Из чего делают графит. Графит

Всем известны такие вещества, как графит и алмаз. Графит встречается повсюду. Например, из него делают стержни для простых карандашей. Графит - это вещество вполне доступное и дешевое. Но такое вещество, как алмаз, крайне отличается от графита. Алмаз - это самый дорогой камень, очень редкий и прозрачный, в отличие от графита. В это трудно поверить, но химическая формула графита совпадает с формулой алмаза. В данной статье мы разберем, как такое возможно.

Графит: история и свойства минерала

История графита насчитывает тысячи лет, поэтому точный год начала его применения установить крайне трудно. Графит знаменит тем, что хорошо проводит электрический ток. Кроме того, этот минерал является очень хрупким. Поэтому из него делают стержни для карандашей.

К химическим свойствам минерала можно отнести образование соединений включения со многими веществами, такими как соли и Минерал не растворяется в кислотах.

Формула графита - C, то есть он является одной из знаменитого шестого элемента таблицы Менделеева - углерода.

Алмаз: история и свойства минерала

История алмаза очень необычна. Считается, что первый алмаз был найден в Индии. В то время человечество так и не смогло понять всю силу этого камня. Геологам было лишь известно, что этот камень очень твердый и прочный. До 15 века алмазы стоили намного меньше, чем изумруды и рубины. И только потом неизвестный ювелир в процессе работы с камнем придал ему красивую огранку, которую позже стали называть бриллиантовой. Вот тогда-то камень и показал себя во всей своей красе.

Главным образом алмазы используют в промышленности. Этот минерал самый прочный на всем свете, именно поэтому из него делают абразивы, резцы для обработки прочных металлов и многое другое.

Как нам уже известно, формула графита в химии - C, такую же формулу имеет и алмаз.

Различия между алмазом и графитом

Несмотря на то что минералы имеют схожие химические формулы, они резко отличаются друг от друга как внешним видом, так и с химической точки зрения.

Прежде всего, алмаз и графит имеют совершенно различную друг от друга структуру. Ведь графит состоит из сетки шестиугольников, тогда как алмаз имеет кубическую кристаллическую структуру. Хрупкость графита обуславливается тем, что связь между его слоями нарушить очень легко, его атомы спокойно отделяются друг от друга. Из-за этого графит легко поглощает свет, сам он очень темный, в отличие от алмаза.

Отличается тем, что один атом углерода окружен еще четырьмя атомами в виде четырехгранного треугольника или пирамиды. Каждый атом находится на одинаковом расстоянии друг от друга. Связь у атомов очень крепкая, именно поэтому алмаз является таким твердым и прочным. Еще одно свойство алмаза - это то, что он может проводить свет, в отличие от графита.

Странно ли, что формула графита совпадает с формулой алмаза, но при этом минералы совершенно разные? Нет! Ведь алмаз создается природой при огромном давлении, а затем очень быстром охлаждении, тогда как графит возникает при низком давлении, но очень высокой температуре.

вещества?

Аллотропные вещества - это очень важное понятие в химии. Это основа основ, которая позволяет отличать вещества друг от друга.

В школе аллотропные вещества изучают на примере графита и алмаза, а также их различии. Итак, изучив различия алмаза и графита, можно сделать вывод, что аллотропия - это существование в природе двух и более веществ, которые различаются по своему строению и свойствам, но имеют схожую химическую формулу или относятся к одному химическому элементу.

Получение алмаза из графита

Формула графита - C - позволила ученым произвести множество опытов, вследствие чего были найдены аллотропные вещества графита.

Преподаватели рассказывают и школьникам, и студентам о том, как ученые пытались создать алмазы из графита. Эта история очень интересная и увлекательная, а еще она позволяет запомнить о существовании таких аллотропных веществ, как графит и алмаз, и об их различиях.

