Какие радиоволны хорошо распространяются в воде. Радиоволны и их распространение

РАСПРОСТРАНЕНИЕ РАДИОВОЛН - процесс передачи в пространстве эл--магн. радиодиапазона (см. Радиоволны ).В естеств. условиях Р. р. происходит в разл. средах, напр. в атмосфере, космич. плазме, в поверхностном слое Земли.

Общие закономерности распространения радиоволн . Скорость Р. р. в свободном пространстве в вакууме равна с. Полная энергия, переносимая радиоволной, остаётся постоянной, а плотность потока энергии убывает с увеличением расстояния r от источника обратно пропорционально r 2 . Р. р. в др. средах происходит с фазовой скоростью, отличающейся от с , и в равновесной среде сопровождается поглощением эл--магн. энергии. Оба эффекта объясняются возбуждением колебаний электронов и ионов среды под действием электрич. поля волны. Если напряжённость поля E гармонич. волны мала по сравнению с напряжённостью поля, действующего на заряды в самой среде (напр., на электрон в атоме), то колебания происходят также по гармонич. закону с частотой w пришедшей волны. Колеблющиеся электроны излучают вторичные радиоволны той же частоты, но с др. амплитудами и фазами. В результате сложения вторичных волн с приходящей формируется результирующая волна с новой амплитудой и фазой. Сдвиг фаз между первичной и переизлучёнными волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн .

Амплитуда волны убывает с расстоянием по закону а фаза волны изменяется по закону y = wt - (w/с)nr , где x - показатель поглощения, n - преломления показатель ; n и x зависят от диэлектрической проницаемости e среды, её проводимости s и частоты волн w:


гденаз. тангенсом угла потерь. Фазовая скорость u = с/n , коэф. поглощения Среда ведёт себя как диэлектрик , если и как проводник, еслиВ первом случае во втором -и волна затухает на расстояниях - толщина скин-слоя (см. Скин-эффект) . В среде e ц s являются ф-циями частоты (см. Дисперсия волн) . Вид частотной зависимости е и s определяется структурой среды. Дисперсия радиоволн особенно существенна в тех случаях, когда частота волны близка к характерным собств. частотам среды (напр., при Р. р. в ионосферной и космич. плазме, см. ниже).

При Р. р. в средах, не содержащих свободных электронов (тропосфера, толща Земли), происходит смещение связанных электронов в атомах и молекулах среды в сторону, противоположную полю волны Е , при этом n > 1, u Ф < с . В плазме поле волны вызывает смещение свободных электронов в направлении E , при этом n < 1 и u Ф > с, т. е. фазовая скорость монохро-матич. волны может быть как меньше, так и больше с . Однако для того чтобы передать при помощи радиоволн к--л. информацию (энергию), необходимо иметь ограниченный во времени радиосигнал, представляющий собой нек-рый набор гармонич. волн. Спектральный состав сигнала зависит от его длительности и формы. Радиосигнал распространяется с групповой скоростью u гр. В любой среде u гр < с .

В однородных средах радиоволны распространяются прямолинейно, подобно световым лучам. Процесс Р. р. в этом случае подчиняется законам геометрической оптики . Однако реальные среды неоднородны. В них п , а следовательно, и u Ф различны в разных участках среды, что приводит к рефракции радиоволн . В случае плавных (в масштабе l) неоднородности справедливо приближение геом. оптики. Если показатель преломления зависит только от высоты h , отсчитываемой от сферической поверхности Земли, то вдоль траектории луча выполняется условие

Соотношение (2) представляет собой Снелля закон преломления для сферическислоистой среды. Здесь R 0 - радиус Земли, f - угол наклона луча к вертикали в произвольной точке траектории. Если вместо действит. показателя преломления га ввести приведённый показатель преломления

то закон преломления (2) получит вид

Соотношение (4) наз. законом преломления Снелля для плоскослоистой среды.

Если n убывает при увеличении h , то в результате рефракции луч, по мере распространения, отклоняется от вертикали и на нек-рой высоте h m становится параллельным горизонтальной плоскости, а затем распространяется вниз (рис. 1, а). Макс. высота h m , на к-рую луч может углубиться в неоднородную плоскослоистую среду, зависит от угла падения f 0 и определяется из условия


Рис. 1. а - рефракция радиоволн в плоскослоистой среде с grad n < 0; б - зависимость квадрата амплитуды напряжённости электрического поля радиоволны от высоты h .

В область h > h m лучи не проникают, и, согласно приближению геом. оптики, волновое поле в этой области должно быть равно 0. В действительности вблизи плоскости h = h m волновое поле возрастает, а при h > h m убывает экспоненциально (рис. 1, б) . Нарушение законов геом. оптики при Р. р. связано также с дифракцией волн , вследствие к-рой радиоволны могут проникать в область геом. тени. На границе области геом. тени образуется сложное распределение волновых полей. радиоволн возникает при наличии на их пути препятствий (непрозрачных или полупрозрачных тел) и особенно существенна в тех случаях, когда размеры препятствий сравнимы с l.

