Излучение лазера. Положительное и негативное влияние лазерного излучения на организм человека

Лазерное излучение — электромагнитное излучение оптического диапазона, источником которого являются оптические квантовые генераторы — лазеры. Для объяснения сущности и принципов получения лазерного излучения можно воспользоваться планетарной моделью атома, предложенной Э. Резерфордом. Согласно этой модели атомы представляют собой квантово-механические системы, состоящие из ядра и вращающихся вокруг него электронов, занимающих строго определенное, дискретное энергетическое положение. ПеСхема спонтанного (а) и вынужденного (б) излучений атомов реход из одного энергетического состояния в другое осуществляется скачкообразно и сопровождается поглощением или выделение кванта энергии.
Получение лазерного излучения базируется на свойстве атомов (молекул) под влиянием внешнего воздействия переходить в возбужденное состояние. Это состояние неустойчиво, и спустя некоторое время (примерно через 10-8 с) атом может самопроизвольно (спонтанно) или вынужденно под влиянием внешней электромагнитной волны перейти в состояние с меньшим запасом энергии, излучая при этом квант света (фотон). Согласно сформулированному А. Эйнштейном (1917) принципу энергия возбужденными атомами или молекулами будет излучаться с той же частотой, фазой и поляризацией и в том же направлении, что и возбуждающее излучение. При определенных условиях (наличие большого количества падающих квантов и большого числа возбужденных атомов) может происходить процесс лавинообразного увеличения числа квантов за счет вынужденных переходов. Лавинообразный переход атомов из возбужденного состояния, совершаемый за очень короткое время, и приводит к образованию лазерного излучения. Оно отличается от света любых других известных источников монохроматичностью, когерентностью, поляризованностью и изотропностью потока излучения.
Когерентность (от лат. cohaerens находящийся в связи, связанный) — согласованное протекание во времени нескольких колебательных волновых процессов одной частоты и поляризации; свойство двух или более колебательных волновых процессов, определяющее их способность при сложении взаимно усиливать или ослаблять друг друга. Обычные источники генерируют некогерентное излучение, а лазеры — когерентное. Благодаря когерентности лазерный луч максимально фокусируется, он более способен к интерференции, имеет меньшую расходимость и возможность получения более высокой плотности падающей энергии.
Монохроматичность (греч. monos — один, единственный + chroma — цвет, краска) — излучение одной определенной частоты или длины волны. Условно за монохроматическое можно принимать излучение с шириной спектра 3-5 нм.
Поляризация — симметрия (или нарушение симметрии) в распределении ориентации вектора напряженности электрического и магнитного полей в электромагнитной волне относительно направления ее распространения. Если две взаимно перпендикулярные составляющие вектора напряженности электрического поля совершают колебания с постоянной во времени разностью фаз, такая волна называется поляризованной. Если изменения происходят хаотично, то волна является неполяризованной. Лазерное излучение — высокополяризованный свет (от 75 до 100 %).
Направленность — важное свойство лазерного излучения. Под направленностью лазерного пучка понимается его свойство выходить из лазера в виде светового луча с чрезвычайно малой расходимостью.
Основными характеристиками лазерного излучения являются длина волны и частота, а также энергетические параметры. Все они являются биотропными характеристиками, определяющими действие лазерного излучения на биологические системы.
Длина волны — расстояние, на которое распространяется волна за один период колебаний. В медицине чаще выражают в микрометрах (мкм) или нанометрах (нм). От длины волны зависит отражение, глубина проникновения, поглощение и биологическое действие лазерного излучения.
Частота, являясь величиной обратной длине волны, указывает на число колебаний, совершаемых в единицу времени. Принято выражать в герцах (Гц) или кратных величинах. Чем больше частота, тем выше энергия кванта света. Различают собственную частоту излучения, которая для конкретного источника неизменна, и частоту модуляции, которая в медицинских лазерах чаще всего может изменяться от 1 до 1000 Гц. Весьма важны энергетические характеристики лазерного облучения.
Мощность излучения (потокизлучения, поток лучистой энергии, Р) — средняя мощность электромагнитного излучения, переносимая через какую-нибудь поверхность. Измеряют в Вт или кратных величинах.
Плотность излучения (плотность потока мощности, или ППМ, интенсивность излучения, Е). Е = P/S, измеряется в Вт/м2 или мВт/см2.
Энергетическая экспозиция (доза излучения, Н) — энергетическая облученность за определенный промежуток времени. Н = Е t = Р t: S, измеряется в Дж/м2 (1 Дж = 1 Вт с).
При использовании лазерного излучения в медицине, в частности в лазеротерапии, важно ориентироваться на параметры не излучения, а облучения (см. Лазерная терапия).
При использовании непрерывного лазерного излучения по контактным методикам доза облучения (Д) равна энергии излучения(W) и измеряется в джоулях: Д = W = Р t.
Для импульсных воздействий дозу облучения рассчитывают в Дж по формуле:
Димп = Римп t f tau,
где Римп — мощность одиночного импульса в Вт; t — время воздействия в с; f — частота повторения импульсов в Гц; tau — длительность лазерного импульса в с.
В отличие от дозы облучения, поглощенная доза, которая и определяет действие лазерного излучения, всегда будет меньше, что связано с отражением части энергии от облучаемой поверхности. Величину отраженной энергии, которая может варьировать в значительных пределах, определяют с помощью биофотометров.
Поглощенная биообъектом доза лазерного излучения определяется по следующей формуле:
Дпогл = Р t (l — Котр) ,
где Котр — коэффициент отражения кожи или других тканей.
Соответственно для импульсного лазерного излучения эта формула будет выглядеть так:
Дпогл = PИМП t f tau (1 — К) .
При отсутствии биофотометров пользуются усредненными данными: для красного лазерного излучения коэффициент отражения у кожи равен 030, у слизистых оболочек 0,45; для инфракрасного лазерного излучения они соответственно равны 0,40 и 0,35.
В клинической медицине лазерное излучение используется по хирургическому и физиотерапевтическому направлениям. По первому направлению применяют более мощное лазерное излучение, вызывающее микродеструкцию тканей, являющуюся основой лазерной хирургии. Характерными эффектами действия интенсивного лазерного излучения являются коагуляция, сильный нагрев и испарение, абляция, оптический пробой, гидравлический удар и др. В физиотерапии используется низкоинтенсивное лазерное излучение, механизмы действия которого более разнообразны и сложны, но менее известны. Несомненно лишь то, что основу его действия составляют фотофизические и фотохимические процессы, происходящие при молекулярном поглощении энергии излучения и приводящие к различным фотобиологическим эффектам. Важно подчеркнуть, что за счет триггерных механизмов локальные молекулярные изменения трансформируются в системную приспособительную реакцию с ее различными проявлениями на всех уровнях жизнедеятельности организма.
Среди первичных механизмов действия лазерного излучения на биологические системы решающую роль отводят происходящим в митохондриях.
Один из возможных механизмов воздействия лазерного излучения на клетку заключается в ускорении переноса электронов в дыхательной цепи благодаря изменению редокс-свойств ее компонентов. При этом ключевая роль отводится ускоренному переносу электронов в молекулах цитохром-Соксидазы и НАДН-дегидрогеназы. Одновременно из каталитического центра может освободиться оксид азота, играющий, как и повышение дыхательной активности, важную роль в регуляции многих жизненно важных процессов.
За счет различных механизмов лазерное излучение может вызывать усиленную генерацию синглетного кислорода, являющегося химически и биологически высокоактивным соединением. Его образование усиливается при повышении рО2 в тканях. Синглетный кислород инициирует перекисное окисление липидов, изменяет проницаемость мембран, увеличивает транспорт ионов, вызывает ускорение пролиферации клеток и др. Высказывается предположение, что синглетный кислород может вызывать минимальные (додеструктивные) повреждения, выводящие систему из равновесия и стимулирующие ее деятельность в дальнейшем. Это прежде всего относится к мембранам клеток крови.
Фотоакцепторами лазерного излучения могут быть многие витамины, ферменты, в т.ч. рибофлавин (440 нм), каталаза (628 нм), цитохромрксидаза (600 нм), сукцинатдегидратеназа и супероксиддисмутаза. При терапевтических дозировках их активность и содержание в различных тканях повышается, одним из следствий чего является повышение антиоксидантного статуса в тканях и снижение ПОЛ.
Лазерное излучение может прямо или косвенно влиять на мембраны, изменять их конформацию, ориентацию на них рецепторов и состояние фосфолипидных компонентов. К следствиям таких изменений относят повышение проницаемости мембран в отношении Са2+, а также увеличение активности аденилатциклазной и АТФ-азной систем, сказывающееся на биоэнергетике клетки.
Многие авторы первичное действие лазерного излучения объясняют его влиянием на структуру воды, а через нее на реакции, протекающие в водных системах, и на белки, микроокружение которых представлено молекулами воды.
В последнее время активно разрабатывается фотодинамический механизм первичного действия низкоинтенсивного излучения. Согласно ему, хромофорами лазерного излучения являются эндогенные порфирины, содержание которых подвергается изменению при многих заболеваниях. Порфирины, поглощая излучение, индуцируют свободнорадикальные реакции, приводящие к предстимуляции (праймингу) клеток. Повышение активности клеток сопровождается увеличением различных биологически активных соединений (оксид азота, супероксидный анион-радикал, гипохлорит-ион, цитокины и др.), влияющих на микроциркуляцию, иммуногенез и другие физиологически значимые процессы.