Некоторое время назад ученые пытались создать алмазы из графита. Они считали, что если формула алмаза и графита одинакова, то они смогут создать алмаз, ведь камень очень дорогой и редкий. Теперь мы знаем, что минерал алмаз появляется в природе при высоком давлении и мгновенном охлаждении. Поэтому ученые решили взорвать ѓрафит, тем самым создав нужные условия для образования алмаза. И на самом деле случилось чудо, после взрыва на графите образовались очень маленькие кристаллы алмаза.

Применение графита и алмаза

На сегодняшний день и графит, и алмаз используют главным образом в промышленности. Но примерно 10 % от всей добычи алмазов идет на ювелирное дело. Чаще всего из графита изготавливают карандаши, так как он очень хрупкий и ломкий, при этом оставляет следы.

Простым карандашом с графитовым стержнем пользовался каждый из нас. Его след на бумаге - не что иное, как углерод. В нашей статье вы узнаете, какова формула графита, его физические и химические свойства.

Положение углерода в периодической таблице

Углерод - элемент четвертой группы, второго периода периодической системы химических элементов Д. И. Менделеева. Он является органогенным. К данной группе также относятся кислород, азот и водород. Это значит, что они входят в состав всех живых организмов на планете, составляя их основу.

Такое положение определяет строение атома углерода. На его внешнем энергетическом уровне находится четыре электрона. Это значит, что данный химический элемент может проявлять как положительную, так и отрицательную степень окисления (+4 или - 4).

Понятие об аллотропии

Формула графита показывает, что в состав этого вещества входит только углерод в свободном виде. Хотя в природе он часто встречается и в виде соединений. Такими примерами являются углекислый и угарный газ, известняк, мел, мрамор.

Дело в том, что формула графита в химии такая же, как и у алмаза. Возможно ли это? Получается, что вещества с одинаковым составом имеют абсолютно разные свойства. Такое явление называется аллотропией. Она может быть обусловлена количеством атомов в молекуле вещества или их пространственным расположением. Примером первого случая является кислород. Если в молекуле два атома этого химического элемента, образуется кислород, а если три - озон.

Формула графита в химии

Аллотропия углерода является пространственной. Обратите внимание на рисунок ниже. Первый из них - это формула графита. Атомы углерода формируют слои, расположенные друг от друга на значительном расстоянии. Поэтому связи между ними не прочные. Каждый раз, проводя графитовым стержнем по бумаге, мы оставляем на нем слой углерода.

В кристаллической решетке алмаза (ее демонстрирует рисунок справа) расстояние между атомами в узлах одинаково во всех направлениях. Такое строение обеспечивает и прочность связей. Алмаз является самым твердым веществом. Считается, что его нельзя разбить.

Графит: формула, химическая и физическая характеристика

Как мы уже сказали, графит - это углерод. Соответственно, в химии записывается он как С. Несмотря на то что формула алмаза и графита сходна по качественному составу, эти вещества имеют значительные отличия в свойствах. Это объясняется разным пространственным расположением атомов углерода в их молекулах.

Графит - это мягкое вещество серого цвета с металлическим блеском. Оно без усилий расслаивается на мелкие пластинки и проводит электрический ток. Ученые доказали, что если графит нагреть до 1 600 градусов по шкале Цельсия под давлением 104 МПа при наличии катализаторов, то он превратится в алмаз. Таким способом в промышленности получают искусственные драгоценности.

Графит не является химически активным веществом. Он реагирует только с некоторыми солями и щелочными металлами. Продуктами таких реакций являются подобия включений. Сгорание графита в кислороде происходит только при очень высокой температуре с образованием углекислого газа. Однако он вступает в реакцию фторирования. При этом образуется порошок белого цвета, структура которого изменяется на зигзагообразную, приобретая лучшие смазочные свойства по сравнению с обычным графитом.

