При каких условиях возникает тлеющий разряд. Виды разрядов в газах

Этому виду разряда соответствует область между падающими участками ВАХ. Ток здесь на три-четыре порядка больше, чем ток темного разряда (миллиамперы вместо микроампер). Поэтому количество генерируемых разрядом фотонов соответственно увеличивается, что позволяет наблюдать свечение средней интенсивности, определившее название разряда. Вместе с электронными лавинами и -процессами в тлеющем разряде проявляется новый фактор: объемный заряд положительных ионов повышает потенциалы точек пространства между электродами (рис. 3.2). Заряд становится существенным в результате значительного увеличения тока.

Рис.3.2. Распределение потенциала в плоскопараллельном промежутке без пространственного заряда (1) и при действии положительного (ионного) пространственного заряда (2). Обозначения: х – расстояние от катода, d межэлектродное расстояние, d к - ширина области катодного падения потенциала

В электронных лавинах ионы и электроны образуются в одинаковом количестве (парами), однако пространственный заряд ионов значительно больше, чем электронов. Такое положение определяется тем, что скорость движения ионов к катоду много меньше, чем электронов к аноду. В результате ионы накапливаются в объеме в течение времени установления стационарного режима. В нем потоки ионов на катод и электронов на анод равны частоте ионизаций молекул в промежутке. Равенство потоков при малой скорости ионов обеспечивается тем, что после накопления в движении участвует больше ионов, чем электронов. Существенное превышение количества ионов в промежутке над количеством электронов определяет положительный знак суммарного пространственного заряда.

Потенциалы точек пространства под действием объемного заряда ионов возрастают, но не превышают потенциал анода (иначе электроны не смогли бы доходить до анода из-за тормозящего электрического поля). Как следствие, прикатодный участок графика распределения потенциала между электродами (рис. 3.2) идёт значительно круче, чем в случае малого пространственного заряда, а прианодный участок практически горизонтален. Почти все приложенное к промежутку напряжение сосредоточено в катодной области. Усиление объемного заряда с ростом тока проявляется в большем повышении потенциалов у катода и соответственно в уменьшении протяжённости области катодного падения потенциала (d к на рис. 3.2).

Перераспределение потенциала в промежутке с ростом тока (переход от прямой 1 к кривой 2) приводит к тому, что при x > d к развитие лавин прекращается, так как в этой области напряженность поля близка к нулю и ускорение электронов недостаточно для ионизации. Протяженность электронных лавин уменьшается (отd до d к ). В условиях правой ветви кривой Пашена это ведет к снижению напряжения, обеспечивающего самовоспроизводство носителей тока. В результате на ВАХ (рис. 3.1) появляется первый падающий участок, на котором с ростом тока необходимое для его поддержания напряжение уменьшается. Подобным образом объясняется и следующий далее возрастающий участок ВАХ: с увеличением тока значениеd к сокращается настолько, что произведениеp d к становится меньше величины, соответствующей минимуму кривой Пашена, и напряжение поддержания разряда растёт.

Между падающим и возрастающим участками ВАХ расположен сравнительно протяженный почти горизонтальный участок. Он соответствует «нормальному» тлеющему разряду и обусловлен интересной способностью разряда автоматически локализоваться на части поверхности катода. В начале участка площадь, занимаемая разрядом на катоде (далее –площадь свечения), мала, а с ростом тока она пропорционально увеличивается, так что плотность тока остается постоянной. В конце участка разряд занимает всю площадь катода. Постоянство плотности тока («закон Геля») определяет неизменность напряжения на участке.

Значение плотности тока разряд «выбирает» таким, чтобы величина произведения p d к соответствовала минимуму кривой Пашена (чтобы напряжение поддержания разряда было минимальным). В этом режиме на поддержание разряда затрачивается наименьшая мощность, что можно считать одной из причин локализации разряда.