Под влиянием лазерного излучения существует возможность локализованного нагрева абсорбирующих хромофоров, что может сопровождаться структурными изменениями биомолекул и их активности. Лазерное излучение кроме того может приводить к возникновению неоднородного температурного поля в биологических тканях вследствие неравномерного распределения поглощающих структур. Такая неравномерность нагрева может оказать существенное влияние на обменные процессы в тканях и клетках. Результатом многих первичных реакций является изменение редокс-статуса клетки: смещение в сторону более окисленного состояния связано со стимуляцией жизнеспособности клетки, смещение в сторону более восстановительного состояния — с ее подавлением.
Названные и другие первичные эффекты низкоэнергетического лазерного излучения сопровождаются спектром вторичных изменений, которые и определяют его физиологическое и лечебное действие. Оно зависит от многих факторов, среди которых важнейшими являются длина волны используемого излучения (и, соответственно, энергия его фотонов) и длительность воздействия. Поскольку в лазеротерапии применяют почти исключительно низкие плотности мощности лазерного излучения (до 100 мВт/см2), то влияние этого фактора менее существенно. В настоящее время наиболее востребованными являются биостимулирующий эффект лазеротерапии. Он определяет наиболее широкий диапазон терапевтического действия и максимально выражен у лазеров красного и ближнего инфракрасного спектров с длиной волны от 620 до 1300 нм. Важно отметить, что лазерная биостимуляция возникает лишь при непродолжительных (до 3-5 мин) воздействиях. Ингибирующий эффект лазеротерапии, присущий в основном коротковолновому излучению УФ-спектра, наблюдающийся при длительной экспозиции, используется значительно реже.
Вызванные поглощением энергии лазерного излучения фотохимические и фотофизические процессы развиваются прежде всего в месте его воздействия (кожа, доступные слизистые оболочки), поскольку глубина его проникновения зависит от длины волны и не превышает нескольких сантиметров. Основное звено в биостимулирующем эффекте лазеротерапии — активация ферментов. Она является следствием избирательного поглощения энергии лазерного излучения отдельными биомолекулами, обусловленного совпадением максимумов их спектра поглощения с длиной волны лазерного излучения. Так, лазерное излучение красного спектра поглощается преимущественно молекулами ДНК, цитохрома, цитохромоксидазы, супероксиддисмутазы, каталазы. Энергия лазерного излучения ближнего инфракрасного диапазона поглощается в основном молекулами кислорода и нуклеиновых кислот. В результате увеличивается содержание свободных (более активных) биомолекул и радикалов, синглетного кислорода, ускоряется синтез белка, РНК, ДНК, возрастает скорость синтеза коллагена и его предшественников, изменяется кислородный баланс и активность окислительно-восстановительных процессов. Это приводит к ответным реакциям клеточного уровня — изменению заряда электрического поля клетки, ее мембранного потенциала, повышению полиферативной активности, что определяет такие процессы, как скорость роста и пролиферации тканей, кроветворение, активность иммунной системы и системы микроциркуляции, затем ответная реакция организма переходит на тканевой, органный и организменный уровни.
Низкоэнергетическое лазерное излучение является неспецифическим биостимулятором репаративных и обменных процессов в различных тканях. Лазерное облучение ускоряет заживление ран, что обусловлено улучшением локального кровотока и лимфооттока, изменением клеточного состава раневого отделяемого в сторону увеличения количества эритроцитов и полинуклеаров, увеличением активности обменных процессов в ране, торможением перекисного окисления липидов. При облучении пограничных тканей по краям раны наблюдается стимуляция пролиферации фибробластов. Кроме того известно о бактерицидном эффекте лазерного излучения, связанного с его способностью вызывать деструкцию и разрыв оболочек микробной клетки. Активация гормонального и медиаторного звена общей адаптационной системы, наблюдающаяся при применении лазерного излучения, также может рассматриваться как один из механизмов стимуляции репаративных процессов.
При лазерном облучении стимулируется регенерация костной ткани, что послужило основанием для использования его при переломах костей, в т.ч. и с замедленной консолидацией. Под влиянием лазерного излучения улучшается регенерация в нервной ткани, снижается импульсная активность болевых рецепторов. Наряду с уменьшением интерстициального отека и сдавления нервных проводников, это определяет болеутоляющее действие лазеротерапии.
Лазерное излучение обладает выраженным противовоспалительным эффектом, который, вероятно, прежде всего обусловлен улучшением кровообращения и нормализацией нарушенной микроциркуляции, активацией метаболических процессов в очаге воспаления, уменьшением отека тканей, предотвращением развития ацидоза и гипоксии, непосредственным влиянием на микробный фактор. Существенную роль также играет активация иммунной системы, выражающаяся в повышении интенсивности деления и росте функциональной активности иммунокомпетентных клеток, увеличением синтеза иммуноглобулинов. Противовоспалительному эффекту способствует стимулирующее влияние лазерного излучения на эндокринные железы, в частности на глюкокортикоидную функцию надпочечников. Важно подчеркнуть, что как при бактериальном загрязнении раневой поверхности, так и при обострении хронического воспалительного процесса более целесообразно применение лазеров УФ-диапазона (использование ингибирующего эффекта для подавления альтерации и экссудации), а в стадии пролиферации и регенерации — красного и инфракрасного диапазонов. При вялотекущих воспалительных и при дегенеративно-дистрофических процессах следует воздействовать излучением только красного и инфракрасного спектра.
Под влиянием лазерного низкоэнергетического излучения происходит увеличение количества эритроцитов и ретикулоцитов, наблюдается усиление митотической активности клеток костного мозга, активируется противосвертывающая система, снижается СОЭ. Это действие на кроветворение развивается как прямым, так и косвенным путями. В первом случае генерируемый лазером свет, поглощаясь порфиринами эритроцитов, приводит к уменьшению резистентности и даже к распаду небольшого количества их. Продукты распада, очевидно, и активируют костно-мозговое кроветворение. Косвенное действие лазерного излучения реализуется вследствие активации деятельности эндокринных желез, прежде всего гипофиза и щитовидной железы, которые имеют непосредственное отношение к регуляции функции кроветворения.
Лазерное излучение, увеличивая энергетический потенциал клетки, способствует повышению устойчивости организма в целом к действию неблагоприятных факторов, в т.ч. и к ионизирующей радиации.
В общем, наиболее выраженными эффектами лазеротерапии, возникающими преимущественно в месте воздействия, являются: трофико-регенераторный, улучшающий микроциркуляцию, противовоспалительный, иммуностимулирующий, десенсибилизирующий, противоотечный, болеутоляющий.
При лазеротерапии регистрируются не только изменения в месте облучения, но и наблюдается общая ответная реакция организма. Генерализация местного эффекта происходит благодаря нейрогуморальным реакциям, которые запускаются с момента появления эффективной концентрации биологически активных веществ в облученных тканях, а также за счет нервно-рефлекторного механизма. Возникающие сдвиги основных показателей деятельности ЦНС, сердечно-сосудистой системы, ряда биохимических процессов носят, как правило, отсроченный характер и проявляются через некоторое время (минуты, часы) после процедуры. При этом они наиболее выражены при облучении акупунктурных зон.
Лазерное излучение с его уникальными свойствами нашло широкое и разнообразное использование в медицине. Источниками его являются квантовые генераторы — лазеры с различными физическими характеристиками (см. Лазер). Медицинские лазеры излучают в УФ-, видимом (чаще всего в красной области) и инфракрасном диапазонах оптического спектра, могут работать в непрерывном и импульсном режимах. По терапевтическому направлению используется низкоинтенсивное лазерное излучение, генерируемое чаще всего гелий-неоновыми и полупроводниковыми лазерами (см. Лазерная терапия). Лазеротерапию применяют в самых различных клиниках при очень многих заболеваниях.
Показания: Высокоинтенсивное лазерное излучение, вызывающее видимые изменения тканей, используется по хирургическому направлению. Такое излучение способно вызывать резку и сварку тканей, коагуляцию, абляцию и гемостаз. С этой целью наиболее часто используют лазеры на аргоне, парах меди, на красителях, углекислоте, неодимовые и близкие к ним лазеры. Эксимерные лазеры нашли широкое применение в офтальмохирургии. Лазерное излучение (чаще средней интенсивности) применяется в так называемой фотодинамической терапии. Использование в этой технологии фотосенсибилизатора облегчает динамическую деструкцию патологически измененной клетки, но отнюдь не является обязательным условием ее. Фотодинамическая терапия сегодня наиболее широко применяется в лечении онкологических заболеваний, но границы ее применения постепенно расширяются. Весьма своеобразная область использования лазерного излучения — лазерная косметология. В косметологии наиболее часто пользуются углекислыми и эрбиевыми лазерами, а также лазерами на алюмо-иттрий-гранатовом кристалле. Лазерные технологии в косметологии применяют для таких косметологических процедур, как дермабразия, лифтинг, удаление гемангиом и телеангиоэктазий на лице, эпиляция волос и др. Лазерное излучение начинают использовать в программах эфферентной терапии, в лабораторных технологиях, а также в галографии. Совершенно очевидно, что возможности медицинской лазерологии далеко не исчерпаны.

ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» – аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, (оптический квантовый генератор) – это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения. За счет монохроматичности лазерного луча и его малой расходимости (высокой степени коллиминированности) создаются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоэффект. Это является основанием для использования лазерных установок при обработке материалов (резание, сверление, поверхностная закалка и др.), в хирургии и т. д.

Л. и. способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять это свойство для целей локации, навигации, связи и т. д. Путем подбора тех или иных веществ в качестве активной среды может индуцировать практически на всех длинах волн, начиная с ультрафиолетовых и кончая длинноволновыми инфракрасными. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм.

Основные физические величины, характеризующие Л. и.:

длина волны, мкм;

применение средств защиты;

ограничение времени воздействия излучения;

назначение и лиц, ответственных за организацию и проведение работ;

ограничение допуска к проведению работ;

Надзора за режимом работ;

четкая противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Персонала.

Санитарно-гигиенические и лечебно-профилактические методы:

контроль за уровнями вредных и опасных факторов на рабочих местах;

контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

От Л. и. должны обеспечивать предотвращение воздействия излучения или снижение его величины до уровня, не превышающего допустимого. К СКЗ от Л. и. относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др. СИЗ от Л. и. включают: , щитки, маски и др. СКЗ должны предусматриваться на стадии проектирования и монтажа лазеров, при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера, интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств средств защиты не должны снижаться под воздействием др. вредных и опасных факторов (вибрации, температуры и т. д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.). СИЗ глаз и лица ( и щитки), снижающие интенсивность Л. и. до ПДУ, должны применяться только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда СКЗ не обеспечивают персонала.