Если Р. р. происходит вблизи резкой границы (в масштабе l) между двумя средами с разл. электрич. свойствами (напр., атмосфера - поверхность Земли или тропосфера - ниж. граница ионосферы для достаточно длинных волн), то при падении радиоволн на резкую границу образуются отражённая и преломлённая (прошедшая) радиоволны. Если отражение происходит от границы проводящей среды (напр., от поверхностного слоя Земли), то глубина проникновения в него определяется толщиной скин-слоя.

В неоднородных средах возможно волноводное распространение радиоволн , при к-ром происходит локализация потока энергии между определ. поверхностями, за счёт чего волновые поля между ними убывают с расстоянием медленнее, чем в однородной среде (атм. волновод). В средах с плавными неоднородностями локализация связана с рефракцией, а в случае резких границ - с отражением.

В среде, содержащей случайные локальные неоднородности, вторичные волны излучаются беспорядочно в разл. направлениях. Рассеянные волны частично уносят энергию исходной волны, что приводит к её ослаблению. При рассеянии на неоднородностях размером l l (т. н. рассеяние Рэлея; см. Рассеяние света )рассеянные волны распространяются почти изотропно. В случае рассеяния на крупномасштабных прозрачных неоднородностях рассеянные волны распространяются в направлениях, близких к исходной волне. При l ! l возникает сильное резонансное рассеяние.

Влияние поверхности Земли на распространение радиоволн определяется как электрич. параметрами e и s грунтов и водных пространств, образующих земную кору, так и структурой поверхности Земли, т. е. её кривизной и неоднородностью. Р. р.- процесс, захватывающий большую область пространства, но наиб. существ. роль в Р. р. играет область, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах к-рого A и B на расстоянии r расположены передатчик и приёмник (радиотрасса, рис. 2). Большая ось эллипсоида равнамалая ось определяется размерами первой Френеля зоны и Ширина трассы уменьшается с убыванием l. Если высоты z 1 и z 2 , на к-рых расположены антенны передатчика и приёмника над поверхностью Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли и она не влияет на Р. р. (рис. 2, а) . При понижении обеих или одной из конечных точек радиотрассы (или увеличении длины волны) поверхность Земли пересекает эллипсоид. В этом случае на Р. р. оказывают влияние электрич. параметры области поверхности Земли, ограниченной эллипсом сечения, вытянутым вдоль трассы. При сохранении условий и в точке приёма возникает между прямой и отражённой волнами (см. Интерференция волн ).Амплитуда и фаза отражённой волны определяются с учётом Френеля формул для коэф. отражения. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля, к-рая характерна для декаметровых и более коротких радиоволн. Если z 1 /l < 1 и z 2 /l < 1, то радиотрасса выделяет участок поверхности Земли, ограниченный эллипсом с осями r + l(p/4) и


Рис. 2. Эллипсоидальная область пространства, существенная при распространении радиоволн (радиотрасса); А - излучатель; В - приёмник.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной) , обусловлено проводимостью поверхности в этой области. При P.p. вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной скин-слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны.

Рис. 3. Дальность "прямой видимости" r ограничена выпуклостью земной поверхности; R 0 - радиус Земли, z 1 , и z 2 , - высоты передающей А и приёмной В антенн соответственно.


Выпуклость земной поверхности ограничивает расстояние, на к-ром из точки приёма В "виден" передатчик А (область "прямой видимости", рис. 3). Однако радиоволны, огибая Землю в результате дифракции, могут проникать в область тени на большее расстояние(R 0 - радиус Земли). Практически в эту область за счёт дифракции могут проникать только километровые и более длинные волны (рис. 4).

Рис. 4 . График, иллюстрирующий связь дальности r распространения от величины W = 20lg|E/E * | , где E - напряжённость поля радиоволны в реальных условиях распространения с учётом огибания выпуклости земной поверхности (излучатель расположен на поверхности Земли); Е * - напряжённость поля для разных частот без учёта дифракции.


Фазовая скорость земных волн вблизи излучателя зависит от электрич. свойств. Однако на расстоянии в неск. l от излучателя u ф! с . Если радиоволны распространяются над электрич. неоднородной поверхностью, напр. сначала над сушей, а затем над морем, то при нересечении береговой линии резко изменяются амплитуда и направление Р. р. (береговая рефракция, рис. 5).

Рис. 5. Изменение напряжённости электрического поля волны при пересечении береговой линии.


Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей h , их горизонтальной протяжённости l , l и угла q падения волны на поверхность. Если неровности достаточно малы и пологи, так что kh cosq < < 1 (k - волновое число), и выполняется т. н. критерий Рэлея k 2 l 2 cosq < 1, то они слабо влияют на Р. р. Влияние неровностей зависит также от поляризации волн. Напр., для горизонтально поляризованных волн оно меньше, чем для волн, поляризованных вертикально. Когда неровности не малы и не пологи, энергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с h > l "возмущают" волновое поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению прямых и отражённых волн. Вершина горы служит естеств. ретранслятором. Это существенно при распространении метровых радиоволн в гористой местности (рис. 6).