Отличия модификаций углерода

А вот алмаз является твердым прозрачным и бесцветным веществом, которое не проводит электрический ток. Хотя иногда в природе встречаются розовые, желтоватые, синие или зеленые минералы. Формула алмаза и графита в химии одинаково представлена углеродом - С. Однако благодаря своей кубической кристаллической системе это вещество является одновременно твердым и хрупким. Обработанные алмазы называют бриллиантами. Удивительным является еще и тот факт, что в природе невозможно найти двух одинаковых камней. Наверное, поэтому в переводе с греческого языка название этого вещества означает "непревзойденный".

Аллотропия углерода

Структурная формула графита может искусственно видоизменяться. Благодаря этому был получен целый ряд аллотропных модификаций углерода. Это карбин, графен и фуллерены.

Первое вещество имеет линейную структуру из атомов углерода. Они могут быть соединены либо двойными, либо чередующимися тройными и одинарными связями. Карбин представляет собой черный порошок с мелкокристаллической структурой. Его уникальным свойством является абсолютная совместимость с тканями организма человека. Благодаря этому карбин используют для изготовления искусственных кровеносных сосудов.

Графен - это однослойное вещество, также состоящее из углерода. Такое строение делает его самым прочным и тонким. Графен применяется в различных областях нанотехнологии: точное приборостроение, искусственные мембраны, сенсорные устройства.

Из атомов углерода состоит еще одна аллотропная модификация углерода - фуллерены. Их молекулы имеют сферическую или эллипсовидную форму с полостью внутри. Фуллерены получают из паров графита при их дальнейшей лазерной обработке. Его используют в качестве полупроводника, фоторезиста, элемента аккумуляторов и электрических батарей, катализатора роста алмазной пленки.

Итак, в нашей статье мы рассмотрели особенности строения графита. Это вещество состоит из атомов углерода. Они образуют отдельные слои, связи между которыми не очень сильные. Поэтому графит является мягким, легко отслаивается в горизонтальном направлении, имеет серый цвет с металлическим блеском и хорошо проводит электрический ток.

Углерод в природе присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз, идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Графит встречается в виде рассеянных чешуек, либо их листоватых агрегатов (кристаллический чешуйчатый графит, flake graphite), плотных зернистых агрегатов (кристаллический кусковый графит, vein type, lump graphite), либо плотных скрытокристаллических масс (аморфный графит, amorphous graphite). Кроме того, в промышленности все шире используется искусственный (коксовый, доменный, ретортный) графит, специально получаемый из антрацита, нефтяного кокса, а также из отходов доменного производства.

Чешуйчатые графиты по диаметру кристаллов разделяются на крупночешуйчатые (0,1 -Х,0 мм) и мелкочешуйчатые (0,001-0,1мм). В литокристаллическом кусковом графите размер кристаллов тот же, что и в мелкочешуйчатом, однако они не ориентированы, что затрудняет расщепление агрегата и сдвиги при деформации. Промышленные руды чешуйчатого графита содержат от 2 до 15% (редко более) этого минерала. Они легко обогащаются флотацией с получением концентрата, содержащего 80-90% и более графита. В плотно кристаллических кусковых pудах массовая доля графита составляет 35-40% и более; без обогащения используется руда, в которой эта величина поднимается до 60-80%.

Величина зерен в скрыто кристаллическом (аморфном) графите менее 0,001мм. Скрытокристаллическая руда (аморфный графит) труднообогатима. Без обогащения используются руды с содержанием углерода около 70%, бедные руды (20-40%) обогащаются ручной разборкой.

Искусственный графит по качеству приблизительно соответствует чешуйчатому и плотно кристаллическому, отличаясь большей чистотой и меньшей кристалличностью.

В зависимости от структурного строения графиты делятся на: - явнокристаллические, -скрытокристаллические, - графитоиды, - высокодисперсные графитовые материалы.

В свою очередь, явнокристаллические графиты по величине и структуре кристаллов делятся на: - плотнокристаллические, - чешуйчатые.

Электрические свойства графита. Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 Ом.