Лазерное излучение представляет собой электромагнитные колебания (электромагнитные волны) оптического диапазона, источником которых являются оптические квантовые генераторы (ОКГ) - лазеры.

В них используются способы усиления и генерирования электромагнитных колебаний, основанные на принципе индуцирования излучения в атомах и молекулах активной среды (например, смеси газов гелия и неона, помещенной в специальное устройство -зеркальный резонатор).

С принципами генерации лазерного излучения связаны его основные свойства: монохроматичность (излучение лазером электромагнитных колебаний практически одной длины волны); когерентность (упорядоченность распределения фазы лазерного излучения как во времени, так и в пространстве); поляризация (упорядоченность в ориентации векторов напряженности электрических и магнитных полей световой волны в плоскости, перпендикулярной световому лучу); направленность (малая расходимость лазерного излучения).

Совокупность этих свойств обусловливает технические преимущества лазерного излучения: возможность локального равномерного облучения в широком диапазоне интенсивности светового потока; более высокая точность дозирования (по сравнению с традиционно применяемыми в физиотерапии источниками света); использование волоконной оптики и специализированного световодного инструмента для подведения энергии лазерного излучения к патологическим очагам при их внутриполостной локализации.

Лазерное излучение проникает в ткани организма на глубину от 1-20 мкм (УФ-диапазон) до 2-3 мм (красный диапазон) и до 50-70 мм (ближний ИК-диапазон спектра длин волн). При поглощении энергии лазерного излучения, наряду с местной реакцией облученных поверхностных тканей (расширение сосудов микроциркуляторного русла, фазовые изменения локального кровотока и др.), формируются рефлекторные реакции (внутренних органов и окружающих зону воздействия тканей), а также генерализованные реакции целостного организма (активация желез внутренней секреции, гуморального иммунитета, репаративных процессов в нервной, мышечной и костной тканях и др.).

Аппараты. Для физиотерапевтических целей используют различные лазерные аппараты на основе газовых (гелий-неоновых) лазеров типа «ЛГН-207», «ЛГН-208», «ЛГ-75» или полупроводниковых (арсенид-галлиевых) лазеров типа «ЛПИ-101(102)», «ИЛПН-108» и др.

Эти аппараты обеспечивают генерацию лазерного излучения красного (0,63 мкм) и ближнего ИК-диапазона (0,8-1,3 мкм) спектра длин волн в непрерывном (прерывистом) и в импульсном режимах. Отечественная промышленность выпускает более 50 наименований лазерных физиотерапевтических аппаратов и установок, типичными представителями каждой разновидности которых являются следующие.

Аппарат «Мустанг»

Аппарат «Мустанг» (модели 016, 017, 022) представляет собой (рис. 344) портативное устройство, состоящее из базового блока (питания и управления) и сменных выносных излучателей, генерирующих лазерное излучение в импульсном и непрерывном режимах.

Импульсная мощность излучения 0,89 мкм-5-80 Вт; максимальная мощность непрерывного излучения 0,83 мкм - 30 мВт; непрерывного излучения 0,63-0,67 мкм - 4-12 мВт. На передней панели аппарата базового блока расположены органы управления: кнопка «Сеть», кнопки «Частота», «Время», ручка «Мощность», окно фотоприемника и индикатор излучения.


Рис. 344. Схема панели управления аппарата «Мустанг»: 1 - выключатель питания, 2 - кнопки задания частоты повторения импульсов, 3 - кнопки задания времени экспозиции, 4 - ручка регулировки мощности, 5 - кнопка «Пуск», 6 - окно фотоприемника, 7 - индикатор мощности, 8 - кнопка включения биорежима, 9 - светодиод «Пульс» 10 - светодиод «Дыхание»


Включение аппарата.
1. Подключить одну или две излучающие головки (выносные излучатели) к разъему на задней панели базового блока. 2. Включить сетевую вилку в сетевую розетку. 3. Включить на панели аппарата кнопку «Сеть», при этом загораются светодиоды «Частота», «Время».

4. Убедиться в исправности аппарата, для чего поднести излучатель к окну фотоприемника, перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Пуск», при этом загорается светодиод «Раб.» и линейка светодиодов индикатора (в некоторых моделях - цифровое значение импульсной мощности).

5. Вращая ручку «Мощность» вправо, убедиться в возможности настройки аппарата на необходимую импульсную мощность излучения, после чего выключить излучение повторным нажатием кнопки «Пуск». 6. При подготовке лечебной процедуры по пп. 4 и 5 с помощью ручки «Мощность» (по индикатору мощности) установить нужную импульсную мощность излучения, затем при выключенном излучении нажатием кнопок «Частота» и «Время» задать необходимую частоту следования импульсов и время процедуры. 7. Для осуществления лазерного воздействия нажать кнопку «Пуск».

Выключение аппарата. 1 . Лазерное излучение прекращается автоматически по прошествии заданного времени процедуры. При работе аппарата без таймера (т. с. при нажатой кнопке «Н») излучение выключают повторным нажатием кнопки «Пуск». 2. Для выключения аппарата нажать кнопку «Сеть» и вынуть вилку сетевого шнура из сетевой розетки.

Магнито-инфракрасно-лазерный терапевтический аппарат

Магнито-инфракрасно-лазерный терапевтический аппарат (сокр. «МИЛТА-Ф-01») предназначен для лечения заболеваний широкого профиля путем сочетанного или раздельного воздействия на пораженные области постоянным магнитным полем, импульсным лазерным и непрерывным светодиодным излучением ифракрасного диапазона, а также для диагностики патологического процесса сравнением уровней сигналов, отраженных от контрлатеральных областей больного.

Одним из существенных преимуществ аппарата по сравнению с аналогами является то, что он имеет фоторегистратор. Последний даст возможность уточнить дозу облучения больного в зависимости от тяжести заболевания и скоррегировать ее в ходе лечения.

Магнитная индукция на оси магнита колеблется от 20 до 80 мТл. Максимальная суммарная мощность излучения светодиодов на выходе терминала равна не мене 120 мВт, максимальная плотность мощности - не менее 22 мВт/см2. Средняя мощность излучения лазера на выходе терминала составляет не менее 2 мВт при частоте повторения 5 кГц, максимальное значение средней плотности мощности - не менее 0,4 мВт/см2.

Аппарат обеспечивает световую индикацию включения, контроль частоты повторения лазерных импульсов при внутреннем запуске лазера, цикла работы лазера, светоцифровую индикацию отраженного излучения светодиодов.

