Павел корнев "скользкий". Дополнительные материалы книги "Скользкий"

На гладко натертом полу легче поскользнуться, нежели на обыкновенном. Казалось бы, то же самое должно происходить на льду, т. е. гладкий лед должен быть более скользок, нежели лед бугорчатый, шероховатый.

Но если вам случалось везти нагруженные ручные санки через неровную, бугристую ледяную поверхность, вы могли убедиться, что, вопреки ожиданиям, сани проскальзывали по такой поверхности заметно легче, чем по гладкой. Шероховатый лед более скользок, чем зеркально гладкий!

Это объясняется тем, что скользкость льда зависит главным образом не от гладкости, а от совершенно особой причины: от того, что температура плавления льда понижается при увеличении давления.

Разберем, что происходит, когда мы катаемся в санях или на коньках. Стоя на коньках, мы опираемся на очень маленькую площадь, всего в несколько квадратных миллиметров. И на эту небольшую площадь целиком давит вес нашего тела. Если вы вспомните сказанное в главе второй о давлении, то поймете, что конькобежец давит на лед со значительной силой. Под большим давлением лед тает при пониженной температуре; если, например, лед имеет температуру - 5°, а давление коньков понизило точку плавления льда, попираемого коньками, более чем на 5°, то эти части льда будут таять [Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее]. Что же получается?

Теперь между полозьями коньков и льдом находится тонкий слой воды, - неудивительно, что конькобежец скользит. И как только он переместит ноги в другое место, там произойдет то же самое. Всюду под ногами конькобежца лед превращается в тонкий слой воды. Такими свойствами из всех существующих тел обладает только лед; один советский физик назвал его “единственным скользким телом в природе”. Прочие тела гладки, но не скользки.

[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. - Прим. ред ]

Теперь мы можем вернуться к вопросу о том, гладкий или шероховатый лед более скользок. Мы знаем, что один и тот же груз давит тем сильнее, чем на меньшую площадь он опирается. В каком же случае человек оказывает на опору большее давление: когда он стоит на зеркально гладком или на шероховатом льду? Ясно, что во втором случае: ведь здесь он опирается лишь на немногие выступы и бугорки шероховатой поверхности. А чем больше давление на лед, тем обильнее плавление и, следовательно, лед тем более скользок (если только полоз достаточно широк; для узкого полоза коньков, врезающегося в бугорки, это неприложимо - энергия движения расходуется здесь на срезывание бугорков).

Понижением точки таяния льда под значительным давлением объясняется и множество других явлений обыденной жизни. Благодаря этой особенности льда отдельные куски его смерзаются вместе, если их сильно сдавливать. Мальчик, сжимая в руках комья снега при игре в снежки, бессознательно пользуется именно этим свойством ледяных крупинок (снежинок) смерзаться под усиленным давлением, понижающим температуру их таяния. Катая снежный ком для “снежной бабы”, мы опять-таки пользуемся указанной особенностью льда: снежинки в местах соприкосновения, в нижней части кома, смерзаются под тяжестью надавливающей на них массы. Вы понимаете теперь, конечно, почему в сильные морозы снег образует рассыпающиеся снежки, а “баба” плохо лепится. Под давлением ног прохожих снег на тротуарах постепенно уплотняется в лед: снежинки смерзаются в сплошной пласт.

Задача о ледяных сосульках

Случалось ли вам задумываться над тем, как образуются ледяные сосульки, которые мы часто видим свешивающимися с крыш?
В какую погоду образовались сосульки: в оттепель или в мороз? Бели в оттепель, то как могла замерзнуть вода при температуре выше нуля? Если в мороз, то откуда могла взяться вода на крыше?
Вы видите, что задача не так проста, как кажется сначала. Чтобы могли образоваться ледяные сосульки, нужно в одно и то же время иметь две температуры: для таяния - выше нуля и для замерзания - ниже нуля.

На самом деле так и есть: снег на склоне крыши тает, потому что солнечные лучи нагревают его до температуры выше нуля, а стекающие капли воды у края крыши замерзают, потому что здесь температура ниже нуля. (Конечно, мы говорим не о том случае образования сосулек, который обусловлен теплотой отапливаемого под крышей помещения.)

Рис. 87. Лучи Солнца греют наклонную крышу сильнее, чем горизонтальную земную поверхность
(числа указывают величину углов).

