Как называется окружность вокруг. Конспект проекта по математике:"Окружность и круг - это одна и та же фигура или нет?"

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Это замкнутая плоская линия, всякая точки которой равноудалена от одной и той же точки (O ), называемой центром .

Прямые (OA , OB , OС. . .), соединяющие центр с точками окружности - это радиусы .

Из этого получаем:

1. Все радиусы одной окружности равны.

2. Два круга с одинаковыми радиусами будут равны.

3. Диаметр равен двум радиусам.

4. Точка , лежащая внутри круга, ближе к центру, а точка, лежащая вне круга, дальше от центра, чем точки окружности.

5. Диаметр , перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам.

6. Дуги , заключенные между параллельными хордами , равны.

При работе с окружностями применяют следующие теоремы:

1. Теорема . Прямая и окружность не могут иметь более двух общих точек.

Из этой теоремы получаем два логично вытекающих следствия:

Никакая часть окружности не может совместиться с прямой, потому что в противном случае окружность с прямой имела бы более двух общих точек.

Линия, никакая часть которой не может совместиться с прямой, называется кривой .

Из предыдущего следует, что окружность есть кривая линия .

2. Теорема . Через всякие три точки, не лежащие на одной прямой, можно провести окружность и только одну.

Как следствие данной теоремы получаем:

Три перпендикуляра к сторонам треугольника вписанного в окружность проведенные через их середины, пересекаются в одной точке, которая является центром окружности.

Решим задачу. Требуется найти центр предложенной окружности .

Отметим на предложенной три любые точки A, B и С, начертим через них две хорды , например, AB и СB, и из середины этих хорд укажем перпендикуляры MN и PQ. Искомый центр, будучи одинаково удален от A, B и С, должен лежать и на MN, и на PQ, следовательно, он находится на пересечении этих перпендикуляров, т.е. в точке O.

И круг - геометрические фигуры, взаимосвязанные между собой. есть граничная ломаная линия (кривая) круга ,

Определение. Окружность - замкнутая кривая, каждая точка которой равноудалена от точки, называемой центром окружности.

Для построения окружности выбирается произвольная точка О, принятая за центр окружности, и с помощью циркуля проводится замкнутая линия.

Если точку О центра окружности соединить с произвольными точками на окружности, то все полученные отрезки будут между собой равны, и называются такие отрезки радиусами, сокращенно обозначаются латинской маленькой или большой буквой «эр» (r или R ). Радиусов в окружности можно провести столько же, сколько точек имеет длина окружности.

Отрезок, соединяющий две точки окружности и проходящий через ее центр, называется диаметром. Диаметр состоит из двух радиусов , лежащих на одной прямой. Диаметр обозначается латинской маленькой или большой буквой «дэ» (d или D ).

Правило. Диаметр окружности равен двум ее радиусам .

d = 2r
D = 2R

Длина окружности вычисляется по формуле и зависит от радиуса (диаметра) окружности. В формуле присутствует число ¶, которое показывает во сколько раз длина окружности больше, чем ее диаметр. Число ¶ имеет бесконечное число знаков после запятой. Для вычислений принято ¶ = 3,14.

Длина окружности обозначается латинской большой буквой «цэ» (C ). Длина окружности пропорциональна ее диаметру. Формулы для расчета длины окружности по ее радиусу и диаметру:

C = ¶d
C = 2¶r

  • Примеры
  • Дано: d = 100 см.
  • Длина окружности: C = 3,14 * 100 см = 314 см
  • Дано: d = 25 мм.
  • Длина окружности: С = 2 * 3,14 * 25 = 157 мм

Секущая окружности и дуга окружности

Всякая секущая (прямая линия) пересекает окружность в двух точках и делит ее на две дуги. Величина дуги окружности зависит от расстояния между центром и секущей и измеряется по замкнутой кривой от первой точки пересечения секущей с окружностью до второй.

Дуги окружности делятся секущей на большую и малую, если секущая не совпадает с диаметром, и на две равные дуги, если секущая проходит по диаметру окружности.

Если секущая проходит через центр окружности, то ее отрезок, расположенный между точками пересечения с окружностью, есть диаметр окружности, или самая большая хорда окружности.

Чем дальше секущая расположена от центра окружности, тем меньше градусная мера меньшей дуги окружности и больше - большей дуги окружности, а отрезок секущей, называемый хордой , уменьшается по мере удаления секущей от центра окружности.

Определение. Кругом называется часть плоскости, лежащая внутри окружности.

Центр, радиус, диаметр окружности являются одновременно центром, радиусом и диаметром соответствующего круга.

Так как круг - это часть плоскости, то одним из его параметров является площадь.

Правило. Площадь круга (S ) равна произведению квадрата радиуса (r 2 ) на число ¶.

  • Примеры
  • Дано: r = 100 см
  • Площадь круга:
  • S = 3,14 * 100 см * 100 см = 31 400 см 2 ≈ 3м 2
  • Дано: d = 50 мм
  • Площадь круга:
  • S = ¼ * 3,14 * 50 мм * 50 мм = 1 963 мм 2 ≈ 20 см 2

Если в круге провести два радиуса к разным точкам окружности, то образуется две части круга, которые называется секторами . Если в круге провести хорду, то часть плоскости между дугой и хордой называется сегментом окружности .