На корпусе аппарата размещены кнопки: «Сеть», «Частота», «Таймер», «Пуск» и «Стоп». Сам аппарат выполнен в виде настольной конструкции, включающей пульт питания (1), терминал (2), неразъемный электрошнур (3), сетевой кабель с вилкой (4). Общий вид аппарата представлен на рис. 345. На лицевой стороне аппарата расположены: кнопка включения (5), индикаторный диод включения (6), кнопка переключения режимов работы (7), индикаторные диоды режимов работы (8), индикаторные диоды частоты лазерного излучения (9), цифровое табло (10), кнопки установки параметров (11), корпус терминала (12), гайка терминала (13), кнопка «Пуск» («Ray») (14), дно ложа терминала (15).



Рис. 345. Схематическое изображение магнито-инфракрасно-лазерного аппарата «Милта-Ф-01» (объяснение в тексте)
Рис. 346. Схема терминала аппарата «МИЛТА-Ф-01» (объяснение в тексте)


Терминал представляет выносную часть аппарата, посредством которой осуществляется запуск лазера и светодиодов. Им обеспечивается непосредственное воздействие на больного. Терминал (рис. 346) включает корпус (1), неразъемный электрошнур (2), постоянный кольцевой магнит (3), гайку терминала (4), кнопку «Пуск» (5), индикаторный диод включения лазера (6).

Дно ложа терминала является диффузным отражателем для ИК-излучения. Встроенный фоторегистратор обеспечивает светоцифровую индикацию облучения больного непрерывным излучением свстодиодов и выдаст цифровые данные о мощности излучения.

В аппарате предусмотрена звуковая, световая и светоцифровая индикация. Индикаторный светодиод указывает на работу лазера; цифры на табло (10) говорят о работе четырех светодиодов в непрерывном режиме излучения. Восемь зеленых индикаторных диодов указывают на выбранную частоту повторения импульсов излучения.

Звуковой сигнал возникает при нажатии кнопки (5) и длится ис менее 0,5 с. При этом зажигаются все индикаторные светодиоды. Прекращение звука говорит о готовности аппарата к работе. Длительность экспозиции устанавливается кнопками (11) в режиме «Время» по показаниям цифрового табло.

Принцип лечебной работы аппарата основан на сочетанном и раздельном воздействии на больного постоянным магнитным полем, импульсным лазерным и непрерывным светодиодным излучениями ближнего ИК-диапазона оптического центра. При этом фоторегистратор позволяет фиксировать наличие и уровень отраженного излучения от тела больного или от дна ложа терминала.

Для лечения определенных заболевании к аппарату придаются различные насадки. Для лечения болезней шейки матки «МИЛТЛ-Ф» имеет насадку № 1, влагалища - № 2, заболевания влагалища и прямой кишки - № 3, ЛОР-болезней - № 4, стоматологических заболеваний - № 5, для рефлексотерапии аппарат имеет насадку № 6.

Перед началом работы аппарат следует проверить на: 1. исправность сетевого шнура и кабеля терминала, 2. целостность терминала, 3. наличие звуковой сигнализации при включении в есть и по окончании работы лазера, 4. свечение индикатора, 5. наличие свечения цифровых индикаторов и светоиндикаторов на блоке питания. При работе с лазером следует руководствоваться приказом Минздрава РФ от 14.03.96 г. № 90 и ГОСТ 12.4.026-76.

Аппарат «Мулат»

Аппарат «Мулат» предназначен для нсинвазивного и внутрисосудистого облучения крови лазерным излучением красного диапазона длин волн (рис. 347).



Рис. 347. Общий вид аппарата «Мулат»: 1 - базовый блок, 2 - оптический выход лазерного излучателя, 3 - кнопка выбора внутреннего (внешнего) фотоприемника, 4 - окно внешнего фотоприемника, 5 - кнопка «Вкл./Выкл.», 6 - индикатор мощности излучения, 8 - кнопка «Пуск», 9 - ручка регулировки мощности излучения, 10 - магистральный световод


Источником излучения 0,63 мкм является полупроводниковый лазер с мощностью излучения на оптическом выходе лазера не менее 4 мВт. На передней панели базового блока расположены органы управления: кнопка «Вкл./ Выкл.», индикатор мощности излучения, кнопки задания времени процедуры «Время», кнопка «Пуск», ручка регулировки мощности излучения «Мощность», кнопка выбора внутреннего (внешнего) фотоприемника «Фотопр.», окно внешнего фотоприемника. Для осуществления наружных и внутрисосудистых облучений к оптическому выходу лазерного излучателя подключается магистральный световод.

Включение аппарата. 1. Включить вилку сетевого шнура в сетевую розетку, затем перевести кнопку сетевого выключателя в положение «Вкл.», при этом загораются светодиоды «Внутр.» 5 мин; на индикаторе мощности излучения высвечивается 0,0 мВт. 2. Перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Пуск», при этом раздастся звуковой сигнал и загорается светодиод «Раб.».

3. Вращать ручку «Мощность» вправо, при этом индикатор мощности излучения показывает соответствующее значение этого параметра на оптическом выходе лазера. 4. Перевести ручку «Мощность» в крайнее левое положение и нажать кнопку «Фотопр.», при этом загорается евстодиод «Внешн.».

5. Поднести выход магистрального евстодиода вплотную к окну внешнего фото-приемника, затем вращать ручку «Мощность» вправо, при этом индикатор мощности показывает соответствующее значение этого параметра на выходе магистрального световода - аппарат исправен. 6. Выключить излучение повторным нажатием кнопки «Пуск», при этом раздастся звуковой сигнал.

7. При подготовке лечебной процедуры по пп. 2-5 с помощью ручки «Мощность» (по индикатору мощности) установить нужную выходную мощность лазерного излучения. 8. Нажатием кнопки «Время» задать необходимую продолжительность процедуры. 9. Для осуществления лазерного воздействия нажать кнопку «Пуск».

Выключение аппарата. 1. Лазерное излучение прекращается автоматически по истечении заданного времени процедуры. При необходимости излучение можно выключить в процессе процедуры повторным нажатием кнопки «Пуск». При этом раздастся звуковой сигнал. 2. Перевести кнопку сетевого выключателя в положение «Выкл.» и вынуть вилку сетевого шнура из сетевой розетки.

Боголюбов В.М., Васильева М.Ф., Воробьев М.Г.

Лазерное излучение (ЛИ) - вынужденное испускание атомами вещества квантов электромагнитного излучения. Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation (усиление света с помощью создания стимулированного излучения). Основными элементами любого лазера являются активная среда, источник энергии для ее возбуждения, зеркальный оптический резонатор и система охлаждения. ЛИ за счет монохроматичности и малой расходимости пучка способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять эти свойства для целей локации, навигации и связи.

