органы — сердце, легкие, головной мозг, то опасность поражения весьма велика, поскольку ток воздействует непосредственно на эти органы.
Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть лишь через центральную нервную систему. Поскольку сопротивление кожи на разных участках тела различно, исход поражения зависит от места соприкосновения с токоведущими частями. Наиболее опасно соприкосновение с активными (аку-пунктурными) областями. Возможных путей тока в теле человека, которые именуются также петлями тока, очень много. Саше распространенные из них (6 петель): рука-рука, правая рука -ноги, левая рука — ноги, нога-нога, голова — ноги, голова — руки.
Наиболее опасными являются петли голова — руки и голова — ноги, когда ток может проходить через головной и спинной мозг. К счастью эти петли возникают относительно редко. Петля нога-нога создает так называемое «шаговое напряжение».

Шаговое напряжение

Напряжение между двумя точками поверхности земли, от стоящими друг от друга на расстоянии шага (0,7-0,8 м), в зоне растекания токов замыкания в радиусе до 20 м при пробое изоляции на землю случайно оборванного электрического провсда называется шаговым напряжением. Наибольшую величину шаговое напряжение будет иметь при подходе человека к упавшему проводу, а наименьшее — при нахождении его на расстоянии 20 м и более от него. При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и как следствие этого падение человека на землю. В этот момент прекращается действие на человека шагового напряжения и возникает иная, более тяжелая ситуация: вместо нижней петли в теле человека образуется новый, более опасный путь тока, обычно от рук к ногам и создается реальная угроза смертельного поражения током. При попадании под шаговое напряжение необходимо выходить из опасной зоны минимальными шажками или прыжками на одной ноге.

Восприимчивость человека к электрическому току

Практикой установлено, что вполне здоровые и физически крепкие люди легче переносят , чем больные и слабые.
Повышенной восприимчивостью к электрическому току обладают лица, страдающие рядом заболеваний, в первую очередь болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, легких, нервными болезнями и др.
Психическое состояние человека в момент поражения имеет если не большее, то по крайней мере такое же значение для исхода поражения, как сопротивление тела человека и другие его физические данные. Так например, немалое значение имеет «Фактор внимания», то есть психическая подготовленность человека к возможным опасностям поражения током. Дело в том, что неожиданный даже при относительно небольшом напряжении нередко приводит к тяжелым последствиям; если человек подготовлен к удару, т.е. ожидает его, то степень опасности резко уменьшается.

Психологическая подготовленность человека

КВАЛИФИКАЦИЯ человека также сказывается на результатах воздействия тока: человек, далекий от электротехники, в случае попадания под напряжение оказывается, как правило, в более тяжелых условиях, чем опытный электрик. Дело здесь не в «привычке» к электрическому току, ибо никакая тренировка не вырабатывает в организме иммунитета к электрическому току, а в опыте, умении правильно оценить степень возникшей опасности и применить рациональные приемы освобождения себя от действия тока.
С учетом указанных обстоятельств отечественные Правила техники безопасности предусматривают обязательное меди цинское освидетельствование персонала, обслуживающего действующие электроустановки, как при поступлении на работу, так и периодически 1 раз в 2 года. Правда, это освидетельствование преследует и другую цель — не допускать к обслуживанию электроустановок людей с недостатками здоровья, которые могут мешать их производственной работе или послужить причиной ошибочных действий, опасных для других лиц (неразличение цветного сигнала из-за порока зрения, невозможность подать четкую команду из-за болезни горла или заикания и т.п.).
Кроме того, в соответствии с законодательством об охране труда подростков, Правила разрешают допускать к обслуживанию действующих электроустановок лишь людей взрослых (не моложе 18 лет), имеющих определенные , соответствующие объему и условиям выполняемых ими работ.