Представьте такую картину. Ясный день; мороз всего в 1 - 2 градуса. Солнце заливает все своими лучами; однако же эти косые лучи не нагревают землю настолько, чтобы снег мог таять. Но на склон крыши, обращенный к Солнцу, лучи падают не полого, как на землю, а круче, под углом, более близким к прямому. Известно, что освещение и нагревание лучами тем больше, чем больший угол составляют лучи с плоскостью, на которую они падают. (Действие лучей пропорционально синусу этого угла; для случая, изображенного на рис. 87, снег на крыше получает тепла в 2,5 раза больше, нежели равная площадь снега на горизонтальной поверхности, потому что синус 60° больше синуса 20° в 2,5 раза.) Вот почему скат крыши нагревается сильнее и снег на нем может таять. Оттаявшая вода стекает и каплями свисает с края крыши. Но под крышей температура ниже нуля, и капля, охлаждаемая к тому же испарением, замерзает. На замерзшую каплю натекает следующая, также замерзающая; затем третья капля, и т. д.; постепенно образуется маленький ледяной бугорок. В другой раз при такой же погоде эти ледяные наплывы еще удлиняются, и в результате образуются сосульки, вырастающие наподобие известковых сталактитов в подземных пещерах. Так возникают сосульки на крышах сараев и вообще неотапливаемых помещений.

Та же причина вызывает на наших глазах и более грандиозные явления: ведь различие в климатических поясах и временах года обусловлено в значительной степени [Но не всецело: другая важная причина заключается в неодинаковой продолжительности дня, т. е. того промежутка времени, в течение которого Солнце согревает Землю. Обе причины, впрочем, обусловлены одним астрономическим фактом: наклоном земной оси к плоскости обращения Земли вокруг Солнца] изменением угла падения солнечных лучей. Солнце от нас зимой почти на таком же расстоянии, как и летом; оно одинаково удалено от полюсов и экватора (различия в расстоянии настолько ничтожны, что не имеют значения). Но наклон солнечных лучей к поверхности Земли близ экватора больше, чем у полюсов; летом этот угол больше, чем зимой. Это вызывает заметные различия в температуре дня и, следовательно, в жизни всей природы.

На гладко натертом полу легче поскользнуться, нежели на обыкновенном. Казалось бы, то же самое должно происходить на льду, т. е. гладкий лед должен быть более скользок, нежели лед бугорчатый, шероховатый.

Но если вам случалось везти нагруженные ручные санки через неровную, бугристую ледяную поверхность, вы могли убедиться, что, вопреки ожиданиям, сани проскальзывали по такой поверхности заметно легче, чем по гладкой. Шероховатый лед более скользок, чем зеркально гладкий! Это объясняется тем, что скользкость льда зависит главным образом не от гладкости, а от совершенно особой причины: от того, что температура плавления льда понижается при увеличении давления.

Разберем, что происходит, когда мы катаемся в санях или на коньках. Стоя на коньках, мы опираемся на очень маленькую площадь, всего в несколько квадратных миллиметров. И на эту небольшую площадь целиком давит вес нашего тела. Если вы вспомните сказанное в главе второй о давлении , то поймете, что конькобежец давит на лед со значительной силой. Под большим давлением лед тает при пониженной температуре; если, например, лед имеет температуру - 5°, а давление коньков понизило точку плавления льда, попираемого коньками, более чем на 5°, то эти части льда будут таять [Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее]. Что же получается? Теперь между полозьями коньков и льдом находится тонкий слой воды, - неудивительно, что конькобежец скользит. И как только он переместит ноги в другое место, там произойдет то же самое. Всюду под ногами конькобежца лед превращается в тонкий слой воды. Такими свойствами из всех существующих тел обладает только лед; один советский физик назвал его “единственным скользким телом в природе”. Прочие тела гладки, но не скользки.

[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. - Прим. ред. ]

Теперь мы можем вернуться к вопросу о том, гладкий или шероховатый лед более скользок. Мы знаем, что один и тот же груз давит тем сильнее, чем на меньшую площадь он опирается. В каком же случае человек оказывает на опору большее давление: когда он стоит на зеркально гладком или на шероховатом льду? Ясно, что во втором случае: ведь здесь он опирается лишь на немногие выступы и бугорки шероховатой поверхности. А чем больше давление на лед, тем обильнее плавление и, следовательно, лед тем более скользок (если только полоз достаточно широк; для узкого полоза коньков, врезающегося в бугорки, это неприложимо - энергия движения расходуется здесь на срезывание бугорков).

Понижением точки таяния льда под значительным давлением объясняется и множество других явлений обыденной жизни. Благодаря этой особенности льда отдельные куски его смерзаются вместе, если их сильно сдавливать. Мальчик, сжимая в руках комья снега при игре в снежки, бессознательно пользуется именно этим свойством ледяных крупинок (снежинок) смерзаться под усиленным давлением, понижающим температуру их таяния. Катая снежный ком для “снежной бабы”, мы опять-таки пользуемся указанной особенностью льда: снежинки в местах соприкосновения, в нижней части кома, смерзаются под тяжестью надавливающей на них массы. Вы понимаете теперь, конечно, почему в сильные морозы снег образует рассыпающиеся снежки, а “баба” плохо лепится. Под давлением ног прохожих снег на тротуарах постепенно уплотняется в лед: снежинки смерзаются в сплошной пласт.