Термические свойства графита. Графит обладает высокой теплопроводностью, которая равняется 3,55вт*град/см и занимает место между палладием и платиной. Коэффициент теплопроводности 0,041 (в 5 раз больше, чем у кирпича). У тонких графитовых нитей теплопроводность выше, чем у медных. Температура плавления графита - 3845-3890 С при давлении от 1, до 0,9 атм. Точка кипения доходит до 4200 С. Температура воспламенения в струе кислорода составляет для явнокристаллических графитов 700-730С. Количество тепла, получаемого при сжигании графита, Находится в пределах от 7832 до 7856 ккал.

Магнитные свойства. Графит считается диамагнитным.

Химические свойства. Химически инертен и не растворяется ни в каких растворителях, кроме расплавленных металлов, особенно тех, у которых высокая точка плавления. При растворении образуются карбиды, наиболее важными из которых являются карбиды вольфрама, титана, железа, кальция и бора. При обычных температурах графит соединяется с другими веществами весьма трудно, но при высоких температурах он дает химические соединения со многими элементами.

Механические свойства. Графит не обладает эластичностью, но, тем не менее, может быть подвергнут резанию и изгибанию. Графитовая проволока легко сгибается и закручивается в спираль, а при вальцевании дает удлинение около 10%. Сопротивление на разрыв такой проволоки равно 2 кг/мм2, а модуль изгиба равен 836 кг/мм2. Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.

Оптические свойства. Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления, благодаря чему он незаменим в атомных реакторах. Без графитовых электродов немыслимо развитие черной и цветной, химической промышленности. Графит является футеровочным материалом электролизеров для получения алюминия. Углеродосодержащие материалы применяются для строительства электропечей и других тепловых агрегатов. Из графита готовятся тигли, лодочки для производства сверхтвердых сплавов.

В химической промышленности материалы из графита незаменимы для производства теплообменников, работающих в агрессивных средах а так же для изготовления нагревателей, конденсаторов, испарителей, холодильников, скрубберов, дистилляционных колонн, форсунок, сопел, кранов, деталей для насосов, фильтров.

Промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные - гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи. В машиностроении графит используется как антифрикционный материал для подшипников, колец трения, торцевых и поршневых уплотнений, подпятников. Обработка графита требуется для получения сложных изделий.

Различные отрасли промышленности предъявляют свои специфические требования к качеству графитного сырья (руд и концентратов). В настоящее время производятся следующие типы и марки графита: литейный (марки ГЛ, ГЛС), элементный (ГЭ), электроугольный (ЭУЗ, ЭУТ, ЭУН), аккумуляторный (ГАК), тигельный (ГТ), карандашный, смазочный (ГК, ГС, П), специальный малозольный (ГСМ-1, ГСМ-2), графит для специальных сталей (ГСС), особо чистый графит для ядерных реакторов и др. Его состав варьирует в широких пределах: 40-97% графита, 0,7-7,5% летучих, 1,75-26,5% золы. Общими лимитирующими показателями являются зольность, влажность, содержание летучих, иногда железа, серы, меди, фосфора и других элементов, а также величина рН водной вытяжки.

Производимый в СНГ графит, в зависимости от сферы применения должен соответствовать требованиям ГОСТов, в частности: Графит тигельный (тигель графитовый) ГОСТ 4596-75, Графит кристаллический литейный ГОСТ 5279-74, Графит аккумуляторный ГОСТ 10273-79, Графит для производства карандашных стержней ГОСТ 4404-78, Графит элементный ГОСТ 7478-75, Графит электроугольный ГОСТ 10274-79, Графит для изготовления смазок покрытий и электропроводящей резины ГОСТ 8295-73.

Терморасширенный графит. Терморасширенный графит (далее ТРГ) был разработан компанией UCAR Carbon Co. Inc более 30 лет назад. Это характерный гибкий листовой материал, унаследовавший от графита высокую стойкость к температурным и химическим воздействиям и приобретший дополнительные свойства гибкости, податливости и прочности на сжатие и растяжение. Эти свойства отличают ТРГ от прочих видов углерода и графита и делают его превосходным и высокоэффективным набивочным и уплотнительным материалом.

