Силы, действующие в атмосфере, и их влияние на ветер. Циркуляция воздушных масс

Взаимодействие океана и атмосферы.

27. Циркуляция воздушных масс.

© Владимир Каланов,
"Знания-сила".

Перемещение воздушных масс в атмосфере определяется тепловым режимом и изменением давления воздуха. Совокупность основных воздушных течений над планетой называется общей циркуляцией атмосферы . Основные крупномасштабные атмосферные движения, слагающие общую циркуляцию атмосферы: воздушные течения, струйные течения, воздушные потоки в циклонах и антициклонах, пассаты и муссоны.

Напротив, при высокой скорости паразитное сопротивление является доминирующим, а индуцированное сопротивление не имеет значения.

  • Чем выше угол атаки, тем выше индуцированное сопротивление.
  • Чем выше скорость, тем больше паразитное сопротивление.
Эта сила достигается путем ускорения массы воздуха со скоростью, большей скорости полета самолета. Реакция с равной интенсивностью, но в противоположном направлении, движет плоскостью вперед. В пропеллерных самолетах силовая сила генерируется вращением пропеллера, приводимого в движение двигателем; в реакторах движение осуществляется путем насильственной выталкивания газов, сжигаемых турбиной.

Движение воздуха относительно земной поверхности – ветер – появляется потому, что атмосферное давление в различных местах воздушной массы неодинаково. Принято считать, что ветер – это горизонтальное движение воздуха. На самом деле воздух движется обычно не параллельно поверхности Земли, а под небольшим углом, т.к. атмосферное давление меняется и в горизонтальном и в вертикальном направлениях. Направление ветра (северный, южный и т.д.) означает, откуда ветер дует. Под силой ветра подразумевается его скорость. Чем она выше, тем ветер сильней. Скорость ветра измеряют на метеорологических станциях на высоте 10 метров над Землёй, в метрах в секунду. На практике силу ветра оценивают в баллах. Каждый балл соответствует двум-трём метрам в секунду. При силе ветра в 9 баллов его уже считают штормовым, а при 12 баллах – ураганом. Распространённый термин «буря» означает любой очень сильный ветер, независимо от количества баллов. Скорость сильного ветра, например, при тропическом урагане, достигает огромных значений – до 115 м/с и более. Ветер возрастает в среднем с высотой. У поверхности Земли его скорость снижается трением. Зимой скорость ветра в целом выше, чем в летнее время. Наибольшие скорости ветра наблюдаются в умеренных и полярных широтах в тропосфере и нижней стратосфере.

Эта сила действует в том же направлении, что и ось силовой установки, которая обычно более или менее параллельна продольной оси самолета.

Поскольку мощность эквивалентна энергии в единицу времени, при большей мощности большая мощность ускорения. Сила является самым важным фактором при определении скорости восхождения на самолет. Фактически максимальная скорость подъема самолета не связана с лифтом, а с дисконтированной доступной мощностью, необходимой для поддержания уровня полета.

Не совсем ясна закономерность изменения скорости ветра над материками на небольших высотах (100–200 м). здесь скорости ветра достигают самых больших значений после полудня, а самых малых – в ночное время. Это наблюдается лучше всего летом.

Очень сильные ветры, до штормовых, бывают днём в пустынях Центральной Азии, а ночью наступает полный штиль. Но уже на высоте 150–200 м наблюдается прямо противоположная картина: максимум скорости ночью и минимум днём. Такая же картина наблюдается и летом, и зимой в умеренных широтах.

Эти четыре силы определены по отношению к трем различным системам координат: подъем и сопротивление определены относительно относительного ветра; вес относительно центра земли и тяга относительно ориентации самолета. Эта ситуация может быть немного сложнее, потому что, например, тяга и сопротивление имеют вертикальные компоненты, которые противостоят весу, в то время как лифт имеет горизонтальный компонент.

Можно подумать, что четыре силы определены анархическим образом, но понятия и их определения являются тем, чем они являются и являются правильными. В них много истории и исследований, и они очень важны при анализе сложных ситуаций. Но мы не должны быть встревожены, поскольку эти понятия имеют относительную важность. В обычном полете, кроме спинов, даже при восхождении и спуске, углы обычно малы, поэтому тяга приблизительно горизонтальна, а относительные ветры отличаются от горизонтали лишь на несколько градусов, так что сопротивление приблизительно горизонтально и опорой, близкой к вертикали.

Много неприятностей может принести порывистый ветер пилотам самолётов и вертолётов. Струи воздуха, движущиеся в различных направлениях, толчками, порывами, то ослабевая, то усиливаясь, создают большое препятствие для движения воздушных судов – появляется болтанка – опасное нарушение нормального полёта.

Ветры, дующие с горных хребтов выхоложенного материка в направлении тёплого моря, называются борой . Это – сильный, холодный, порывистый ветер, дующий обычно в холодное время года.

Проще говоря: при прямом и горизонтальном полете с постоянной скоростью силы, действующие вниз, компенсируются теми, которые действуют вверх, а те, кто действует вперед, уравновешиваются теми, кто действует в обратном направлении. Это верно, рассчитать, как рассчитываются индивидуальные вклады лифта, вес, сопротивление и тяга. Если одна из этих основных сил изменяется по величине, становящейся больше противоположной, плоскость будет двигаться в направлении форс-мажорных обстоятельств до точки, где оба снова находятся в равновесии.

Конечно, способ компенсации сил относится к самолету в полете; могут быть и другие системы, где силы компенсируются по-разному: например, вес вертикальной плоскости взлета во время нетрадиционного маневра заземления компенсируется тягой двигателя. Маленькие парадоксы: при восхождении на малую скорость и большую мощность носитель меньше веса, но упор поддерживает часть этого веса. Звучит странно, правда? но это технически верно. При низкоскоростном низком низком подъеме подъем снова меньше веса, но в этом случае сопротивление поддерживает некоторый вес.

Многим известна бора в районе Новороссийска, на Черном море. Здесь созданы такие природные условия, что скорость боры может достигать 40 и даже 60 м/с, а температура воздуха понижается при этом до минус 20°С. Бора возникает чаще всего в период с сентября по март, в среднем 45 дней в году. Иногда последствия её были такими: замерзала гавань, лёд покрывал корабли, строения, набережную, с домов срывались крыши, опрокидывались вагоны, суда сбрасывались на берег. Бора наблюдается и в других районах России – на Байкале, на Новой Земле. Известна бора на Средиземном побережье Франции (там она называется мистраль) и в Мексиканском заливе.