Пострадавшего необходимо быстро освободить от воздействия тока.
Если дыхание и пульс устойчивы, то пострадавшего следует удобно уложить, расстегнуть одежду, снять пояс; необходимо обеспечить полный покой и доступ свежего воздуха. Следует непрерывно наблюдать за дыханием и пульсом; дать понюхать нашатырный спирт, обрызгать водой.
Если пострадавший не дышит или дышит судорожно с всхлипываниями, то необходимо делать ему искусственное дыхание.
При отсутствии у пострадавшего пульса одновременно с искусственным дыханием надо проводить закрытый (непрямой) массаж сердца.
Во всех случаях немедленно вызывают врача.
Непроизвольное судорожное сокращение мышц руки бывает настолько сильным, что освободить токоведущую часть мз рук пострадавшего почти невозможно. Поэтому необходимо быстро отключить электроустановку. Если это невозможно, то пострадавшего следует отделить от токоведущей части. Следует помнить, что прикосновение к человеку, попавшему под напряжение может быть опасно самому спасающему. Поэтому нельзя прикасаться к его телу голыми руками.
Для отделения пострадавшего, попавшего под обычное сетевое напряжение (220/380 В) следует применить сухой канат, палку, оттягивать с помощью одежды, собственные руки изолировать диэлектрическими перчатками, шарфом, прорезиненной тканью, встать на сухую доску. Разрешается перерубить или перерезать провода инструментом с сухой деревянной ручкой.
Освобождать пострадавшего, попавшего под напряжение 1000 В. следует только надев диэлектрические перчатки и боты, оттягивать штангой или клещами, предназначенными для напряжения этой установки.

Искусственное дыхание

Искусственное дыхание «изо рта в рот», «изо рта в нос».
Искусственное дыхание заключается в том, что оказывающий помощь выдыхает воздух (более 1 л) из своих легких в легкие пострадавшего. Этот воздух содержит количество кислорода, достаточное для оживления.
Перед началом искусственного дыхания необходимо подготовить дыхательные пути. Если рот пострадавшего стиснут, его следует раскрыть, выдвинув нижнюю челюсть, либо между коренными зубами вставить плоский предмет и с его помощью разжать челюсти. Затем быстро открывают и очищают от слизи рот пострадавшего, съемные челюсти вынимают. Далее запрокидывают голову пострадавшего назад, подкладывают одну руку под шею, а, другую кладут на лоб. Большим и указательным пальцем зажимают ноздри, затем, глубоко вдохнув, прижимают свой рот к открытому рту пострадавшего непосредственно или через платок и резко выдыхают. При этом грудь (а не живот) пострадавшего должна подниматься. Выдох произойдет самопроизвольно из-за спада грудной клетки. В минуту делают 10 -12 вдуваний.
Во время искусственного дыхания необходимо следить за лицом пострадавшего: если он пошевелит губами, веками, сделает дыхательное движение, нужно проверить, не начнет ли он сам дышать равномерно. В этом случае искусственное дыхание следует приостановить. Если же окажется, что пострадавший не дышит, то искусственное дыхание немедленно возобновляют.
При методе «изо рта в нос» воздух вдувают через нос, плотно закрыв рот. Этот метод применяют, если челюсти стиснуты так, что их невозможно открыть.

Непрямой массаж сердца

Для восстановления работы сердца и кровообращения проводят непрямой массаж сердца. Пострадавшего укладывают на жесткое основание (пол, скамью), освобождают от стесняющей одежды. Оказывающий помощь становится с левой стороны пострадавшего и кладет на нижнюю часть его грудной клетки ладонь вытянутой от отказа руки, а вторую — кладут на первую. Важно правильно определить место надавливания — на два пальца выше конца грудины. Налавливать на грудину следует быстрым толчком такой силы, чтобы сместить ее на 4-5 см с частотой — одно надавливание в секунду. Если помощь оказывает один человек, то делается 2-3 вдувания и 14-15 надавливаний, если двое, то на одно вдувание через 2 секунды делается 4-6 надавливаний. Процедуру массажа сердца рекомендуется поручать специально обученному работнику.
При правильном оказании помощи у пострадавшего появляются следующие признаки оживления: лицо розовеет, появляется устойчивое самостоятельное дыхание, сужаются зрачки. Узкие зрачки указывают на достаточное питание мозга кислородом.
Длительное отсутствие пульса при самостоятельном дыхании и узких зрачках указывает на фибрилляцию сердца. В этих случах необходимо оживлять пострадавшего непрерывно как до, так и после доставки его в лечебное учреждение или до прибытия врача. Даже кратковременное (менее I мин.) прекращение помощи по оживлению может иметь нежелательные последствия.
При появлении первых признаков оживления наружный массаж и искусственное дыхание следует продолжать еще 5-10 мин., приурачивая дыхание к моменту собственного вдоха.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...