Показатели:

    Выщелачиваемый хлорид 50 ppm

    Температурный диапазон -200...3000°C

    Сжимаемость 40%

    Регенерация 15%

    Проседание под нагрузкой <5%

    pH диапазон 0-14

Названия:

    терморасширенный графит

    гибкий графит

Переход на уплотнения из ТРГ взамен традиционно используемых позволяет увеличить средние сроки межремонтной эксплуатации арматуры в 2,5-8 раз, а центробежных насосов в 5-13 раз.

Ведущим экспортером природного графита в 2006-2008 гг. выступил Китай, на чью долю в 2008-2009г. г. пришлось 70% всего объема продаваемого в мире графита. Производство графита в Китае, как ожидают, продолжит рост, поскольку китайские производители очень тесно сотрудничают с западными потребителями графита.

Также мировыми лидерами экспорта (73-77 тыс. т) являются Канада, Бразилия, Мексика, Шри Ланка чей совокупный экспорт в период 2006-2009 гг. составлял около 9-12 % всего объема.

Балансовые запасы графитовых руд в России составляют по кат. А+В+С1 139,71млн. тонн (графита - 13,54 млн.т). Преобладает скрытокристаллический графит с содержанием графитового углерода до 82%. Практически все запасы (99,5%) сосредоточены в Сибирском ФО (Красноярский край, Эвенкийский АО). Запасы кристаллического графита составляют 4,5 млн. тонн по кат. А+В+С. При этом около 77% запасов кристаллического графита находятся в бедных рудах с содержанием графита менее 4-6%. Значительная часть балансовых запасов кристаллического графита требует переоценки, так как разработка их нецелесообразна по ряду причин – низкое качество и плохая обогатимость руд, расположение в природоохранных зонах или охранных целиках.

В мире имеется значительный резерв неосвоенных месторождений, однако качество большинства руд недостаточно высокое и условия их отработки сложные. Мировое производство природного графита в последнее время находится на уровне 1,13 млн. тонн

Крупнейшими потребителями природного графита (около 50 % всего объема природного графита) в 2006-2010 гг. выступили такие промышленно развитые страны как США, Япония, Германия, Китай. Эти страны (за исключением Китая) являются и ведущими импортерами графита, на чью долю приходится около 350 - 450 тыс. т. мирового потребления.

Стоимость природного графита определяется размером его кристалла и содержанием в нем углерода. Существует дифференциация цен на графит по его сортам - наибольшая цена определена для типа графита с максимальным содержанием углерода в данном сорте. В 2006г., когда поставки природного графита были широко доступны, главным образом из Китая, цены на сырье были сравнительно низкие. К 2009-2010 гг. цены достигли максимума.

). Кристаллическая решетка графита - слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α.

Свойства

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1-2 по шкале Мооса). Плотность 2,08 - 2,23 г/см 3 . Цвет чёрно-серый, блеск металлический до жирного. Неплавкий, устойчив при нагревании в отсутствии кислорода. В кислотах не растворяется. Жирный на ощупь. Природный графит содержит 10-12 % примесей глин и окислов железа.

Формы нахождения

Графит (англ. GRAPHITE) - C

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.02-10
Dana (7-ое издание) 1.3.5.2
Dana (8-ое издание) 1.3.6.2
Hey"s CIM Ref. 1.25

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минерала
Цвет черты чёрный переходящий в стально-серый
Прозрачность непрозрачный
Блеск полуметаллический
Спайность весьма совершенная по {0001}
Твердость (шкала Мооса) 1 - 2
Микротвердость VHN10=7 - 11 kg/mm2
Излом слюдоподобный
Прочность гибкий
Плотность (измеренная) 2.09 - 2.23 g/cm3
Плотность (расчетная) 2.26 g/cm3
Радиоактивность (GRapi) 0