Распространение радиоволн в тропосфере. Тропосфера - область атмосферы, расположенная между поверхностью Земли и тропопаузой, в к-рой темп-pa воздуха обычно убывает с высотой (в тропопаузе темп-ра с высотой увеличивается). Высота тропопаузы на земном шаре неодинакова, над экватором она больше, чем над полюсами, а в средних широтах, где существует система сильных западных ветров, изменяется скачкообразно. Тропосфера состоит из смеси нейтральных молекул и атомов газов, входящих в состав сухого воздуха, и паров воды. Диэлектрическая проницаемость, а следовательно, и показатель преломления газа, не содержащего свободных электронов и ионов, обусловлены дополнительными полями, создаваемыми смещением электронов в молекулах ( сухого воздуха) я ориентацией полярных молекул (пары воды) под действием электрич. поля волны.

Показатель преломления тропосферы

где p - давление сухого воздуха, е - давление водяного пара в миллибарах, Т - темп-pa. Показатель преломления не зависит от частоты и очень мало отличается от единицы. Так, у поверхности Земли с увеличением высоты происходит изменение параметров р, Т, е , определяющих значение показателей преломления. При нормальных метеорологич. условиях показатель преломления уменьшается с высотой:

Это приводит к искривлению траектории лучей. Для правильной оценки положения луча относительно поверхности Земли необходимо учитывать сферичность её поверхности, что можно сделать, вводя приведённый показатель преломления (3):

отличающийся от grad n не только по абс. величине, но и по знаку. В условиях нормальной тропосферной рефракции grad n пр > 0. В этом случае луч, вышедший из приподнятого над землёй излучателя под углом к вертикали, при распространении приближается к ней. При распространение лучей происходит в сторону уменьшающихся значений n пр. При этом, в зависимости от значений f 0 , луч может достигнуть поверхности Земли и отразиться от неё, достигнуть точки поворота, определяемой из условия (5), и при нек-ром значении угла f 0 точка поворота может лежать на поверхности Земли. В этом случае траектория луча является границей между областью, в к-рую могут попасть лучи, и областью тени. Нормальная тропосферная рефракция способствует увеличению области прямой видимости.

Метеорологич. условия существ. образом влияют на изменение показателя преломления, т. е. и на рефракцию радиоволн. Обычно в тропосфере давление воздуха н темп-pa С высотой уменьшаются, а давление водяного пара увеличивается. При нек-рых метеорологич. условиях, напр. при движении нагретого над сушей воздуха над более холодной поверхностью моря, темп-ра воздуха с высотой увеличивается, а давление водяного пара уменьшается (инверсия темп-ры и влажности). В этом случае показатель преломления изменяется с высотой не монотонно, т. е. dn пр /dh на нек-рой высоте может изменить знак. Если в интервале высот, определяемом толщиной слоя инверсии, то gradn np <0. В плоскослоистой среде с grad n пр < О лучи отражаются от высоты, определяемой из условия (5). В пространстве, ограниченном снизу поверхностью Земли, а сверху высотой, на к-рой dn пр /dh изменяет знак, возникают условия для волноводного распространения (рис. 7). В тропосферных волноводах, как правило, могут распространяться волны с l < 1 м.

Рис. 7. Траектории УКВ в тропосферном волноводе.


Поглощение радиоволн в тропосфере пренебрежимо мало для всех радиоволн вплоть до сантиметрового диапазона. Поглощение сантиметровых и более коротких волн резко увеличивается, когда частота волны w совпадает с одной из собств. частот колебаний молекул воздуха (резонансное поглощение). Молекулы получают от приходящей волны энергию, к-рая превращается в теплоту p только частично передаётся вторичным волнам. Известен ряд линий резонансного поглощения в тропосфере: l = 1,35 см, 1,5 см, 0,75 см (поглощение в парах воды) и l = 0,5 см, 0,25 см (поглощение в кислороде). Между резонансными линиями лежат области более слабого поглощения (окна прозрачности).

Ослабление радиоволн может быть также вызвано рассеянием на неоднородностях, возникающих при турбулентном движении воздушных масс (см. Турбулентность ).Рассеяние резко увеличивается, когда в воздухе присутствуют капельные неоднородности в виде дождя, снега, тумана. Почти изотропное рассеяние Рэлея на мелкомасштабных неоднородностях делает возможной радиосвязь на расстояниях, значительно превышающих прямую видимость (рис. 8). Т. о., тропосфера существенно влияет на распространение УКВ. Для декаметровых и более длинных волн тропосфера практически прозрачна, и на их распространение влияют земная поверхность и более высокие слои атмосферы.

Рис. 8. Рассеяние радиоволн на мелкомасштабных неоднородностях.