Эти парадоксы являются чистыми техническими особенностями, вытекающими из определений четырех сил, но они не влияют на технику пилотирования. Положение одного по отношению к другому имеет большое значение, как мы увидим в последующих главах. Сопротивление является параллельным и в том же направлении, что и относительный ветер. Напряженное сопротивление прямо пропорционально углу атаки и обратно пропорционально квадрату скорости. Паразитное сопротивление прямо пропорционально квадрату скорости. Тяга или тяга действуют в том же направлении, что и тяговый вал. Энергия - энергия за единицу времени; к большей мощности большая мощность ускорения. Скорость набора высоты зависит от дисконтированной доступной мощности, необходимой для поддержания уровня полета.

  • Четыре силы, действующие в полете, - это подъем, вес, тяга и сопротивление.
  • Вес всегда перпендикулярен центру Земли.
  • Также он параллелен и направляется против траектории.
И он проходит над океанами и континентами, их физические характеристики изменяются, которые можно нагревать или охлаждать, высушивать или увлажнять, превращаясь в массу воздуха, что чем меньше масса воздуха будет оставаться над регионом и из-за его разнообразного географического происхождения мы можем классифицировать их как: тропический морской, полярный морской, полярный континентальный и тропический континентальный, каждый с различными комбинациями и содержанием.

Иногда в атмосфере возникают вертикальные вихри с быстрым спиралеобразным движением воздуха. Эти вихри называются смерчами (в Америке их называют торнадо). Смерчи бывают диаметром в несколько десятков метров, иногда до 100–150 м. измерить скорость воздуха внутри смерча чрезвычайно трудно. По характеру производимых смерчем разрушений оценочными величинами скорости вполне могут быть 50–100 м/с, а в особенно сильных вихрях – до 200–250 м/с с большой вертикальной составляющей скорости. Давление в центре поднимающегося вверх столба смерча падает на несколько десятков миллибар. Миллибары для определения давления обычно используют в синоптической практике (наряду с миллиметрами ртутного столба). Для перевода баров (миллибаров) в мм. ртутного столба существуют специальные таблицы. В системе СИ атмосферное давление измеряется в гектопаскалях. 1гПа=10 2 Па=1мб=10 -3 бар.

Мы должны подчеркнуть, что, когда две из этих масс обнаружены, более тяжелый холодный воздух имеет тенденцию толкать снизу к самому теплу, а иногда теплый воздух вытягивается вверх, что часто создает облака и дождь, а место, где происходит эта встреча, называется фронтом. В зависимости от столкновений между воздушными массами эти фронты могут варьироваться в горячих фронтах, где горячий воздух продвигается на холод, но последний тяжелее, прилипает и, несмотря на удаление холодной массы, не полностью выбивается, так что теплый воздух мягко поднимается по фронтальной поверхности, которая образует рампы или холодные фронты, где, когда фронтальная поверхность движется таким образом, что это холодный воздух.

Смерчи существуют недолго – от нескольких минут до нескольких часов. Но и за это небольшое время они успевают натворить много бед. При подходе смерча (над сушей смерчи иногда называют тромбами) к зданиям разница между давлением внутри здания и в центре тромба приводит к тому, что здания как бы взрываются изнутри – разрушаются стены, вылетают стекла и рамы, срываются крыши, иногда не обходится и без человеческих жертв. Бывают случаи, когда людей, животных, а также различные предметы смерч поднимает в воздух и переносит на десятки, а то и сотни метров. В своём движении смерчи продвигаются на несколько десятков километров над морем и ещё больше – над сушей. Разрушительная сила смерчей над морем меньше, чем над сушей. В Европе тромбы редки, чаще они возникают в азиатской части России. Но особенно часты и разрушительны торнадо в США. О смерчах и торнадо читайте дополнительно на нашем сайте в разделе .

Смещается на горячий воздух на поверхности, говорят, что мы находимся в холодном фронте. Поскольку масса холодного воздуха более плотная, она «атакует» горячий воздух внизу, как будто это клин, поднимая его, выбирая его и заставляя его подниматься в гору по крутой лобной поверхности. Существуют также другие типы фронтов, такие как окклюдированные или стационарные, которые, конечно, будут зависеть от типов масс воздуха. Интересным моментом является то, что комбинации восходящего и нисходящего холодного воздуха создают различия в воздухе, создаваемом локальными ветрами, что, в свою очередь, может создавать очень разные климатические условия внутри остаточных площадей, например, так называемый морской и наземный бризы один - путем нагревания воздуха в течение дня на земле или на материковой поверхности, а другой ночью в океанической поверхности.

Атмосферное давление очень изменчиво. Оно зависит от высоты столба воздуха, его плотности и ускорения силы тяжести, которое изменяется в зависимости от географической широты и высоты над уровнем моря. Плотностью воздуха называется масса единицы его объёма. Плотность влажного и сухого воздуха заметно отличается только при высокой температуре и большой влажности. При понижении температуры плотность увеличивается, с высотой плотность воздуха уменьшается медленнее, чем давление. Плотность воздуха обычно непосредственно не измеряют, а вычисляют по уравнениям на основе измеренных величин температуры и давления. Косвенно плотность воздуха измеряют по торможению искусственных спутников Земли, а также из наблюдений за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами.

Мы лучше поймем многие вещи, которые позже вызовут наше любопытство. Масса воздуха - это большой объем воздуха, физические свойства которого, особенно температура и влажность, примерно одинаковы в горизонтальном смысле. По их географическому происхождению мы можем классифицировать их как: полярный воздух и тропический воздух, имеет характеристики температуры и влажности однородные. Они имеют большое боковое расширение, до сотен километров, и он отделен от другой массы воздуха спереди.

Континентальные поверхности: в течение дня пол нагревается быстрее, чем заставляет воздух нагреваться. Этот теплый, легкий воздух поднимается, и самые холодные и тяжелые потоки заменяют его на земной поверхности. Солнечные лучи проникают в воздух без воздуха, поглощающего значительное количество. Но в результате солнечная энергия поглощается Землей, которая, в свою очередь, нагревается при контакте с нижними слоями атмосферы, а затем передает тепло на более высокие слои благодаря установленным конвективным токам. Таким образом, как правило, нижние слои атмосферы находятся на более высокой температуре, чем те, что выше них, и поэтому температура воздуха, как и давление, уменьшается с высотой. Океанские поверхности: Потепление воздуха на поверхности океана происходит ночью. В ясные ночи тепло, накапливающееся на земле в течение дня, облучается очень быстро, так что нижний слой атмосферы охлаждается до вышеперечисленные; то температура воздуха вблизи Земли может быть ниже, чем в других более высоких слоях, причем «температурный градиент» инвертируется, т.е. увеличивается с высотой, а не уменьшается. Воздух возвращается в океан, где он нагревается, а затем поднимается, чтобы заменить предыдущий нагретый в земле в течение дня. Массы воздуха движутся вместе и «толкают» друг друга.