Возможность создания лазерами исключительно высоких энергетических экспозиций позволяет использовать их для обработки различных материалов (резание, сверление, поверхностная закалка и др.).

При использовании в качестве активной среды различных веществ лазеры могут индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и заканчивая длинноволновыми инфракрасными.

Основными физическими величинами, характеризующими ЛИ, являются: длина волны (мкм), энергетическая освещенность (Вт/см 2), экспозиция (Дж/см 2), длительность импульса (с), длительность воздействия (с), частота повторения импульсов (Гц).

Биологическое действие лазерного излучения. Действие ЛИ на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаз, кожа). Поскольку органические молекулы, из которых состоит биологическая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность ЛИ может создавать какие-либо специфические эффекты при взаимодействии с тканью. Пространственная когерентность также существенно не меняет механизма повреждений

излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд. Таким образом, ЛИ пропускается и поглощается биотканями по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.

Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энергии: тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр.

ЛИ представляют опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38-0,7 мкм) и ближнего инфракрасного (0,75-1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18-0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик. Достигая сетчатки, ЛИ фокусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000-10000 раз по сравнению с плотностью мощности на роговице. Короткие импульсы (0,1 с-10 -14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания защитных физиологических механизмов (мигательный рефлекс 0,1 с).

Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожными покровами зависит от длины волны и пигментации кожи. Отражающая способность кожных покровов в видимой области спектра высокая. ЛИ дальней инфракрасной области начинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей; возникает опасность возникновения ожогов кожи.

Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состояний и сердечно-сосудистых расстройств. Наиболее характерными клиническими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.

Нормирование ЛИ. В процессе нормирования устанавливаются параметры поля ЛИ, отражающие специфику его взаимодействия с биологическими тканями, критерии вредного действия и числовые значения ПДУ нормируемых параметров.

Научно обоснованы два подхода к нормированию ЛИ: первый - по повреждающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй - на основе выявляемых функциональных и морфологических изменений ряда систем и органов, не подвергающихся непосредственному воздействию.

Гигиеническое нормирование основывается на критериях биологического действия, обусловленного, в первую очередь, областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:

От 0,18 до 0,38 мкм - ультрафиолетовая область;

От 0,38 до 0,75 мкм - видимая область;

От 0,75 до 1,4 мкм - ближняя инфракрасная область;

Свыше 1,4 мкм - дальняя инфракрасная область.

В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица, глаза, кожа), определяемых современными методами исследования во время или после воздействия ЛИ. Нормируемыми параметрами являются энергетическая экспозиция Н (Дж-м -2) и облученность Е (Вт-м -2), а также энергия W (Дж) и мощность Р (Вт).

Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реакций организма в ответ на хроническое воздействие низкоэнергетических уровней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной систем, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятельности сим- патоадреналовых и гипофизнадпочечниковых систем. Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здоровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое

ЛИ при хроническом действии выступает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.

Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1991 г. введены в действие «Санитарные нормы и правила устройства и эксплуатации лазеров» СН и П? 5804. В США существует стандарт ANSI-z.136. Разработан также стандарт Международной электротехнической комиссией (МЭК) - Публикация 825. Отличительной особенностью отечественного документа по сравнению с зарубежными является регламентация значений ПДУ с учетом не только повреждающих эффектов глаз и кожи, но и функциональных изменений в организме.

Широкий диапазон длин волн, разнообразие параметров ЛИ и вызываемых биологических эффектов затрудняет задачу обосно- вания гигиенических нормативов. К тому же экспериментальная и особенно клиническая проверки требуют длительного времени и средств. Поэтому для разрешения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирование. Это позволяет существенно уменьшить объем экспериментальных исследований на лабораторных животных. При создании математических моделей учитываются характер распределения энергии и абсорбционные характеристики облучаемой ткани.

Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приводящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближнего ИК диапазонов с длительностью импульсов от 1 до 10 -12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в последнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП? 5804- 91, которые разработаны на основании результатов научных исследований.

Действующие правила устанавливают:

Предельно допустимые уровни (ПДУ) лазерного излучения в диапазоне длин волн 180-10 6 нм при различных условиях воздействия на человека;

Классификацию лазеров по степени опасности генерируемого ими излучения;

Требования к производственным помещениям, размещению оборудования и организации рабочих мест;

Требования к персоналу;

Контроль за состоянием производственной среды;

Требования к применению средств защиты;

Требования к медицинскому контролю.

Степень опасности ЛИ для персонала положена в основу классификации лазеров, согласно которой они подразделяются на 4 класса:

1-й - класс (безопасные) - выходное излучение не опасно для глаз;

2-й - класс (малоопасные) - представляют опасность для глаз как прямое, так и зеркально отраженное излучения;

3-й - класс (среднеопасное) - представляет опасность для глаз также и диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности;

4-й - класс (высокоопасное) - представляет уже опасность и для кожи на расстоянии 10 см от диффузно отражающей поверхности.

Требования к методам, средствам измерений и контролю ЛИ. Дозиметрией ЛИ называют комплекс методов определения значений параметров лазерного излучения в заданной точке пространства с целью выявления степени опасности и вредности его для организма человека

Лазерная дозиметрия включает два основных раздела:

- расчетная, или теоретическая дозметрия, которая рассматривает методы расчета параметров ЛИ в зоне возможного нахождения операторов и приемы вычисления степени его опасности;

- экспериментальная дозиметрия, рассматривающая методы и средства непосредственного измерения параметров ЛИ в заданной точке пространства.

Средства измерений, предназначенные для дозиметрического контроля, называются лазерными дозиметрами. Дозиметрический контроль приобретает особое значение для оценки отраженных и рассеянных излучений, когда расчетные методы лазерной дозиметрии, основанные на данных выходных характеристик лазерных установок, дают весьма приближенные значения уровней ЛИ в заданной точке контроля. Использование расчетных методов диктуется отсутствием возможности провести измерение параметров ЛИ для всего разнообразия лазерной техники. Расчетный метод лазерной дозиметрии позволяет оценивать степень опасности излучения в заданной точке пространства, используя в расчетах паспортные данные. Расчетные методы удобны для случаев работы с редко повторяющимися кратковременными импульсами излучения, когда ограни-

чена возможность измерения максимального значения экспозиции. Они используются для определения лазерно-опасных зон, а также для классификации лазеров по степени опасности генерируемого ими излучения.

Методы дозиметрического контроля установлены в «Методических указаниях для органов и учреждений санитарно-эпидеми- ологических служб по проведению дозиметрического контроля и гигиенической оценке лазерного излучения» ? 5309-90, а также частично рассмотрены в «Санитарных нормах и правилах устройства и эксплуатации лазеров» СН и П? 5804-91.