Распространение радиоволн в ионосфере. Ионосферу образуют верх. слои земной атмосферы, в к-рой газы частично (до 1%) ионизированы под влиянием УФ-, рентг. и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное кол-во положит. и отрицат. частиц, т. е. является плазмой. Достаточно большая ионизация, оказывающая влияние на Р. р., начинается на высоте 60 км (слой D ), увеличивается до высоты 300-400 км, образуя слои Е. F 1 , F 2 , и затем медленно убывает. В гл. максимуме концентрация электронов N достигает 10 6 см -3 . Зависимость N от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизиров. слой между 200 и 400 км состоит в осн. из равного кол-ва ионов О + и электронов. Эти частицы погружены в нейтральный газ с концентрацией 10 8 см -3 , состоящий в осн. из частиц О 2 , О, N 2 и Не.

В многокомпонентной плазме, содержащей электроны, ионы и нейтральные молекулы и пронизанной магн. полем Земли (см. Земной магнетизм) , могут возникать разл. виды собств. колебаний, имеющих разные частоты. Напр., плазменные (ленгмюровские) частоты электронов и ионов ги-ромагн. частоты электронов и ионов где т, М - массы электрона и иона, е - их заряд, N - концентрация, Н 0 - напряжённость магн. поля Земли. Т. к. то . Напр., для электронов=1,4 МГц, а для ионов атомарного кислорода= 54 Гц.

В зависимости от частоты w радиоволны осн. роль в Р. р. играют те или др. виды собств. колебаний, поэтому электрич. свойства ионосферы различны для разных участков радиодиапазона. При высоких w ионы не успевают следовать за изменениями поля и в Р. р. принимают участие только электроны. Вынужденные колебания свободных электронов ионосферы происходят в про-тивофазе с действующей силой и вызывают поляризацию плазмы в сторону, противоположную электрич. полю волны Е. Поэтому диэлектрич. проницаемость ионосферы e < 1. Она уменьшается с уменьшением частоты: Учёт соударений электронов с атомамии ионами даёт более точные ф-лы для e и s ионосферы:


Здесь v - эфф. частота соударений. Для декаметровых и более коротких волн в большей части ионосферы и показатели преломления h и поглощения приближённо равны:

Поскольку h < 1, фазовая скорость Р. р. УФ = = с/п > с , групповая скорость u гр = с/n < с .

Поглощение в ионосфере пропорц. v, т. к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы (слой D) , где v больше, т. к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния.

Рефракция радиоволн в ионосфере. В ионосфере распространяются только радиоволны с частотой w > w 0 . При w < w 0 показатель преломления становится чисто мнимым и эл--магн. поле экспоненциально убывает в глубь плазмы. Радиоволна с частотой w, падающая на ионосферу вертикально, отражается от уровня, на к-ром w = w 0 и n = 0. В ниж. части ионосферы электронная концентрация и w 0 увеличиваются с высотой, поэтому с увеличением w посланная с Земли волна всё глубже проникает в ионосферу. Макс. частота радиоволны, к-рая отражается от слоя ионосферы при вертикальном падении, наз. критич. частотой слоя:

Критич. частота слоя F 2 (гл. максимума) изменяется в течение суток и года в широких пределах (от 3-5 до 10 МГц). Для волн с показатель преломления не обращается в нуль и падающая вертикально волна проходит через ионосферу, не отражаясь.

При наклонном падении волны на ионосферу происходит рефракция, как в тропосфере. В ниж. части ионосферы gradM -1 , т. е. поэтому gradи траектория луча отклоняется по направлению к Земле (рис. 9). Радиоволна, падающая на ионосферу под углом f 0 , поворачивает к Земле на высоте h , для к-рой выполнено условие (5). Макс. частота волны, отражающейся от ионосферы при падении под углом (т. е. для данной дальности трассы), равнаи наз. максимально применимой частотой (МПЧ). Волны с отражаясь от ионосферы, возвращаются на Землю, что используется для дальней радиосвязи.


Рис. 9. Схематическое изображение радиолучей определённой частоты при различных углах падения на ионосферу.

Рис. 10. Распространение коротких волн между Землёй и ионосферой: а - много-скачковая траектория; б - скользящая траектория.


Вследствие сферичности Земли величина угла f 0 ограничена и дальность связи при однократном отражении от ионосферы3500-4000 км. Связь на большие расстояния осуществляется за счёт неск. последоват. отражений от ионосферы и Земли ("скачков", рис. 10,а ). Возможны и более сложные волноводные траектории, возникающие за счёт горизонтального градиента N или рассеяния на неоднородностях ионосферы при Р. р. с частотой w> w МПЧ. В результате рассеяния угол падения луча на слой F 2 оказывается больше, чем при обычном распространении. Луч испытывает ряд последоват. отражений от слоя F 2 , пока не попадёт в область с таким градиентом N , к-рый вызовет отражение части энергии назад к Земле (рис. 10, б) .