В Европе плотность воздуха у поверхности Земли равна 1,258 кг/м 3 , на высоте 5 км – 0,735, на высоте 20 км – 0,087, а на высоте 40 км – 0,004 кг/м 3 .

Чем короче столб воздуха, т.е. чем выше место, тем давление меньше. Но уменьшение плотности воздуха с высотой усложняет эту зависимость. Уравнение, выражающее закон изменения давления с высотой в покоящейся атмосфере, называется основным уравнением статики. Из него следует, что с увеличением высоты изменение давления отрицательное, и при подъёме на одну и ту же высоту падение давления тем больше, чем больше плотность воздуха и ускорение силы тяжести. Основная роль здесь принадлежит изменениям плотности воздуха. Из основного уравнения статики можно вычислить значение вертикального градиента давления, показывающего изменение давления при перемещении на единицу высоты, т.е. убывание давления на единицу расстояния по вертикали (мб/100 м). Градиент давления – это и есть сила, приводящая в движение воздух. Кроме силы градиента давления в атмосфере действуют силы инерции (сила Кориолиса и центробежная), а также сила трения. Все воздушные течения рассматриваются относительно Земли, которая вращается вокруг своей оси.

Напротив, они редко смешиваются. Это является причиной заметного динамизма атмосферы на так называемой фронтальной поверхности, так как она называется контактной поверхностью между двумя воздушными массами. Поскольку атмосфера имеет три измерения, разделение между воздушными массами является поверхностью, называемой передней поверхностью, а фронтом является линия, определяемая пересечением передней поверхности и земли.

Формирование фронтов называется фронтогенезом, а обратное - фронтолизом. Фронты классифицируются на холодных, теплых или горячих фронтах стационарные и закрытые. Или просто скажем, что он называется перед воображаемой линией, разделяющей две различные температуры воздуха. Эти две массы воздуха медленно смешиваются, и это вызывает многочисленные атмосферные явления.

Пространственное распределение атмосферного давления называется барическим полем. Это система поверхностей равного давления, или изобарических поверхностей.

Вертикальный разрез изобарических поверхностей над циклоном (Н) и антициклоном (В).
Поверхности проведены через равные интервалы давления p.

Изобарические поверхности не могут быть параллельны друг другу и земной поверхности, т.к. температура и давление постоянно изменяются в горизонтальном направлении. Поэтому изобарические поверхности имеют разнообразный вид – от прогнутых вниз неглубоких «котловин» до выгнутых вверх растянутых «холмов».

Когда лобовая поверхность смещается таким образом, что это холодный воздух, который. Смещается на горячий воздух на поверхности, мы, как говорят, находимся в холодном фронте. Явление очень жестокое, и в этих восхождениях обильные облака вертикали. Представление холодного фронта.

В общем, облачность является стратиформной, а осадки менее интенсивными, чем на холодном фронте. Полярный фронт и волновые шквалы. . Наиболее важными атмосферными нарушениями в средних широтах являются. Волны, также называемые циклоническими штормами. Они образованы массой теплого воздуха тропического происхождения с другими холодным воздухом полярного происхождения, которые формируются, развиваются и в конечном итоге рушится вдоль Полярного фронта. Этот фронт представляет собой зону низкого давления в сторону, где они сходятся с ветрами с противоположными направлениями, исходящими из высоких тропических и полярных давлений, создавая неустойчивую ситуацию.

При пересечении горизонтальной плоскостью изобарических поверхностей получаются кривые – изобары, т.е. линии, соединяющие пункты с одинаковыми значениями давления.

Карты изобар, которые строятся по результатам наблюдений в определённый момент времени, называются синоптическими картами. Карты изобар, составленные по средним многолетним данным за месяц, сезон, год, называются климатологическими.



Многолетние средние карты абсолютной топографии изобарической поверхности 500 мб за декабрь - февраль.
Высоты в геопотенциальных декаметрах.

На синоптических картах между изобарами принят интервал, равный 5 гектопаскалям (гПа).

На картах ограниченного района изобары могут обрываться, но на карте всего Земного шара каждая изобара, естественно, замкнута.

Но и на ограниченной карте часто бывают замкнутые изобары, ограничивающие участки низкого или высокого давления. Области с пониженным давлением в центре – это циклоны , а области с относительно повышенным давлением – это антициклоны .

Под циклоном понимают огромный вихрь в нижнем слое атмосферы, имеющий в центре пониженное атмосферное давление и восходящее движение воздушных масс. В циклоне давление возрастает от центра к периферии, а воздух движется против часовой стрелки в Северном полушарии и по часовой стрелке – в Южном полушарии. Восходящее движение воздуха приводит к образованию облачности и к осадкам. Из космоса циклоны выглядят в виде закручивающихся облачных спиралей в умеренных широтах.

Антициклон – это область высокого давления. Он возникает одновременно с развитием циклона и представляет собой вихрь с замкнутыми изобарами и самым высоким давлением в центре. Ветры в антициклоне дуют по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном. В антициклоне всегда существует нисходящее движение воздуха, что препятствует возникновению мощной облачности и продолжительных осадков.

Таким образом, крупномасштабная циркуляция атмосферы в умеренных широтах постоянно сводится к образованию, развитию, движению, а затем к затуханию и исчезновению циклонов и антициклонов. Циклоны, возникающие на фронте, разделяющем тёплую и холодную воздушные массы, движутся в сторону полюсов, т.е. переносят тёплый воздух в полярные широты. Наоборот, антициклоны, возникающие в тылу циклонов в холодной воздушной массе, движутся в субтропические широты, перенося туда холодный воздух.

Над европейской территорией России в год возникают в среднем 75 циклонов. Диаметр циклона достигает 1000 км и более. В Европе за год бывает в среднем 36 антициклонов, часть из которых имеет давление в центре более 1050 гПа. Среднее давление в Северном полушарии на уровне моря равно 1013,7 гПа, а в Южном полушарии – 1011,7 гПа.