В основе методов лазерной дозиметрии лежит принцип наибольшего риска, в соответствии с которым оценка степени опасности должна осуществляться для наихудших с точки зрения биологического воздействия условий облучения, т.е. измерение уровней лазерного облучения следует проводить при работе лазера в режиме максимальной отдачи мощности (энергии), определенной условиями эксплуатации. В процессе поиска и наведения измерительного прибора на объект излучения должно быть найдено такое положение, при котором регистрируются максимальные уровни ЛИ. При работе лазера в импульсно-периодическом режиме измеряют энергетические характеристики максимального импульса серии.

При гигиенической оценке лазерных установок требуется измерять не параметры излучения на выходе лазеров, а интенсивность облучения критических органов человека (глаза, кожа), влияющую на степень биологического действия. Эти измерения проводят в конкретных точках (зонах), в которых программой работы лазерной установки определено наличие обслуживающего персонала и в которых уровни отраженного или рассеянного ЛИ невозможно снизить до нуля.

Пределы измерений дозиметров определяются значениями ПДУ и техническими возможностями современной фотометрической аппаратуры. Все дозиметры должны быть аттестованы органами Госстандарта в установленном порядке. В России разработаны специальные средства измерений для дозиметрического контроля ЛИ - лазерные дозиметры. Они отличаются высокой универсальностью, заключающейся в возможности контроля как направленного, так и рассеянного непрерывного, моноимпульсного и импульсно- периодического излучений большинства применяемых на практике лазерных установок в промышленности, науке, медицине и пр.

Профилактика вредного действия лазерного излучения (ЛИ). Защиту от ЛИ осуществляют техническими, организационными и лечебнопрофилактическими методами и средствами. К методическим средствам относятся:

Выбор, планировка и внутренняя отделка помещений;

Рациональное размещение лазерных технологических установок;

Соблюдение порядка обслуживания установок;

Использование минимального уровня излучения для достижения поставленной цели;

Применение средств защиты. Организационные методы включают:

Ограничение времени воздействия излучения;

Назначение и инструктаж лиц, ответственных за организацию и проведение работ;

Ограничение допуска к проведению работ;

Организация надзора за режимом работ;

Четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Проведение инструктажа, наличие наглядных плакатов;

Обучение персонала.

Санитарно-гигиенические и лечебно-профилактические методы включают:

Контроль за уровнями опасных и вредных факторов на рабочих местах;

Контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Производственные помещения, в которых эксплуатируются лазеры, должны отвечать требованиям действующих санитарных норм и правил. Лазерные установки размещают таким образом, чтобы уровни излучения на рабочих местах были минимальными.

Средства защиты от ЛИ должны обеспечивать предотвращение воздействия или снижение величины излучения до уровня, не превышающего допустимый. По характеру применения средства защиты подразделяются на средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Надежные и эффективные средства защиты способствуют повышению безопасности труда, снижают производственный травматизм и профессиональную заболеваемость.

Таблица 9.1. Защитные очки от лазерного излучения (выписка из ТУ 64-1-3470-84)

К СКЗ от ЛИ относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др.

СИЗ от лазерного излучения включают защитные очки (табл. 9.1), щитки, маски и др. Средства защиты применяются с учетом длины волны ЛИ, класса, типа, режима работы лазерной установки, характера выполняемой работы.

СКЗ должны предусматриваться на стадиях проектирования и монтажа лазеров (лазерных установок), при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера (лазерной установки), интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств защиты не должны снижаться под воздействием других опасных

и вредных факторов (вибрации, температуры и т.д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.).

Средства индивидуальной защиты глаз и лица (защитные очки и щитки), снижающие интенсивность ЛИ до ПДУ, должны применять- ся только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

При работе с лазерами должны применяться только такие средства защиты, на которые имеется нормативно-техническая документация, утвержденная в установленном порядке.

Лазерное излучение

Лазерное излучение: l = 0,2 - 1000 мкм.

Осн. источник - оптический квантовый генератор (лазер).Особенности лазерного излучения - монохроматичность; острая направленность пучка; когкрентность.Свойства лазерного излучения: высокая плотность энергии: 1010-1012 Дж/см2, высокая плотность мощности: 1020-1022 Вт/см2.

По виду излучение лазерное излучение подразд-ся:

Прямое излучение; рассеяное; зеркально-отраженное; диффузное.

Биологические действия лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области:

Ультрафиолетовая 0.2-0.4 мкм

Видимая 0.4-0.75 мкм

Инфракрасная:

a) ближняя 0.75-1

b) дальняя свыше 1.0

Вредные воздействия лазерного излучения.

1)термические воздевия

2)энергетические воздействия (+ мощность)

3)фотохимические воздействия

4)механическое воздействие(колебания типа ультразвуковых в облученном организме)

5)электростри (деформация молекул в поле лазерного излучения)

6)образование в пределах клетках микроволнового электромагнитного поля

Влияние лазерного излучения на живые организмы, в том числе и организм человека, а также на окружающую среду, может быть как положительным, так и отрицательным.

Давайте сначала поговорим о положительном влиянии лазерного излучения.
На сегодняшний день во многих странах мира проходит активное внедрение лазерного излучения в практической медицине и в различных биологических исследованиях. Уникальные свойства лазерного луча позволяют использовать его в самых разнообразных областях: хирургии, терапии и медицинской диагностике. Опытным путем была доказана эффективность лазерного излучения ультрафиолетового, инфракрасного и видимого спектров для применения на небольшой пораженный участок и для воздействия на организм в целом.

Влияние лазерного излучения низкой интенсивности приводит к значительному уменьшению острых воспалительных процессов, стимулирует восстановительные процессы в организме, нормализует микроциркуляцию тканей, повышает общий иммунитет и устойчивость организма к различным заболеваниям.
На сегодняшний день доказано, что для низкоинтенсивного излучения характерно явно выраженное терапевтическое воздействие.

Лазеротерапией называется способ лечения, который основывается на использовании световой энергии лазерного излучения в медицинских целях.
Положительное влияние лазерного излучения на суставы заключается в том, что наблюдается перестройка субхондральной костной пластинки, нормализуется кровообращение в эндоосте и хрящ перестраивается в фиброзноволокнистый.

При влиянии лазерного излучения на кровь наблюдается улучшение реологических показателей крови, нормализуется кислородное снабжение тканей, меньше проявляется ишемия в тканях организма, нормализуется уровень холестерина, триглицеридов, сахара, приостанавливается высвобождение различных медиаторов воспаления, повышается общий иммунитет организма.