Влияние магнитного поля Земли Н 0 . В магн. поле Н 0 на электрон, движущийся со скоростью u , действует Лоренца сила под влиянием к-рой он вращается по окружности в плоскости, перпендикулярной Н 0 , с гиромагн. частотой w H . Траектория каждой заряж. частицы - винтовая линия с осью вдоль Н 0 . Действие силы Лоренца приводит к изменению характера вынужденных колебаний электронов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной e, а тензором диэлект-рич. проницаемости . Падающая на такую среду волна испытывает двойное лучепреломление ,т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление Р. р.то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн си. Для первой, "необыкновенной", волны (е )характер вынужденного движения электронов под действием поля волны Е изменяется (появляется компонента ускорения, перпендикулярная Е )и поэтому изменяется п . Для второй, "обыкновенной", волны (о ) вынужденное движение остаётся таким же, как и без поля Н 0 (присила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны

При Р. р. вдоль

В последнем случае обе волны имеют круговую поляризацию, причём у "необыкновенной" волны вектор E вращается в сторону вращения электрона, а у "обыкновенной" - в противоположную сторону. При произвольном направлении Р. р. (относительно Н„) поляризация нормальных волн эллиптическая.

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при P.p. вдоль Н 0 это приводит к повороту плоскости поляризации (Фарадея эффект ),а при Р. р. перпендикулярно Н 0 - к периодич. чередованию линейной и круговой поляризаций (см. Коттона - Мутона эффект) , Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 11). Направление k при Р. р. в ионосфере может отличаться от u гр.

Рис. 11 . Расщепление радиоволны в результате в ионосфере.


Низкочастотные волны в ионосфере. Осн. часть энергии НЧ-радиоволн практически не проникает в ионосферу. Волны отражаются от её ниж. границы (днём - вследствие сильной рефракции в D -слое, ночью - от E-слоя , как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной "фокусировке" поля. Это явление аналогично открытому Рэлеем в акустике эффекту "шепчущей галереи". Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ-волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 12). Из ф-лы (8) видно, что при в случае продольного распространения нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере приближение геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний · в атмосфере - естеств. источник НЧ-волн. В диапазоне 1-10 кГц они приводят к образованию т. н. свистящих атмосфериков ,к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.


Рис. 12 .

При Р. р. инфразвуковых частот с w " W H важную роль играют колебания ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики . В ионосфере возможно распространение неск. типов маг-нитогидродинамич. волн, в частности альвеновских волн , распространяющихся вдоль геомагн. поля с характерной скоростью(где r - плотность газа), и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).

Нелинейные эффекты при распространении радиоволн в ионосфере проявляются уже для радиволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика )."На-гревная" нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега электронов. Т. к. длина свободного пробега электронов в плазме значительна, электрон успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от электронов к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате электроны плазмы сильно "разогреваются" уже в сравнительно слабом электрич. поле, что изменяет эфф. частоту соударений. Поэтому b и s плазмы становятся зависящими от поля Е волны и Р. р. приобретает нелинейный характер. "Возмущение" диэлектрич. проницаемости

Где - характерное "плазменное" поле, Т - темп-pa плазмы, d - ср. доля энергии, теряемая электроном при одном соударении с тяжёлой частицей, - частота соударений.

Т. о., нелинейные эффекты становятся заметными, когда поле волны E сравнимо с E p , к-рое в зависимости от частоты волны и области ионосферы составляет ~10 -4 -10 -1 В/см.

Нелинейные эффекты могут проявляться как самовоздействие волны и как взаимодействие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры электронов может как расти (в ниж. слоях, где осн. роль играют соударения с нейтральными частицами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны ("насыщение" поля в плазме). Во втором случае поглощение падает (т. и. просветление плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение h в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.

Взаимодействие волн в условиях нелинейности приводит к нарушению суперпозиции принципа .В частности, если мощная волна с частотой w 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой w 2 , проходящей в той же области ионосферы (рис. 13) Это явление, называемое кросс модуляцией или Люксембург-Горьковским эффектом , имеет практич. значение при радиовещании в диапазоне ср. волн.


Рис. 13 . Ионосферная кроссмодуляция происходит в области пересечения лучей.

Нагрев ионосферы в поле мощной волны в КВ-диапа-зоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. Параметрический резонанс) . В области образуются сильно вытянутые вдоль Н 0 неоднородности ионосферы (с продольным масштабом 1 км, поперечным - 0,5100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн электроны столь сильно разогреваются, что возникает электрич. пробой газа.

Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега электронов, нагревная нелинейность становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. стрикционная нелинейность, связанная с тем, что неоднородное перем. электрич. поле волны оказывает давление на электроны, вызывающее сжатие плазмы. Концентрация электронов N , а следовательно, e и s становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости меньшей нагревного изменения на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.