В январе в северных частях Атлантики и Тихого океана наблюдаются области низкого давления, названные Исландской и Алеутской депрессиями . Депрессии , или барические минимумы , характеризуются минимальными значениями давления – в среднем около 995 гПа.

В такой же период года над Канадой и Азией возникают области высокого давления, названные Канадским и Сибирским антициклонами. Самое высокое давление (1075–1085 гПа) регистрируется в Якутии и Красноярском крае, а минимальное – в тайфунах над Тихим океаном (880–875 гПа).

Депрессии наблюдаются в районах, где часто возникают циклоны, которые по мере продвижения на восток и северо-восток постепенно заполняются и уступают место антициклонам. Азиатский и Канадский антициклоны возникают благодаря наличию на этих широтах обширных континентов Евразии и Северной Америки. В этих районах зимой антициклоны преобладают над циклонами.

Летом над этими материками схема барического поля и циркуляции коренным образом меняется, и зона образования циклонов в Северном полушарии смещается в более высокие широты.

В умеренных широтах Южного полушария циклоны, возникающие над однородной поверхностью океанов, двигаясь на юго-восток, встречают льды Антарктиды и здесь застаиваются, имея в своих центрах низкое давление воздуха. Зимой и летом Антарктида окружена поясом низкого давления (985–990 гПа).

В субтропических широтах циркуляция атмосферы различна над океанами и в районах соприкосновения материков и океанов. Над Атлантическим и Тихим океанами в субтропиках обоих полушарий имеются области высокого давления: это Азорский и Южноатлантический субтропические антициклоны (или барические минимумы) в Атлантике и Гавайский и Южнотихоокеанский субтропические антициклоны в Тихом океане.

Наибольшее количество солнечного тепла постоянно получает экваториальная область. Поэтому в экваториальных широтах (до 10° северной и южной широты вдоль экватора) в течение круглого года удерживается пониженное атмосферное давление, а в тропических широтах, в полосе 30–40° с. и ю.ш. – повышенное, вследствие чего образуются постоянные потоки воздуха, направленные от тропиков к экватору. Эти воздушные потоки называются пассатами . Пассатные ветры дуют в течение всего года, меняя лишь в незначительных пределах свою интенсивность. Это самые устойчивые ветры на Земном шаре. Сила горизонтального барического градиента направляет потоки воздуха из областей повышенного давления в область пониженного давления в меридиональном направлении, т.е. на юг и на север. Примечание: горизонтальный барический градиент – это разность давлений, приходящаяся на единицу расстояния по нормали к изобаре.

Но меридиональное направление пассатов изменяется под действием двух сил инерции – отклоняющей силы вращения Земли (силы Кориолиса) и центробежной силы, а также под действием силы трения воздуха о земную поверхность. Сила Кориолиса воздействует на каждое тело, движущееся вдоль меридиана. Пусть 1 кг воздуха в Северном полушарии расположен на широте µ и начинает двигаться со скоростью V вдоль меридиана на север. Этот килограмм воздуха, как и любое тело на Земле, имеет линейную скорость вращения U=ωr , где ω угловая скорость вращения Земли, а r – расстояние до оси вращения. По закону инерции этот килограмм воздуха будет сохранять линейную скорость U , которую он имел на широте µ . Продвигаясь на север, он окажется на более высоких широтах, где радиус вращения меньше и линейная скорость вращения Земли меньше. Таким образом это тело опередит неподвижные тела, расположенные на том же меридиане, но в более высоких широтах.

Для наблюдателя это будет выглядеть как отклонение этого тела вправо под действием какой-то силы. Эта сила и есть сила Кориолиса. По этой же логике килограмм воздуха в Южном полушарии отклонится влево от направления движения. Горизонтальная составляющая силы Кориолиса, действующая на 1 кг воздуха, равна СК=2wVsinY. Она и отклоняет воздух, действуя под прямым углом к вектору скорости V. В Северном полушарии она отклоняет этот вектор вправо, а в Южном полушарии – влево. Из формулы следует, что сила Кориолиса не возникает, если тело покоится, т.е. она действует только тогда, когда воздух движется. В атмосфере Земли величины горизонтального барического градиента и силы Кориолиса имеют один порядок, поэтому иногда они почти уравновешивают друг друга. В таких случаях движение воздуха почти прямолинейно, и он движется не вдоль градиента давления, а вдоль изобары или близко к ней.

Воздушные течения в атмосфере обычно имеют вихревой характер, поэтому в таком движении на каждую единицу массы воздуха действует центробежная сила P=V/R , где V - скорость ветра, а R – радиус кривизны траектории движения. В атмосфере эта сила всегда меньше силы барического градиента и поэтому остаётся, так сказать, силой «местного значения».

Что касается силы трения, возникающей между движущимся воздухом и поверхностью Земли, то она в определённой мере замедляет скорость ветра. Происходит это так: нижние объёмы воздуха, снизившие свою горизонтальную скорость из-за неровностей земной поверхности, переносятся с нижних уровней вверх. Таким образом трение о земную поверхность передаётся вверх, постепенно ослабевая. Замедление скорости ветра заметно в так называемом планетарном пограничном слое , составляющем 1,0 – 1,5 км. выше 1,5 км влияние трения незначительно, поэтому более высокие слои воздуха называют свободной атмосферой .

В экваториальной зоне линейная скорость вращения Земли наибольшая, соответственно здесь и сила Кориолиса наибольшая. Поэтому в тропическом поясе Северного полушария пассаты дуют почти всегда с северо-востока, а в Южном полушарии – с юго-востока.

Низкое давление в экваториальной зоне наблюдается постоянно, зимой и летом. Полоса низкого давления, охватывающая по экватору весь Земной шар, называется экваториальной ложбиной .

Набрав силу над океанами обоих полушарий, два пассатных потока, двигаясь навстречу друг другу, устремляются к центру экваториальной ложбины. На линии низкого давления они сталкиваются, образуя так называемую внутритропическую зону конвергенции (конвергенция означает «сходимость»). В результате этой «сходимости» происходит восходящее движение воздуха и его отток выше пассатов к субтропикам. Этот процесс и создаёт условия для существования зоны конвергенции постоянно, в течение года. Иначе сходящиеся воздушные потоки пассатов быстро заполнили бы ложбину.