Россия — это страна, в любой точке которой температура зимой может опуститься ниже нуля. Это значит, что все, живущие здесь, не понаслышке знают о том, что по льду ходить нужно осторожно — дабы не поскользнуться и не шлёпнуться на пятую точку. Это в лучшем случае. Худшими занимается травматология, и, поверьте, зимой там не скучают.

Учёные сходятся во мнении, что «скользкость» вызывается очень тонким слоем воды на поверхности льда. Однако они не могут прийти к консенсусу относительно того, почему он там образуется. У большинства твердых материалов этот слой отсутствует, но лёд не является типичным представителем этого класса веществ. В этой связи учёные рассматривают варианты, связанные с давлением, трением и особыми способами взаимодействия молекул.

Традиционно считалось, что для того чтобы растопить верхнюю кромку льда, на неё надо немного надавить.

Это хорошо иллюстрируется с помощью коньков и может объясняться одним странным свойством H2O — лёд не такой плотный, как жидкая вода. Когда вы оказываете давление на лёд — например, лезвием конька — система взаимодействия стремится снизить давление, уменьшив объём. Так как вода компактнее, чем лёд, её точка плавления опускается, образуется жидкость, по которой, собственно, и скользит лезвие. После того как визжащий от восторга обладатель спортинвентаря проедет, вода вновь превращается в лёд.

Всё вроде бы очень логично, однако вопросы, тем не менее, остаются. Даже для более тяжёлого конькобежца точка плавления опускается всего на несколько градусов, и это означает, что очень холодный лёд должен оставаться замороженным всегда. Кроме того, люди, ходящие по льду в нормальной обуви и создающие гораздо меньшее давление на него, всё равно поскальзываются. Так что существует и другая возможность — трение обуви по льду создаёт достаточно тепла, чтобы расплавить его. Это действительно правда, но ведь лёд не перестаёт быть скользким, если стоять на нём неподвижно? Так что это объяснение также отвечает не на все вопросы.

Есть и третья гипотеза, основанная на наблюдениях Майкла Фарадея. Он прижал два кусочка льда и заметил, что они слиплись друг с другом. Это позволило ему сделать вывод, что жидкие прослойки на поверхности этих кусков перестали быть таковыми и стали твёрдым льдом, когда потеряли контакт с воздухом. Благодаря этому уже современные учёные выдвинули идею о поверхностном таянии — возможно, молекулы воды движутся на оболочке более свободно, так как ничто не придавливает их сверху. Из-за меньшей стабильности они обладают энергией, достаточной для создания жидкой прослойки даже при отрицательной температуре. Другими словами физика гласит, что поверхность льда скользкая, потому что лед скользкий по своей природе.

Ни одна из описанных гипотез не доказана и не опровергнута полностью, поэтому можно предполагать, что окончательное объяснение, которое, несомненно, будет когда-то получено, явит собой некую их комбинацию. А пока давайте помнить, что лёд — это не только травмпункты и отбитые мягкие ткани, но и множество замечательных видов спорта, веселье и богатырское здоровье. Зима — отличное время года, радуйтесь ей. И берегите себя.

Всем детям, несомненно, нравится лед, который зимой дарит столько радости. Катание с горки, на коньках — красота! Откуда же появляется лед? Где льда больше всего? Почему лед скользкий и почему льдины плавают? Можно ли увидеть лед летом? На все эти и другие вопросы ответит наш рассказ про лед.

В природе лед встречается там, где холодно. И это неспроста. Оказывается, что такое известное вещество, как вода, при охлаждении до определенной температуры затвердевает и превращается в лед. Итак, лед – это замерзшая вода. Когда наступает зима, поверхность рек и озер покрывается льдом.

Почему лед не тонет в воде?
По какой причине мы наблюдаем лед именно на поверхности воды, а не где-то в глубине? Причина в том, что плотность льда меньше, чем у воды. За счет меньшей плотности лед легче воды и плавает на ее поверхности.

Изменение плотности во время превращения воды в лед порождает интересные эффекты. Например, стеклянную бутылку с водой, выставленную на мороз, разрывает на части, когда вода в бутылке превращается в лед. Поэтому следует быть осторожным при охлаждении напитков на морозе.