Распространение радиоволн в космических условиях. За исключением планет и их ближайших окрестностей, б. ч. вещества во Вселенной ионизована. Параметры космич. плазмы меняются в широких пределах. Напр., концентрация электронов и ионов вблизи орбиты Земли ~1-10 см -3 , в ионосфере Юпитера ~10 5 см -3 , в солнечной короне ~10 8 см -3 , в недрах звёзд~10 27 см -3 . Из космич. пространства к Земле приходит широкий спектр эл--магн. волн, к-рые на пути из космоса должны пройти через ионосферу и тропосферу. Через атмосферу Земли без заметного затухания распространяются волны двух осн. частотных диапазонов: "радиоокно" соответствует диапазону от ионосферных критич. частот w кr до частот сильного поглощения аэрозолями и газами атмосферы (10 МГц - 20 ГГц), "оптич. окно" охватывает диапазон видимого и ИК-излучения (1-10 3 ТГц). Атмосфера также частично прозрачна в диапазоне НЧ (<300 кГц), где распространяются свистящие атмосферики и магнитогидродинамич. волны.

В космич. условиях источник радиоволн и их приёмник часто быстро движутся один относительно другого. В результате Доплера эффекта это приводит к изменению w на , где u - относит. скорость. Понижение частоты при удалении корреспондентов (красное смещение )свойственно излучению удаляющихся от нас далёких галактик. Радиоволны в космич. плазме подвержены рефракции, связанной с неоднородностью среды (рис. 14). Напр., вследствие рефракции в атмосфере Земли источник радиоволн виден выше над горизонтом, чем в действительности. Для определения расстояния до пульсаров и при интерпретации результатов Солнца и планет необходимо учитывать, что в космич. плазме

Рис. 14. Траектории радиолучей с l = 5 м в солнечной короне.


Возможности радиосвязи с объектами, находящимися в космич. пространстве или на др. планетах, разнообразны и связаны с наличием и строением их атмосфер. Если космич. плазма находится в магн. поле (магнитосфера Юпитера, области солнечных пятен, магнитосферы пульсаров), то она является гиротропной средой, подобно земной ионосфере. Для всех планет с атмосферами общая трудность радиосвязи состоит в том, что при входе космич. аппарата в плотные слои атмосферы вокруг него создаётся плотная плазменная оболочка, затрудняющая прохождение радиоволн. На планетах типа Меркурия и Луны, практически не имеющих атмосферы и ионосферы, на Р. р. оказывает влияние только поверхность планеты. Из-за отсутствия отражения от ионосферы дальность связи вдоль поверхности такой планеты невелика (рис. 15) и может быть увеличена только при помощи ретрансляции через спутник.

Рис. 15. Зависимость дальности r радиосвязи на поверхности Луны от частоты w/2p.


Распространение радиоволн разных диапазонов. Радиоволны очень низких (3-30 кГц) и низких (30- 300 кГц) частот огибают земную поверхность вследствие волноводного распространения и дифракции, сравнительно слабо проникают в ионосферу и мало поглощаются ею. Отличаются высокой фазовой стабильностью и способностью равномерно покрывать большие площади, включая полярные районы. Это обусловливает возможность их использования для устойчивой дальней и сверхдальней радиосвязи и радионавигации, несмотря на высокий уровень атм. помех. Полоса частот от 150 до 300 кГц используется для радиовещания. Большое число геофиз. исследований выполняется путём наблюдений за сигналами естеств. происхождения, к-рые генерируются, напр., молниевыми разрядами и частицами радиац. поясов Земли. Трудности применения этого частотного диапазона обусловлены громоздкостью антенных систем с высоким уровнем атм. помех, с относит. ограниченностью скорости передачи информации.

Средние волны (300-3000 кГц) днём распространяются вдоль поверхности Земли (земная, или прямая, волна). Отражённая от ионосферы волна практически отсутствует, т. к. волны сильно поглощаются в D -слое ионосферы. Ночью из-за отсутствия солнечного излучения D -слой исчезает, появляется ионосферная волна, отражённая от E -слоя, и дальность приёма возрастает. Сложение прямой и отражённой волн влечёт за собой сильную изменчивость поля, поэтому ионосферная волна - источник помех для мн. служб, использующих распространение земной волны. Ср. волны применяются для радиовещания, радиотелеграфной и радиотелефонной связи, радионавигации.

Короткие волны (3-30 МГц) слабо поглощаются D - и Е -слоями и отражаются от F-слоя , когда их частотымпч. В результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах. Этот диапазон применяется для радиотелефонной и радиотелеграфной связи, радиовещания, а также для радиолюбительской связи. Особенность радиосвязи в этом диапазоне - наличие замираний (фединга) сигнала из-за изменений условий отражения от ионосферы и интер-ференц. эффектов. КВ-линии связи подвержены влиянию атм. помех. Ионосферные бури вызывают прерывание связи.