Восходящие движения влажного тропического воздуха приводят к образованию мощного слоя кучево-дождевых облаков протяженностью 100–200 км, из которых обрушиваются тропические ливни. Таким образом получается, что внутритропическая зона конвергенции становится местом, где дожди выливаются из пара, собранного пассатами над океанами.

Так упрощенно, схематично выглядит картина циркуляции атмосферы в экваториальной зоне Земли.

Ветры, изменяющие своё направление по сезонам, называют муссонами . Арабское слово «маусин», означающее «время года», дало название этим устойчивым воздушным течениям.

Муссоны, в отличие от струйных течений, возникают в определённых районах Земли, где дважды в год преобладающие ветры движутся в противоположных направлениях, образуя летний и зимний муссоны. Летний муссон – это поток воздуха с океана на материк, зимний – с материка на океан. Известны тропические и внетропические муссоны. В Северо-Восточной Индии и Африке зимние тропические муссоны складываются с пассатами, а летние юго-западные полностью разрушают пассаты. Самые мощные тропические муссоны наблюдаются в северной части Индийского океана и в Южной Азии. Внетропические муссоны зарождаются в возникающих над континентом мощных устойчивых областях повышенного давления в зимнее время и пониженного – в летнее время.

Типичными в этом отношении являются районы русского Дальнего Востока, Китая, Японии. Например, Владивосток, лежащий на широте Сочи из-за действия внетропического муссона зимой холоднее Архангельска, а летом здесь часто бывают туманы, осадки, с моря поступает влажный и прохладный воздух.

Многие тропические страны Южной Азии получают влагу, приносимую в виде проливных дождей летним тропическим муссоном.

Любые ветры являются результатом взаимодействия различных физических факторов, возникающих в атмосфере над определенными географическими районами. К местным ветрам относятся бризы . Они появляются вблизи береговой черты морей и океанов и имеют суточную смену направления: днём они дуют с моря на сушу, а ночью с суши на море. Объясняется это явление разницей температур над морем и сушей в разное время суток. Теплоёмкость суши и моря разная. Днём в тёплую погоду солнечные лучи нагревают сушу быстрее, чем море, и давление над сушей уменьшается. Воздух начинает двигаться в сторону меньшего давления – дует морской бриз . Вечером всё происходит наоборот. Суша и воздух над ней излучают тепло быстрее, чем море, давление становится выше, чем над морем, и воздушные массы устремляются в сторону моря – дует береговой бриз . Бризы особенно отчётливы при тихой солнечной погоде, когда им ничего не мешает, т.е. не накладываются другие потоки воздуха, которые легко заглушают бризы. Скорость бриза редко бывает выше 5 м/с, но в тропиках, где разность температур поверхностей моря и суши значительна, бризы дуют иногда со скоростью 10 м/с. В умеренных широтах бризы проникают в глубь территории на 25–30 км.

Бризы, собственно говоря, те же муссоны, только в меньшем масштабе – они имеют суточный цикл и изменение направления зависит от смены ночи и дня, муссоны же имеют годовой цикл и меняют направление в зависимости от времени года.

Океанские течения, встречая на своём пути берега материков, разделяются на две ветви, направленные вдоль побережий материков к северу и югу. В Атлантическом океане южная ветвь образует Бразильское течение, омывающее берега Южной Америки, а северная ветвь – тёплый Гольфстрим, переходящая в Североатлантическое течение, и под названием Нордкапского течения достигающая Кольского полуострова.

Тихом океане северная ветвь экваториального течения переходит в Куро-Сиво.

Ранее мы уже упоминали о сезонном тёплом течении у берегов Эквадора, Перу и Северного Чили. Оно возникает обычно в декабре (не каждый год) и вызывает резкое снижение улова рыбы у берегов этих стран из-за того, что в тёплой воде очень мало планктона – основного пищевого ресурса для рыбы. Резкое повышение температуры прибрежных вод вызывает развитие кучево-дождевых облаков, из которых проливаются сильные дожди.

Рыбаки иронически назвали это тёплое течение Эль-Ниньо, что означает «рождественский подарок» (от исп. el ninjo – младенец, мальчик). Но мы хотим подчеркнуть не эмоциональное восприятие чилийскими и перуанскими рыбаками этого явления, а его физическую причину. Дело в том, что повышение температуры воды у берегов Южной Америки вызывается не только тёплым течением. Изменения в общую обстановку в системе «океан-атмосфера» на огромных просторах Тихого океана вносит и атмосферный процесс, названный «Южным колебанием ». Этот процесс, взаимодействуя с течениями, определяет все физические явления, происходящие в тропиках. Всё это подтверждает, что циркуляция воздушных масс в атмосфере, особенно над поверхностью Мирового океана, представляет собой сложный, многомерный процесс. Но при всей сложности, подвижности и изменчивости воздушных течений всё же существуют определённые закономерности, в силу которых в тех или иных районах Земли из года в год повторяются основные крупномасштабные, а также местные процессы циркуляции атмосферы.

В заключение главы приведём некоторые примеры использования энергии ветра. Энергию ветра люди используют с незапамятных времён, с тех пор, как они научились ходить в море под парусом. Потом появились ветряные мельницы, а позднее – ветровые двигатели – источники электроэнергии. Ветер – вечный источник энергии, запасы которой неисчислимы. К сожалению, использование ветра в качестве источника электроэнергии представляет большую сложность из-за изменчивости его скорости и направления. Однако с помощью ветряных электродвигателей стало возможным достаточно эффективное использование энергии ветра. Лопасти ветряка заставляют его почти всегда «держать нос» по ветру. Когда ветер имеет достаточную силу, ток идёт непосредственно к потребителям: на освещение, к холодильным установкам, приборам различного назначения и на зарядку аккумуляторов. Когда ветер стихает, аккумуляторы отдают в сеть накопленную электроэнергию.

На научных станциях в Арктике и Антарктике электроэнергия ветровых двигателей даёт свет и тепло, обеспечивает работу радиостанций и других потребителей электроэнергии. Конечно, на каждой научной станции имеются дизель-генераторы, для которых нужно иметь постоянный запас топлива.

Самые первые мореплаватели использовали силу ветра стихийно, без учёта системы ветров и океанских течений. Они просто ничего не знали о существовании такой системы. Знания о ветрах и течениях накапливались столетиями и даже тысячелетиями.