Что касается отрицательного влияния лазерного излучения на организм человека, то тут страдают, прежде всего, глаза. Даже лазеры очень маленькой мощности, составляющей всего лишь несколько милливатт, могут причинить вред зрению. Для длин волн от 400 до 700 нм, которые являются видимыми, имеют высокую степень пропускания и могут фокусироваться хрусталиком, попадание лазерного излучения в глаз, даже на пару секунд, вызвать частичную, а в некоторых случаях и полную потерю зрения. Лазеры высокой мощности могут даже повреждать внешние кожные покровы.

Влияние лазерного излучения особенно опасно для тканей, поглощающая способность которых максимальна. Глаз является наиболее уязвимым органом в этом плане. Причиной этого является незащищенность роговицы и хрусталика глаза, а также умение оптической системы глаза значительно увеличивать мощность лазерного излучения ближнего инфракрасного и видимого диапазонов, расположенных на глазном дне.

При поражении глаза лазерным излучением возникает боль, спазм век, текут слезы, отекают веки и глазное яблоко. В отдельных случаях наблюдается помутнение сетчатки и кровоизлияние. Клетки сетчатки после подобного повреждения уже не восстанавливаются.

Наши лучшие специалисты подробно объяснят вам, как уберечься от отрицательного влияния лазерного излучения и получить максимальную пользу от положительного влияния лазерного излучения

Лазерные излучения, их роль в процессах жизнедеятельности

В связи с широким применением лазерных источников излучения в научных исследованиях, промышленности, медицинский связи и др. возникает необходимость сохранения здоровья людей эксплуатирующих различные лазерные установки.

Лазер источник когерентного излучения, то есть согласованого во времени и пространстве движения фотонов в виде выделенного луча. Световая интенсивность лазерного луча в точке может быть больше, чем интенсивность Солнца. В соответствии с использованием различных материалов в качестве активной среды лазеры подразделяют на твердотелые, газовые, полупроводниковые, жидкостные на красителях, химические.

Действие излучения лазеров представляет опасность больше всего для органов зрения и кожного покрова. Характер воздействия на зрительный аппарат и степень поражающего действия лазера зависят от плотности энергии излучения, длины волны излучения (импульсное или непрерывное). Характер повреждения кожи зависит от цвета кожи, например пигментированная кожа значительно сильнее поглощает лазерное излучение, чем не пигментированная. Светлая кожа отражает до 40 % падающего на нее излучения. При действии лазерного излучения обнаружен ряд нежелательных изменений со стороны органов дыхания, пищеварения, сердечнососудистой и эндокринной систем. В некоторых случаях эти общие клинические симптомы носят довольно стойкий характер, являясь результатом влияния на нервную систему.

Рассмотрим действие наиболее биологически опасных спектральных диапазонов лазерного облучения. В инфракрасной области энергия наиболее «коротких» волн (0,7-1,3 мкм) может проникать на сравнительно большую глубину в кожу и прозрачные среды глаза. Глубина проникновения зависит от длины волны падающего излучения. Участок высокой прозрачности на длинах волн от 0,75 до 1,3 мкм имеет максимум прозрачности в районе 1,1 мкм. На этой длине волны 20 % энергии, падающей на поверхностный слой кожи, проникает в кожу на глубину до 5 мм. При этом в сильно пигментированной коже глубина проникновения может быть еще больше. И тем не менее кожа человека достаточно хорошо противодействует инфракрасному излучению, так как она способна рассеивать тепло благодаря кровообращению и понижать температуру ткани вследствие испарения влаги с поверхности.

Значительно труднее от инфракрасного облучения защитить глаза, в них тепло практически не рассеивается, и хрусталик, фокусирующий излучение на сетчатке, усиливает эффект биологического воздействия. Все это заставляет при работе с лазерами особое внимание обращать на защиту глаз. Роговая оболочка глаза прозрачна для излучения в интервале длин волн 0,75-1,3 мкм и становится практически непрозрачной только для длин волн более 2 мкм.

Степень теплового поражения роговицы зависит от поглошенной дозы облучения, причем травмируется главным образом поверхностный, тонкий слой. Если в интервале волн 1,2-1,7 мкм величина энергии облучения превышает минимальную дозу облучения то может произойти полное разрушение защитного эпителиьного слоя. Ясно, что подобное перерождение тканей в области, положенной непосредственно за зрачком, серьезно сказываетл на состоянии органа зрения.

Радужная оболочка, отличающаяся высокой степенью пигментации, поглощает излучение практически всего инфракрасного диапазона. Особенно сильно подвержена она действию излучения длиной волны 0,8-1,3 мкм, поскольку излучение почти не задерживается роговицей и водянистой жидкостью передней камеры глаза.

Минимальной величиной плотности энергии облучения в интервале волн 0,8-1,1 мкм, способной вызвать поражение радужной оболочки, считают 4,2 Дж/см2. Одновременное поражение росовой и радужной оболочек всегда носит острый характер, а поэтому оно наиболее опасно.

Поглощение средами глаза энергии излучения в инфракрасной области, падающей на роговую оболочку, растет с увеличением длины волны. При длинах волн 1,4-1,9 мкм роговица и передняя камера глаза поглощают практически все падающее излучение, а при длинах волн выше 1,9 мкм роговица становится единственным поглотителем энергии излучения.

Развитие лазерной техники заставило начать проводить исследования по определению предельно допустимых уровней облучения лазера.
Воздействие лазерного излучения на кожу человека является в основном тепловым. В качестве ориентировочной безопасной дозы для кожи рекомендуется считать плотность мощности 100 мВт/см2. Механизм теплового воздействия хорошо изучен. Несколько сложнее установить предельно допустимые уровни лазерного облучения глаз. Широкое использование лазеров с выходными параметрами, значительно отличающимися от параметров природных источников света, создает опасность для органа зрения человека.

При оценке допустимых уровней лазерной энергии необходимо учитывать суммарный эффект, производимый на прозрачные среды глаза, сетчатку и сосудистую оболочку. Оценим действие лазерного излучения на сетчатую оболочку глаза.

Размер зрачка в значительной мере определяет количество энергии излучения, попадающей в глаз и, следовательно, достигающей сетчатки. Для глаза, адаптированного к темноте, диаметр зрачка колеблется от 2 до 8 мм; при дневном свете - 2-3 мм, при взгляде на Солнце зрачок сужается до 1,6 мм в диаметре. Величина Поступающей внутрь световой энергии пропорциональна площади зрачка. Следовательно, суженный зрачок пропускает свето» поток в 15-25 раз меньше, чем зрачок расширенный. Площадь изображения источника излучения на сетчатке зависит от его v Ь лового размера, определяемого в основном расстоянием до исто ника. Для большинства неточечных источников размер изображения на сетчатке вычисляется по законам геометрической оптики зная эффективное фокусное расстояние нормального расслабленного глаза, можно найти размер изображения источника лазерного излучения на сетчатке в том случае, если известны расстояние до источника и линейный размер источника излучения.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...