Для очень высоких частот и УКВ (30 - 1000 МГц) преобладает Р. р. внутри тропосферы и проникновение сквозь ионосферу. Роль земной волны падает. Поля помех в НЧ-части этого диапазона всё ещё могут определяться отражениями от ионосферы, и до частоты 60 МГц ионосферное рассеяние продолжает играть значит. роль. Все виды Р. р., за исключением тропосферного рассеяния, позволяют передавать сигналы с шириной полосы частот в неск. МГц. В этой части спектра возможно очень высокое качество звукового радиовещания при дальности 50-100 км. Радиовещание с частотной модуляцией работает на частотах вблизи 100 МГц.

В этом же диапазоне частот ведётся телевиз. вещание. Для радиоастрономии выделено неск. узких спектральных полос, к-рые используют также для космич. связи, радиолокации, метеорологии, кроме того, для любительской связи.

Волны УВЧ и СВЧ (1000-10 000 МГц) распространяются в осн. в пределах прямой видимости и характеризуются низким уровнем шумов. В этом диапазоне при Р. р. играют роль известные области макс. поглощения и частоты излучения хим. элементов (напр., линии водорода вблизи 1420 МГц). В этом диапазоне размещены многоканальные системы широкополосной связи для передачи телефонных и телевиз. сигналов. Высокая направленность антенн позволяет использовать низкий уровень мощности в радиорелейных системах, а тропосферное рассеяние обеспечивает дальность радиосвязи ~ 800 км. Этот диапазон применяют в радионавигац. и радиолокац. службах. Для радиоастрономич. наблюдений выделены полосы частот за атомарным водородом, радикалом ОН и континуальным излучением. В космич. радиосвязи полоса частот ~ 1000- 10 000 МГц - наиб. важная часть радиодиапазона.

Волны СВЧ (>10 ГГц) распространяются только в пределах прямой видимости. Потери в этом диапазоне неск. выше, чем на более низких частотах, причём на их величину сильно влияет кол-во осадков. Роет потерь на этих частотах частично компенсируется возрастанием эффективности антенных систем. СВЧ служат в радиолокации, радионавигации и метеорологии. На линиях связи между поверхностью Земли и космосом могут использоваться частоты < 20 ГГц. Для связи в космосе могут применяться значительно более высокие частоты. При этом отсутствуют взаимные помехи между космич. и некосмич. службами. Диапазон СВЧ важен также для радиоастрономии.

Лит.: Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Fок В. А., Проблемы дифракции и распространения электромагнитных волн, М., 1970; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Железняков В. В., Электромагнитные волны в космической плазме, М., 1977.

П. А. Беспалов, М. Б, Виноградова .

В большинстве случаев приемная и передающая антенны или хотя бы одна из них размещаются на таких расстояниях от земной поверхности, при которых необходимо учитывать ее влияние на распространение радиоволн. При этом электрическое поле в месте приема можно представить как совокупность первичного поля, соответствующего полю вибратора в неограниченной однородной среде при отсутствии земной поверхности, и вторичного поля, обусловленного общим влиянием Земли на процессы распространения радиоволн.

Для определения величины напряженности электрического поля прежде всего необходимо знать электрические параметры - диэлектрическую проницаемость и проводимость различных видов земной поверхности. В табл. 2.1 указаны величины электрических параметров наиболее типичных видов земной поверхности в широком диапазоне волн. Эти величины определялись экспериментально по поглощению и отражению радиоволн различными поверхностями. Характерно, что для земной поверхности, однородной по глубине, во всем диапазоне радиоволн длиннее метровых параметры ε и γ не зависят от рабочей частоты, а на дециметровых и более коротких волнах ε уменьшается, а γ возрастает с повышением частоты.

Большая часть (71%) земного шара представляет собой водную поверхность. Электрические свойства воды зависят от степени ее солености: с увеличением солености увеличивается удельная электрическая проводимость γ (на волнах длиннее 3 см).

Условно рассматривают морскую и пресную воду, хотя содержание солей в воде различных морей неодинаково. Вода пресных водоемов также содержит различные примеси. Поэтому в табл. 2.1 указаны пределы возможного изменения величины γ.

Электрические свойства почвы зависят от ее структуры, степени влажности, однородности, температуры. С увеличением влажности электропроводность почвы возрастает.

Земная поверхность неоднородна по глубине. Обычно ее можно представить как структуру, состоящую из верхнего слоя, имеющего толщину не больше нескольких метров, и нижнего, простирающегося до бесконечности. Соотношение диэлектрических проницаемостей и проводимостей слоев может быть различным. Так, если верхний слой более влажный, а ниже идет сухой грунт, то величины ε и γ в верхнем слое больше, чем в нижнем; при промерзании верхнего слоя его параметры ε и γ могут стать меньше, чем в нижнем слое.

Растительность, снег, лед, покрывающие почву, можно рассматривать как полупроводящие слои, лежащие на поверхности почвы.