Один из современников китайский мореплаватель Чжэн Хэ в течение 1405-1433 гг. возглавил несколько экспедиций, которые проходили так называемым Великим муссонным путём от устья реки Янцзы к Индии и восточным берегам Африки. Сохранились сведения о масштабах первой из этих экспедиций. Она состояла из 62 кораблей с 27800 участниками. Для плавания экспедиций китайцы использовали свои знания закономерностей муссонных ветров. Из Китая они уходили в море в конце ноября – начале декабря, когда дует северо-восточный зимний муссон. Попутный ветер помогал им достигать Индии и Восточной Африки. Возвращались они в Китай в мае – июне, когда устанавливался летний юго-западный муссон, который в Южно-Китайском море становился южным.

Возьмём пример из более близкого к нам времени. Речь пойдёт о путешествиях знаменитого норвежского учёного Тура Хейердала. С помощью ветра, а точнее, с помощью пассатов Хейердал смог доказать научную ценность двух своих гипотез. Первая гипотеза заключалась в том, что острова Полинезии в Тихом океане могли быть, по мнению Хейердала, заселены когда-то в прошлом выходцами из Южной Америки, которые пересекли значительную часть Тихого океана на своих примитивных плавсредствах. Эти плавсредства представляли собой плоты из бальсового дерева, которое примечательно тем, что после длительного пребывания в воде оно не меняет свою плотность, а потому не тонет.

Жители Перу пользовались такими плотами в течение тысячелетий, ещё до империи инков. Тур Хейердал в 1947 г. связал плот из больших бальсовых брёвен и назвал его «Кон-Тики», что означает Солнце-Тики – божество предков полинезийцев. Взяв «на борт» своего плота пятерых любителей приключений, он отправился в путь под парусом из Кальяо (Перу) в Полинезию. В начале плавания плот несло Перуанское течение и юго-восточный пассат, а затем за работу принялся восточный пассат Тихого океана, который почти три месяца без перерыва дул исправно на запад, и через 101 сутки Кон-Тики благополучно прибыл на один из островов архипелага Туамоту (ныне Французская Полинезия).

Вторая гипотеза Хейердала состояла в том, что он считал вполне возможным, что культура ольмеков, ацтеков, майя и других племён Центральной Америки была перенесена из Древнего Египта. Это было возможным, по мнению учёного, потому, что когда-то в древности люди плавали через Атлантический океан на папирусных лодках. Доказать состоятельность этой гипотезы Хейердалу помогли также пассаты.

Вместе с группой спутников-единомышленников он совершил два плавания на папирусных лодках «Ра-1» и «Ра-2». Первая лодка («Ра-1») развалилась, не дойдя до американского берега нескольких десятков километров. Экипаж подвергся серьёзной опасности, но всё обошлось благополучно. Лодку для второго плавания («Ра-2») вязали «специалисты высшего класса» – индейцы из Центральных Анд. Выйдя из порта Сафи (Марокко), папирусная лодка «Ра-2» через 56 суток пересекла Атлантический океан и достигла острова Барбадос (примерно в 300–350 км от побережья Венесуэлы), преодолев 6100 км пути. Сначала лодку подгонял северо-восточный пассат, а начиная с середины океана – восточный пассат.

Научность второй гипотезы Хейердала была доказана. Но было доказано и другое: несмотря на благополучный исход плавания, лодка, связанная из пучков папируса, камыша, тростника или другого водного растения, для плавания в океане не годится. Подобный «кораблестроительный материал» не должен использоваться, т.к. он быстро намокает и погружается в воду. Ну, а если найдутся ещё любители, одержимые желанием переплыть океан на каких-нибудь экзотических плавсредствах, то пусть они имеют в виду, что плот из бальсового дерева надёжнее, чем папирусная лодка, а также то, что такое путешествие всегда и в любом случае опасно .

© Владимир Каланов,
"Знания-сила"

Горизонтальное движение воздуха относительно земной поверхности

Альтернативные описания

Движение воздуха отнорсительно земной поверхности

Собака лает... носит"", слово

И бриз, и самум

Движение, поток воздуха в горизонтальном направлении

Фильм А. Алова

. "..., ..., ты могуч, ты гоняешь стаи туч"

. "Волны гасят..." (Стругацкие)

. "Кто посеет..., тот пожнет бурю"

. "кто зимой в трубе гудит?" (загадка)

. "лишь... каменного века в ворота черные стучит"

Атмосферная подвижка

Атмосферный бродяга

Атмосферный сквозняк

Бора, зефир или норд

Бросать слова на...