ОПТИЧЕСКИЕ СВОЙСТВА

Тип одноосный (-)
Оптическая анизотропия чрезвычайная
Цвет в отраженном свете железно-чёрный переходящий в стально-серый
Плеохроизм сильный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа 6mm - Дигексагонально-пирамидальный
Пространственная группа P63mc
Сингония Гексагональная
Параметры ячейки a = 2.461Å, c = 6.708Å
Отношение a:c = 1: 2.726
Объем элементарной ячейки V 35.18 ų (рассчитано по параметрам элементарной ячейки)
Двойникование по {1121}

Перевод на другие языки

Ссылки

  • См. также: Алмаз

Список литературы

  • Лобзова Р.В. Графит и щелочные породы района Ботогольского массива. М., 1975. 124 с.
  • Weinschenk, E. (1900) Zur Kenntniss der Graphitlagerstatten. III. Die Graphitlagerstatten der Insel Ceylon. Bayerischen Akademie der Wissenschaft, 21(2), 281-334.
  • Cirkel, Fritz (1907), Graphite: its properties, occurrence, refining and uses: Department of Mines, Mines Branch, Ottawa, Canada, 307pp.
  • Alling, Harold L. (1917), The Adirondack graphite deposits, New York State Museum Bulletin 199: 7-150.
  • Spence, Hugh S. (1920), Graphite Mines, Branch Report No. 511: Canada Department of Mines, Ottawa: 202pp. + photos.
  • Wesselowski and Wassiliew (1934) Zeitschrift für Kristallographie: 89: 494.
  • Palache, Charles (1941), Contributions to the mineralogy of Sterling Hill, New Jersey: Morphology of graphite, arsenopyrite, pyrite and arsenic: American Mineralogist: 26(12): 709-717.
  • Palache, Charles, Harry Berman & Clifford Frondel (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 152-154.
  • Cameron, Eugene N. and Weis, Paul L. (1960), Strategic graphite - a survey, U.S. Geological Survey Bulletin 1082-E: 201-321.
  • Taylor, R., Gilchris, Ke, and Poston, L.J. (1968) Thermal conductivity of polycrystalline graphite. Carbon: 6: 537-544.
  • Kwiecinska, Barbara (1980), Mineralogy of Natural Graphites: Zaklad Narodowy imienia Ossolinskich; Polska Akademia Nauk: 67: Jun-87.
  • Weis, Paul L. (1980), Graphite skeleton crystals - A newly recognized morphology of crystalline carbon in metasedimentary rocks: Geology: 8: 296-297.
  • Shafranovskii, G.I. (1981), New graphite twins: Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva: 110(6): 716-720.
  • Shafranovskii, G. I. (1982), Crystallomorphology of graphite from the Ilmen Mountains; Mineralogical Research of Endogenic Deposits of the Urals: Academy Nauk CCCP- Uralskii Nauchnuri Tsentr: 44-53.
  • Shafranovskii, G.I. (1982), Graphite twins and triads: Mineralogicheskii Zhurnal: 4(1): 74-81.
  • Shafranovskii, G.I. (1983), Classical and non-classical twinning in graphite: Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva: 112(5): 577-581.
  • Gohla, Karl-Heinz (1984), Graphit aus Kropfmuhl: Magma: 4: 26-51.
  • Jedwab, Jacques and Boulègue, Jacques (1984): Graphite crystals in hydrothermal vents: Nature: 310: 41-43.
  • Weinelt, Winfried (1984), Die Geologie der Graphit- Lagerstatte Kropfmuhl: Magma: 4: 52-56.
  • Weiner, Karl-Ludwig and Hager, Harald (1987), Growth spirals on graphite crystals: Lapis: 12(1): 31-33.
  • Rumble, D. and Chamberlain, C.P. (1988), Graphite vein deposits of New Hampshire: New England Intercollegiate Geologic Conference Guidebook: 241-255.
  • Pearson, D.G., Davies, G.R., Nixon, P.H. and Milledge, H.J. (1989), Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences: Nature (London): 338 210: 60-62.
  • Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; and Lewis, Roy S. (1991), Interstellar grains within interstellar grains: Astrophysical Journal: 373: L73-L76.
  • Jaszczak, John A. (1991), Graphite from Crestmore, California: Mineralogical Record: 22(6): 427-432.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1991), Spherical graphite from the Azov Sea region: Mineralogicheskii Zhurnal: 13(1): 95-101.
  • Lemanski, Chester S. Jr. (1991), Graphite in ore: The Picking Table: 32(1): 13-Nov, 1991.