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром и радиусом называется множество точек плоскости, удаленных от на расстояние, не большее . Круг ограничен окружностью, состоящей из точек, удаленных от центра в точности на расстояние . Отрезки, соединяющие центр с точками окружности, имеют длину и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность – на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит ее и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние , то при она не пересекается с кругом, при пересекается с кругом по хорде и называется секущей, при имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают часть всей окружности. Центральный угол (рис. 3) измеряется тем же числом градусов, что и дуга , на которую он опирается; вписанный угол измеряется половиной дуги . Если вершина угла лежит внутри круга, то этот угол в градусной мере равен полусумме дуг и (рис. 4,а). Угол с вершиной вне круга (рис. 4,б), высекающий на окружности дуги и , измеряется полуразностью дуг и . Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4,в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка лежит внутри круга, то произведение длин отрезков проходящих через нее хорд постоянно. На рис. 5,a . Теорема о секущей и касательной (имеются в виду длины отрезков частей этих прямых) утверждает, что если точка лежит вне круга, то произведение секущей на ее внешнюю часть тоже неизменно и равно квадрату касательной (рис. 5,б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или ее дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть ее и приложить к линейке или же отметить на окружности точку и «прокатить» ее вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую-нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг правильные -угольники , то при , стремящемся к бесконечности, в пределе стремятся к . Поэтому естественно ввести следующие, уже строгие, определения: длина окружности - это предел последовательности периметров правильных вписанных в окружность -угольников, а площадь круга - предел последовательности их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на равных частей, точки деления соединяются ломаной и длина дуги полагается равной пределу периметров таких ломаных при , стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа следует формула для длины окружности:

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг и с общим центральным углом из соображений подобия вытекает пропорция , а из нее - пропорция , после перехода к пределу мы получаем независимость (от радиуса дуги) отношения . Это отношение определяется только центральным углом и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в . Тем самым получается формула для длины дуги:

где - радианная мера дуги.

Записанные формулы для и - это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного -угольника:

По определению левая часть стремится к площади круга , а правая - к числу

и , основания его медиан и , середины и отрезков прямых от точки пересечения его высот до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек и называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром $O$ и радиусом $R$ называется множество точек плоскости, удаленных от $O$ на расстояние, не большее $R.$ Круг ограничен окружностью, состоящей из точек, удаленных от центра $O$ в точности на расстояние $R.$ Отрезки, соединяющие центр с точками окружности, имеют длину $R$ и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность - на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит её и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние $d,$ то при $d > R$ она не пересекается с кругом, при $d

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают $1/360$ часть всей окружности. Центральный угол $AOB$ (рис. 3) измеряется тем же числом градусов, что и дуга $AB,$ на которую он опирается; вписанный угол $ACB$ измеряется половиной дуги $AB.$ Если вершина $P$ угла $APB$ лежит внутри круга, то этот угол в градусной мере равен полусумме дуг $AB$ и $A′B′$ (рис. 4, а). Угол с вершиной $P$ вне круга (рис. 4, б), высекающий на окружности дуги $AB$ и $A′B′,$ измеряется полуразностью дуг $A′B′$ и $AB.$ Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4, в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка $М$ лежит внутри круга, то произведение длин отрезков $AM⋅BM$ проходящих через нее хорд постоянно. На рис. 5, а $AM⋅BM=A′M′⋅B′M.$ Теорема о секущей и касательной (имеются в виду длины отрезков - частей этих прямых) утверждает, что если точка $М$ лежит вне круга, то произведение секущей $МА$ на её внешнюю часть $MB$ тоже неизменно и равно квадрату касательной $MC$ (рис. 5, б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или её дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть её и приложить к линейке или же отметить на окружности точку и «прокатить» её вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности $L$ к её диаметру $d=2R$ одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой $π$ («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую‑нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг $K$ правильные $n$‑угольники $M_n,$ то при $n,$ стремящемся к бесконечности, $M_n$ в пределе стремятся к $K.$ Поэтому естественно ввести следующие, уже строгие, определения: длина окружности $L$ - это предел последовательности периметров $P_n$ правильных вписанных в окружность $n$‑угольников, а площадь круга $S$ - предел последовательности $S_n$ их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на n равных частей, точки деления соединяются ломаной и длина дуги $L$ полагается равной пределу периметров $l_n$ таких ломаных при $n,$ стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа π следует формула для длины окружности:

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг $Γ$ и $Γ′$ с общим центральным углом из соображений подобия вытекает пропорция $l_n:l′_n=R:R′,$ а из нее - пропорция $l_n:R=l′_n:R′,$ после перехода к пределу мы получаем независимость (от радиуса дуги) отношения $l/R=l′/R′=α.$ Это отношение определяется только центральным углом $AOB$ и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в $O.$ Тем самым получается формула для длины дуги:

где $α$ - радианная мера дуги.

Записанные формулы для $L$ и $l$ - это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

$S=πR^2,$ $S=\frac{1}{2}αR^2.$

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного n‑угольника:

$S_n=\frac{1}{2}P_nh_n.$

По определению левая часть стремится к площади круга $S,$ а правая - к числу

$\frac{1}{2}LR=\frac{1}{2}⋅2πR⋅R =πR^2$

(апофема $h_n,$ конечно, стремится к $R$). Совершенно аналогично выводится и формула для площади сектора $s$:

$s=\lim S_n=\lim (\frac{1}{2}l_nh_n)=$ $\frac{1}{2}\lim l_n⋅\lim h_n=$ $\frac{1}{2}lR=$ $\frac{1}{2}αR^2$

($\lim $- читается «предел»). Тем самым решена и задача определения площади сегмента с хордой $AB,$ ибо она представляется как разность или сумма (рис. 1, 2) площадей соответствующих сектора и треугольника $AOB.$



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...