Ветр м. движение, течение, теча, ток, поток воздуха. По силе своей ветер бывает: ураган, кавк. бора: шторм, буря (обычно с бурей соединены гроза и дождь), жестокий, сильный, ветрища: средний, слабый, тихий ветер или ветерок, ветерочек, ветерец, влтришка; по постоянству силы: ровный порывистый, шквалистый или голомянистый, ветер духами, арх.; по постоянству направления: пассатный или полосовой; постоянный, вондулук; изменчивый, шаткий или переходный; смерч, вихорь или заверть, т. е. круговой. По направлению вообще, ветры именуются странами света, для чего овидь делится на части, по осьми в четверти (см. компас, матка). На устьях рек, принято вообще два главных вида ветров: морской, моряна, нагон, назовой, и береговой, матерой, горыч, сухмень, сгон, выгон, верховой. Русский ветер, с Руси, арх. южный, сиб. западный. Ветер с Руси потянул. Русский ветер тепла принес. На Белом море называют ветры: сивер, север, лето, летний, летник, всток. запад, полуночник, заморозник или рекостав, обедник, глубник, голоменник, в Коле побережник. шалоник в Мезени паужник, Промежные страны или ветры называются там межниками, и обозначаются словами: стрик и меж, напр. в четверти: север стрик севера к полуночнику, меж севера полуночник, стрик полуночника к северу, полуночник, стрик полуночника ко встоку, меж всток полуночник, стрик встока к полуночнику, всток. Ветры на Онеге: продольный или столбище, ребровский, всток, всточный, средний, галицкие ерши, шалоник, На Ильмене: спверяк, зимняк, мокрик, подсеверяк, шалонак, (столбняк? меженец? озерник, от Старой русы? крестовый-запад, подсиверный-запад, На Селигере: север, полуден, всток, запад, меженец, межник, зимняк, мокрик, крестовый запад, На Псковском озере: северик, полуденник, теплик, запад,. сточей (всточий), мокрик, На Волге: хилок или сладимый, моряна, гнилой, вешняк, горыч, нагорный, луговой, На Каспийском море компас рыбаковфлотский, т. е. голландский. На Байкале: север или гора, полуденник, всток, култук, баргузин, горный, горыч, горыня, глубник, шелоник, На Дунае: полночь, полуденка, карасль, обаза, вологодск. белозер, По направлению ветра в паруса: фордак, фордевинд, прямой, в корму, байкал. обетонь; попутный: поветерь, бакштаг, полный; поперечный: поперечень, галфвинд, полветра, боковой, байкал. покачень, колышень; круче полветра: косой, бейдевинд, круть, крутой, астрах. рейковый, арх. покосной, беть, байкал. битезь; встречный; противень, противный, в лоб, лобач, лобовой. Пирожное ветер, французский ветер, крем, битые сливки, иногда на яйцах. *Ветер, говор. о человеке: ветрогон, ветреный, скорохват; непостоянный, непоседный, ненадежный, опрометчивый. Ветром подбитый, то же. Ветром делать что: ходить ветром, делать все как ни попало, опрометчиво. Ветер ходит в (по) комнате, дует, несет, сквозит. Как на ветер, попусту. Вей по ветру, а впротив (а всупротив) глаза запорошишь, с силою не спорь. Выше ветра головы не носи, не забывайся. ветра пришло, на ветер и пошло. За ветром в поле не угоняешься Ведрами ветра не смеряешь. Спроси у ветра совета, не будет ли ответа? Кто ветром служит, тому дымом платят. Французский ветер, ветрогон. Откуда ветер подует, угодничает; куда подует, не стоек. Против ветра не надуешься. Не с ветра говорится то-то. Все пошло на ветер, промотался. Стрелять на ветер. Не верь ветру (коню) в море (в поле), а жене на воле (в доме). На ветер надеяться, без помола быть. От хозяина чтоб пахло ветром, от хозяйки дымом. Ветры дули, шапку сдули, кафтан сняли, рукавицы сами спали, о пьянчуге. Не подуйте на нас холодным ветром, будь милосерд. На ветру хорошо блох ловить, смирны. Ветер взбесится, и с бобыльей избы крышу сорвет. Откуда ветер? завтрака (или: с полдника, с обеда). Ветер шелоник по Онеге разбойник, юго-западный, опасный для судов. На Астафья сентября) примечай ветер северный, к стуже; южный, к теплу; западный, к мокроте; восточный, к ведру. На Евлампия октября), рога месяца кажут на ту сторону, откуда быть ветрам. Киргиз в степи ветер! Ветры мн. образующиеся в желудке и кишках газы, воздух, который пучит. Ветреный, где есть ветер, в прямом и переносном значении. Ветряный, к ветру относящийся [Ветреный прич. страдат., ветряный и ветряный, прилаг.; если различать их, то кажется указанное различие будет близко к делу.]. Ветреная пора, ветреное лето, обильное ветрами. На дворе погоже, ветрено (нар.) негоже. Ветряная мельница, толчея, движимая ветром. Ветряная труба, продувная, воздушная. Ветряный мех, колесо, дующее, доставляющее, нагоняющее воздух. Ветряная плавильная печь, воздушная, самодувная, с самотечным поддувалом. Ветряные гости, арх. прибывшие морем. Ветряная рыба, мясо, вяленое, провесное, полотковое, полтевое. Ветреный человек, вертопрах, легкомысленный, неосновательный, легостай, ветрогон, ветреник. Ветреная болезнь, ветры, пуча, по народному поверью насланная. Ветреный подхват, ломотное поражение плеча у лошадей. Ветреное ср. арх. стрелье, это напускная по ветру болезнь. Ветровой, относящийся к воздуху или ветру, в различных знач. Ветровые оконные крючки, распорные, растворные, для удержания растворенных половинок. Ветровой парень, ветрогон. Ветровая кишка, для впуска куда ветра, воздуха. Ветровой судак, вяленый. Ветрево, ветриво нареч. тамб. яросл. ветрено, ветер дует, погода стоит ветреная. Ветренеть, ветреть, о погоде, становиться ветреною; о ветре: крепчать, свежеть, задувать, подыматься. Ветрить что, сушить на воле, вялить, провешивать; проветривать. Не ветря одежи, не убережешь ее. Костр. ветреничать, веселиться, гулять. Охотнич. о собаке, чуять, слышать чутьем. Ветриться или ветреть, проветриваться, просушиваться, провяливаться; обветриваться; выветриваться. Белье ветреет. Губы на ветру ветреют, смякнут. Камень ветреет. Флаг ветрится, развевается ветром. Девка ветрится, кур. орл. стала вести себя дурно. Камень выветрел, порыхлел. Выветрить одежу. Все из головы выветрилось. Заветрило, ветер поднялся. Кожа заветрела, зачахла на воздухе. Губы заветрели, осмякли. На дворе поветрело. Переветрить всю одежу, проветрить ее. Ветряк, ветрячок м. южн. каз. перм. ветрянка ж. ветряная мельница (водяная назыв. млин). Ветрило ср. парус. Ветрушка ж. детская игрушка с мельничными крыльями. Растение Hepatica triloba, перелеска, завитки, п(р)острел. Ветреник м. открытое для ветров, возвышенное место, где сушит посев. Сиб. флюгарка, флюгер, ветрельник, значок, показывающий направление ветра, обращающийся по ветру. Поденежник, растение Anemone Pulsatilla, ветреница. Вертопрах, ветрогон, ветролет, легкомысленный, непостоянный человек. Твер. веер, опахало. Ветреник м. арх. ветренка ж. форточка, вертушка, отдушничек для воздуха, в окне или в стене; флюгер, флюгарка. Ветряница ж. сушильня, сушило, простор на чердаке или высокий помост, иногда за решеткой, для сушки белья, для вяленья рыбы и пр. Ветреница ж. ниж. ветряк, ветряная мельница. Ветреная женщина, безрассудная, вертопрашка, легкомысленная. Вост. каждая из длинных хворостин, жердей, которыми покрываются стога, ометы и соломеные кровли изб, для защиты от бури; переметина; арх. три верхние доски на ладьях, борта выше палубы, нашвы. Внутренняя щель или трещина в лесе, в бревне; иногда щели эти выказываются наружу на отрубах. Родовое название растений Anemone: ветреница лесная, Nemorosa; в. желтая, ranunculoides; в. печеночная, hepatica. Болезнь emphysema, ветреная или воздушная опухоль, особ. в легких, или наружно, в клетчатке, под кожей. Рычажок с крыльями или махалками, на оси, для умерения скорости вращательной силы; ветреницей устанавливается скорость боя часов. Ветрельный, до ветрельника, до флюгарки и пр. относящ. Ветреничать, поступать опрометчиво и легкомысленно, нерассудительно, скоро и безрассудно. Ветреность ж. свойство ветреного человека, вертопрашество. Ветроватый, несколько ветреный; о человеке легкомысленный. Ветробой, -вал, ветролом м. собират. бурелом и буревал, лес поломанный, сваленный бурей, ветром. Окончание вал означает вывороченные с корнем деревья; лом изломаные; бой то и другое. Ветровялый, ветреный, полтевой, полотковый, провесный, вяленый. Ветрогар м. загар на лице, на руках, обветрение тела на воздухе. Ветрогарный, от загару, обветрения происшедший. Ветрогон м. -гонка ж. ветреник, вертопрах, человек-ветер. Ветрогон также колесо в коробке, или иной снаряд, служащий для прогона воздуха, ветра; ветрогонный, гонящий ветер, воздух; относящийся до ветрогона, в обоих знач. Ветродуй м. твер. таган, треножник, тренога, для варки пищи в поле. Ветреник, вертопрах, легостай. Ветродырый худой, дырявый, сквозной, щелистый, продуваемый ветром. Ветрожег, ветрожиг, ветрогар, загар. Ветрожелклый, ветроблеклый, пожелклый от ветра, зноя. Ветроиспускатель, ветропуск. Ветролет м. бойер, буер, парусное судно на коньках. Вертопрах, ветреник. Ветролетка ж. легкомысленная, ветреная женщина, непоседа. Ветролом м. бурелом, ветробой. Ветроломный лес. Ветроломкое дерево, хрупкое, у которого ветви обиваются ветром: крушина, ива. Ветромах м. -машка ж. ветрохват, -гон, -лет, вертопрах. Ветромер м. анемометр, снаряд для измерения силы ветра. Ветроносные пески, сыпучие, перекатные. Ветроплеть, -тка, или ветроплюй, ветроплюйка, враль и врунья, пустомеля. Ветропляс, вертопрах, ничем не занимающийся, шатун, шаркун. Ветропуск м. трубка или иной проводник, отверстие для протока воздуха; физический прибор эолипил, превращающий воду в пары. Ветросвист м. ветролет и ветропляс. Ветросушный, ветросушник м. вяленый, прочахлый, полотковый, полтевой. Ветротление ср. церк. тление на ветру, на воздухе; поветрие, тлетворный воздух. Ветротленный, разрушаемый влиянием стихий, бренный, гниющий