Оценим соотношение плотности токов проводимости и токов смещения в различных видах земной поверхности. Используя формулу (1.38) и параметры ε и γ, указанные в табл. 2.1, видим, что для морской воды равенство плотности токов проводимости и токов смещения наступает при длине волны


Поэтому для радиоволн сантиметрового диапазона морскую воду можно считать диэлектриком.

Для влажной почвы условие 60γλ / ε = 1 выполняется на волне


Влажную почву можно рассматривать как диэлектрик для метровых и более коротких волн.

Таким образом, для волн сантиметрового диапазона все виды земной поверхности имеют свойства, близкие к свойствам идеального диэлектрика.

Коэффициенты поглощения α и фазовой скорости β при распространении радиоволн в морской воде и влажной почве, на низких частотах, как видно из формулы (1.57), возрастают с повышением частоты. На высоких частотах эти величины, согласно уравнениям (1.54) и (1.56), перестают изменяться с повышением частоты, как это имеет место в идеальном диэлектрике. Графики частотной зависимости α и υ ф представлены на рис. 2.1 и 2.2.

Из графиков видно, что поглощение радиоволн в морской воде значительно превышает поглощение радиоволн во влажной почве.

Распространение KB ионосферной волной происходит путем последовательного отражения от слоя F (иногда слоя Е) ионосферы и поверхности Земли. При этом волны проходят через нижнюю область ионосферы - слои Е и D, в которых претерпевают поглощение (рис. 5, а). Для осуществления радиосвязи на KB должны быть выполнены два условия: волны должны отражаться от ионосферы и напряженность электромагнитного поля в данном месте должна быть достаточной для приема, т. е. поглощение волны в слоях ионосферы не должно быть слишком большим. Эти два условия ограничивают диапазон применимых рабочих частот.

Для отражения волны необходимо, чтобы рабочая частота была не слишком высокой, а электронная плотность ионосферного слоя достаточной для отражения этой волны в соответствии с (3-44). Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере (см. рис. 5). Наименьшая применимая частота (НПЧ) определяется из условия, что при данной мощности передатчика напряженность электромагнитного поля должна быть достаточной для приема.

Электронная плотность ионосферы меняется в течение суток и в течение года. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток:

Днем работают на волнах 10-25 м, а ночью на волнах 35-100 м.

Необходимость правильного выбора длины волны для сеансов связи в различное время усложняет конструкцию станции и работу оператора.

Зоной молчания KB называют кольцевую область, существующую на некотором расстоянии от передающей станции, в пределах которой невозможен прием радиоволн. Появление зоны молчания объясняется тем, что земная волна затухает и не достигает этой области (точка 6 на рис. 3-39, а), а для ионосферных волн, падающих под малыми углами на ионосферу, не выполняются условия отражения (3-44). Пределы зоны молчания (ВС) расширяются при укорочении длины волны и снижении электронной плотности.

Замирания в диапазоне KB более глубоки, чем в диапазоне СВ. Основной причиной замираний является интерференция лучей, распространяющихся путем одного и двух отражений от ионосферы (рис. 3-39, о). Помимо этого замирания вызываются рассеянием радиоволн на неоднородностях ионосферы и интерференцией рассеянных волн (рис. 3-39,6), а также интерференцией обыкновенной и необыкновенной составляющих магниторасщепленной волны (рис. 3-39,в). Обработка измерений за короткие.интервалы времени (до 5 мин) показала, что ф-ции распределения амплитуд близки к распределению Рэлея (3-54). В течение больших интервалов времени наблюдений распределение ближе к логарифмически нормальному со среднеквадратичным отклонением 6±1,25 дБ. В обоих случаях разность между уровнями напряженности поля сигнала, превышаемыми в течение 10 и 90% времени, составляет 16±3,2 дБ.

Скорость замирания (§ 3-6) лежит в пределах 6 - 16 замираний в минуту. На линиях протяженностью 3000 км скорость замираний в 2 - 6 раза меньше, чем на линии протяженностью 6000 км. Интервал времени корреляции колеблется в пределах?о = 4,5 - 1,5 с. Масштаб пространственной корреляции зависит от протяженности линии радиосвязи, рабочей частоты, характера неоднородностей ионосферы и лежит в пределах rо==210-560 м (10 - 25?). Для борьбы с замираниями применяется прием па разнесенные антенны. Направление разноса рекомендуется выбирать перпендикулярным к направлению трассы, расстояние разноса берут порядка масштаба корреляции 10?. Сигналы, принятые на разнесенные антенны, складывают после детектирования. Эффективным является разнесение по поляризации - прием на две антенны, имеющие взаимно перпендикулярную поляризацию. Используются также приемные антенны с
узкой диаграммой направленности, ориентированной на прием только одного из лучей.

При благоприятных условиях распространения KB могут огибать земной шар один и несколько раз. Тогда помимо основного сигнала может быть принят второй сигнал, запаздывающий примерно на 0,1 с и называемый радиоэхо. Радиоэхо оказывает мешающее действие, на линиях меридионального направления.

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...