  • Tsuchiya, Noriyoshi; Suzuki, Shunichi; and Chida, Tadashi (1991), Origin of graphite in the Oshirabetsu gabbroic body, Hokkaido Japan: Journal of Mineralogy, Petrology, and Economic Geology; Japanese Association of Mineralogists, Petrologists and Economic Geologists, Tohoku University, Sendai 980, Japan: 86(6): 264-272.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1992), Mechanisms of natural graphite crystals growth in the Ukraine: Doklady Academuu Nauk: 4: 73-76.
  • Dissanayake, C.B. (1994), Origin of vein graphite in high-grade metamorphic terrains: Role of organic matter and sediment subduction: Mineralium Deposita: 29: 57-67.
  • Jaszczak, John A. (1994), Famous graphite crystals from Sterling Hill, New Jersey: The Picking Table: 35(2).
  • Semenenko, V. P. and Girich, A. L. (1995), Mineralogy of a unique graphite-containing fragment in the Krymka chondrite (LL3): Mineralogical Magazine: 59: 443-454.
  • Tyler, Ian (1995), Seathwaite Wad and the Mines of the Borrowdale Valle "Blue Rock Publications, Carlisle, England": 220.
  • Jaszczak, John A. (1997), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: Rocks & Minerals: 72(5): 330-334.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1997), Growth spirals on graphite crystals from Ukraine: Mineralogicheskii Zhurnal: 19(6): 43-48.
  • Jaszczak, John A. (1998), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: The Picking Table: 39(1): 20-24.
  • Kvasnitsa, V.N.; Yatsenko, V.G.; and Zagnitko, V.M. (1998), Varieties of Graphite Spherulites from Deposits and Ore Occurrences of Ukraine: Mineralogicheskii Zhurnal, Akademiya Nauk Ukrainy, Kiev, Ukraine: 20(2): 34-39.
  • Hanna, George A. and Jaszczak, John A. (1999), A new find of spherical graphite from Sterling Hill, New Jersey: The Picking Table: 40: 27-30.
  • Kvasnitsa, Victor N.; Yatsenko, Victor G.; and Jaszczak, John A.(1999), Disclinations in unusual graphite crystals from anothosites of Ukraine: Canadian Mineralogist: 37(4): 951-960.
  • Jaszczak, John A. (2000), Palache"s "Contributions to the mineralogy of Sterling Hill, New Jersey": The 900-foot level revisited: Matrix, A Journal of the History of Minerals: 8(3): 137-149.
  • Jaszczak, John A. and Robinson, George W. (2000), Spherical and triskelial graphite from совершеннаяerham, Ontario, Canada: Rocks & Minerals: 75(3): 172-173.
  • Satish-Kumar, M. and Wada, Hideki (2000), Carbon isotope equilibrium between calcite and graphite in Skallen Marbles, East Antarctica: evidence for the preservation of peak metamorphic temperatures: Chemical Geology: 166: 173-182.
  • El Goresy, Ahmed; Gillet, Philippe; Chen, Ming; Künstler, Friedel; and Graup, Günther and Volker, Stähle (2001), In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany: American Mineralogist: 86: 611-621.
  • Jaszczak, John A. (2001), Palache"s "Contributions to the Mineralogy of Sterling Hill, New Jersey", The 900-foot level revisited: The Picking Table: 42(1).
  • Jaszczak, John A. and Rakovan, John (2002), Growth spirals on graphite crystals from the Trotter Mine dump, Franklin, New Jersey: The Picking Table: 43(2).
  • Rakovan, John and Jaszczak, John A.(2002), Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy: American Mineralogist: 87: 17-24.
  • Jaszczak, John A.; Robinson, George W.; Dimovski, Svetlana; Gogotsi, Yury (2003), Naturally Occurring Graphite Cones: Carbon: 41(11): 2085-2092.
  • Santosh, M.; Wada, H.; Satish-Kumar, M.; And Binu-Lal, S.S. (2003), Carbon isotope "stratigraphy" in a single graphite crystal: Implications for the crystal growth mechanism of fluid-deposited graphite: American Mineralogist: 88: 1689-1696.
  • Stadermann, F. J., Croat, T. K., and Bernatowicz, T. (2004) "NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite", 35th Lunar and Planetary Science Conference, March 15-19, League City, Texas, abstract no.1758.