Почему лед скользкий?
А почему же лед скользкий? На этот вопрос знают ответ ученые-физики. Они объясняют, что при давлении на поверхность льда (когда мы наступаем на лед ногой или катимся по нему на коньках) лед немного плавится и возникает тонкая водяная пленка, которая и обеспечивает скольжение.

Свойство льда – скользкость — очень нравится всем детям. Как здорово зимой скатиться с высокой ледяной горки, покататься на катке на фигурных коньках или поиграть в хоккей!

Всегда ли тает лед?
В нашем сознании лед неразрывно связан с зимой. А есть ли места на нашей планете Земля, где лед не тает никогда? Да, такие места есть. Это ледники, которые находятся на вершинах высоких гор и в полярных областях Земли — в Арктике и в Антарктиде. Причем наибольшие запасы льда накоплены именно в ледниках Антарктиды, где толщина льда местами достигает четырех километров!

Ледники, соприкасающиеся с океаном, рождают айсберги. Айсберг – это часть ледника, отколовшаяся от него и свободно плавающая в океане. Айсберги представляют определенную опасность для мореплавателей.

Практическое использование льда
Способность льда накапливать холод люди давно научились использовать в практических целях. Еще в древние времена они устраивали искусственные ледники для хранения скоропортящихся продуктов. Такой ледник представлял собой деревянный сруб, врытый в землю и накрытый толстым слоем земли и дерна. Получившееся подземное помещение зимой наполняли льдом, который не таял даже летом.

Что такое град?
А может ли лед образоваться летом? Да, такое возможно, если в очень жаркий день влажные воздушные массы поднимутся на высоту выше 2,5 километров, где температура воздуха ниже точки замерзания воды. В таких условиях водяные капли замерзают и тогда на землю выпадает град – льдинки круглой или неправильной формы размером от горошины до голубиного яйца. Иногда градины бывают и более крупного размера. Град может представлять опасность для людей, для техники, для природы.

В первый раз, когда вы наступаете на ледовый каток, вы делаете это боязливо опасаясь падения. Но что делает лёд настолько скользким? Интересно, что ученые отвечают.

Физики верили, что лёд скользкий из-за воздействия силы тела. Это давление, которое они теоретизируют, увеличивает температуру плавления верхнего слоя льда.

Когда человек катается на льду, под давлением вызванном металлическим лезвием коньков, тает лёд. Этот тонкий слой воды позволяет коньку плавно скользить по поверхности. После прохождения льда колея снова замерзает.

Однако большинство ученых утверждают, что эта теория ошибочна. Лёд — загадочное тело, говорит Роберт М. Розенберг, профессор химии в Университете Лоуренса.

Исследователи обнаружили, что давление которое снижает температуру плавления льда, составляет лишь небольшое повышение градуса. Вместо этого они предложили, что трение конька заставляет лёд таять под ним.

Другие полагают что лёд естественно имеет слой жидкости, состоящий из нестабильных . Хотя эти молекулы стремятся к стабильности, они хаотично движутся по поверхности льда и создают скользкий слой.

Почему горячая вода замерзает быстрее?

Команда исследователей из Технологического университета Наньян в Сингапуре считает это хорошей тайной почему горячая вода замерзает быстрее холодной. Это явление, которое кажется совершенно нелогичным, уже было замечено самим Аристотелем. Он рассказывал, что некоторые жители нынешней Турции распыляли доски своих заборов горячей водой на которые нельзя было влезть, потому что таким образом они замерзали быстрее.

Однако до 70-х годов он получил название, эффект Мембы. Эрасто Б. Мемба, который понял в школе, что горячая смесь для мороженого замерзает быстрее.

Но до сих пор ученым не удалось найти удовлетворительного объяснения. По их мнению, дело связано с тем, как энергия хранится в водородных связях между молекулами воды.

Как известно, молекулы воды имеют один атом кислорода и два атома водорода, все они связаны ковалентными связями (обмен электронами).

В молекулах воды атомы водорода также притягиваются к атомам кислорода в других соседних молекулах воды. Это называется водородной связью. Но в то же время молекулы воды в целом отталкиваются друг от друга.

Авторы исследования отмечают, что чем больше воды нагревается, тем больше расстояние между молекулами обусловлено силой отталкивания между ними. Это заставляет молекулы водорода растягиваться, так что энергия сохраняется. Эта энергия, по мнению исследователей, высвобождается, когда вода охлаждается, позволяя молекулам сблизиться.

Горячая вода имеет большее количество водородных связей, чем холодная вода. Поэтому она хранит больше энергии и больше выделяется при воздействии температур ниже нуля. Вот почему, говорят исследователи, она замерзает быстрее, чем холодная вода.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...