Вращает мельницу

Гоняет стаи туч

Гуляка в голове шалопая

Гуляющий в поле обитатель головы

Гуляющий по морю сквозняк

Движение воздуха в горизонтальном направлении

Дыхание природы

Измеряют в баллах по шкале Бофорта

Какая стихия формирует причудливые ландшафты пустыни Сахары

Какой воздух может летать

Кто гонит по небу облака

Кто над землею царь? (Загадка.)

Могучий гонитель тучных стай (лит.)

Мусорный в песне группы "Крематорий"

Непоседливый воздух

Он гуляет обычно на улице, но у некоторых - в голове

Пассат или муссон

Перемещающийся воздух

Песня О. Газманова

Повелителем чего был Эол

Погонщик облаков и парусонадуватель

Поток воздуха

Птица семейства вороновых

Роман российского писателя Л. С. Овалова "... над полем"

Свистит в проводах и надувает паруса

Свистун в проводах

Сильный при урагане

Стихотворение русского поэта В. Кюхельбекера

Строитель дюн

Суховей

Фильм Абрама Роома "... с востока"

Фильм Александра Зархи "... в лицо"

Фильм Алова

Фильм Михаила Калика "И возвращается..."

Фильм Эльдара Кулиева "Попутный..."

Фильм Энга Ли "Ледяной..."

Фильм Юрия Егорова "... странствий"

Фильм Яна Фрида "Вольный..."

Что делает флюгер капризным

Что заставляет листву шуметь

Что на улице треплет прическу

Что разносит тополиный пух

Что колышет ветви деревьев и гонит облака по небу?

Кто гонит по небу облака?

Главный распространитель хвоща

Гонит волну

Метельный заводила

Перемещение воздуха по земной поверхности

Рассказ Брэдбери

Стихотворение Кюхельбекера

Что надо посеять, если хочешь «пожать бурю»?

Стихотворение Ш. Петефи

Движение, поток воздуха

Шквалистый...

Фильм Энга Ли «Ледяной...»

Фильм Юрия Егорова «... странствий»

Фильм Эльдара Кулиева «Попутный...»

Фильм Абрама Роома «... с востока»

Фильм Яна Фрида «Вольный...»

Фильм Александра Зархи «... в лицо»

Фильм Михаила Калика «И возвращается...»

Роман российского писателя Л. С. Овалова «... над полем»

Какая стихия может превратить штиль в шторм?

Именно от него Елисей услышал-таки приятную новость: невеста - в гробу!

Он появляется от перепадов давления

Повелителем чего был Эол?

Мусорный в песне группы «Крематорий»

Чем были унесены герои эпохальной голливудской мелодрамы?

Что нужно добавить к снегу, чтобы получилась пурга?

Оперетта М. Дунаевского «Вольный...»

Гудящий в проводах

Что такое баргузин?

Атмосферное явление в пустой голове

. «рукой махнул, дерево нагнул» (загадка)

. «кто зимой в трубе гудит?» (загадка)

. «вокруг носа вьется, а в руки не дается» (загадка)

. «без рук, без ног, под окном стучится, в избу просится» (загадка)

Ищи его в поле

Афганец, но не житель

Мусорный у «Крематория»

Его силу меряют по шкале Бофорта

Стихотворение Б. Пастернака

Наполняет паруса

Дует в спину

Что разносит тополиный пух?

Что делает флюгер капризным?

Что на улице треплет прическу?

Какой воздух может летать?

Что заставляет листву шуметь?

. «чувства гибнит, когда швыряешься ими на...»

. «лишь... каменного века в ворота черные стучит»

. «кто посеет..., тот пожнет бурю»

. «..., ..., ты могуч, ты гоняешь стаи туч»

Разносчик собачьего лая

Он заставляет флюгер вертеться



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...