Происхождение названия: От греческого "писать", за то, что графитом можно писать на бумаге. Графит описан в статье, немецкого химика и минералога Вернера А. Г. (Abraham Gottlob Werner) в 1789 году по данным .

Другие названия (синонимы):

Карбидное железо, серебристый свинец, чёрный свинец (Black Lead).

Разновидности минерала:

Кристаллический чешуйчатый графит (flake graphite) - графит, представленный в виде листоватых агрегатов, либо чешуек.
Кристаллический кусковый графит (lump graphite) - плотные зернистые агрегаты графита.
Аморфный графит (amorphous graphite) - разновидность графита, представленная скрытокристаллическими массами.

Фотографии образцов

Свойства

Сингония: Гексагональная

Состав (формула): C

Цвет:

Чёрный, стально-серый

Цвет черты (цвет в порошке): Чёрный, стально-серый

Прозрачность: Непрозрачный

Спайность: Совершенная

Излом: Зернистый, Ровный

Блеск: Матовый, Металлический, Тусклый

Твёрдость: 1,5-2

Удельный вес, г/см 3: 2,09-2,23

Особые свойства:

Графит обладает хорошей тепло- и электропроводностью. При физическом воздействии графит расслаивается на отдельные чешуйки. Графит не расстворяется в кислотах, термоустойчив в безвоздушном пространстве.

Форма выделения

Месторождения / проявления

Скопления графита, имеющие промышленное значение, известны в гнейсах Криворожского, Мариупольского, Шахтамирибугского районов в Украине. В России подобные месторождения разрабатывают на Урале, в Шахтаминском районе Читинской области. Графитовые сланцы добывают в Узбекистане и Хабаровском крае (Россия).
Листоватые агрегаты были найдены в Шри-Ланке (Радегара,Галле). Известны месторождения графита в Чехии. В России встречается в гранитах и гранитных пегматитах в Ильменский горах (Челябинская обл.), в щелочных породах в Хибинах (Мурманская обл.), добывается на Ботогольском месторождении (Бурятия). Графит встречается в Гренландии, США, Канаде.
Крупные залежи графита известны в Тунгусском бассейне в Сибири (Курейское месторождение). Ведущим добытчиком графита является КНР, также большая доля добычи приходится на КНДР, Индию, Корею и Бразилию.

Применение

Графит применяется в металлургии, например, для изготовления плавильных тиглей, за счёт его термоустойчивости и химической устойчивости к большинству металлов. В электронике графит применяется для изготовления электродов и других элементов, благодаря его хорошей электропроводимости. Графит используется для получения химически активных металлов методом электролиза.
Графит является одним из наполнителей пластмасс. При производстве синтетических алмазов также используют графит. В ядерной энергетике при производстве ядерных реакторов графит применяется в качестве замедлителя нейтронов. В производстве токопроводящих клеёв графит используют в качестве токопроводящего элемента.
В специальных твёрдых смазочных материалах также используется графит. Основным применением графита (и самым известным), конечно, является производство стержней для карандашей (в смеси с каолином).



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...