Более детально последовательность процессов, определяющих «стягивание» разряда на части поверхности катода, можно представить следующим образом. В исходном состоянии при определенном значении тока разряд занимает всю поверхность катода, поэтому плотность тока и плотность пространственного заряда ионов сравнительно малы. Распределение потенциала близко к прямой 1 на рис. 3.2, а напряжение поддержания разряда велико и соответствует темному разряду. При неизменном токе случайно уменьшается площадь катода, занимаемая разрядом, что приводит к росту плотности пространственного заряда ионов и формированию области катодного падения потенциала с шириной d к , несколько меньшей межэлектродного расстоянияd. Сокращается протяженность электронных лавин и в соответствии с кривой Пашена уменьшается напряжение, необходимое для поддержания разряда.

В то же время напряжение между электродами сохраняется на исходном уровне, поскольку оно равно разности напряжения источника питания и падения напряжения на ограничительном резисторе, которое осталось прежним, поскольку прежним остался ток. В результате того, что напряжение на промежутке оказалось больше необходимого для поддержания разряда, коэффициент ионизационного нарастания становится больше единицы, ток увеличивается и падение напряжения на промежутке снижается, уменьшая коэффициентдо единицы. Это соответствует новому стационарному состоянию системы, но уже в условиях, когда площадь свечения меньше площади катода.

Далее процессы повторяются до того, когда произведение p d к по мере уменьшенияd к достигнет значения, соответствующего минимуму кривой Пашена. При этом площадь свечения будет такой, чтобы плотность пространственного заряда, определяющаяся плотностью тока, обеспечивала необходимую ширину области катодного падения потенциалаd к .

С ростом давления газа площадь свечения на катоде автоматически уменьшается, плотность тока возрастает, величина d к уменьшается, а произведениеp d к не изменяется. Как следствие, разряд по-прежнему расходует наименьшую мощность, а напряжение горения разряда (нормальное катодное падение потенциала) не зависит от давления газа. Оно определяется лишь родом газа и материалом катода:

где e = 2,7,А и В - константы, характеризующие ионизацию газа электронами. Значения нормального катодного падения потенциала для ряда случаев представлены на с. 44.

Плотность тока нормального тлеющего разряда (нормальная плотность тока ) определяется следующим соотношением:

где - подвижность ионов (см. с. 44), а- диэлектрическая проницаемость вакуума.

Поскольку подвижность обратно пропорциональна давлению газа, соотношение (3.2) можно представить в виде:

, (3.3)

где
- нормальная плотность тока при единичном давлении (см. с. 44), которая, как следует из соотношения (3.2), зависит от рода газа (коэффициентыА и В ) и материала катода (коэффициентγ ). Увеличение нормальной плотности тока с ростом давления перемещает правую границу горизонтального участка ВАХ вправо, поскольку в его конце разряд распространяется по всей поверхности катода, и ток равен произведению плотности тока на площадь катода (кривая 2 на рис. 3.1 правее первой).

Возрастающий участок ВАХ соответствует «аномальному» тлеющему разряду, при котором площадь свечения равна площади катода и с ростом тока увеличивается плотность тока. Напряжение, необходимое для поддержки разряда, повышается при увеличении тока в связи с тем, что растет плотность пространственного заряда, уменьшается ширина области катодного падения потенциала d к и произведениеp d к становится меньше величины, соответствующей минимуму кривой Пашена.

Приведённые выше упрощённые объяснения физических процессов базируются на том, что электродная система близка к плоскопараллельной (одномерной). Между тем в начале участка ВАХ, соответствующего нормальному тлеющему разряду, где площадь разряда на катоде мала, поперечный размер свечения может оказаться соизмеримым с шириной области катодного падения потенциала d к . В этом случае влияние пространственного заряда на распределение потенциала в промежутке определяется решением двумерной задачи. Потенциалы точек в разрядном канале оказываются ниже, чем в одномерном случае. Это можно интерпретировать как рост величиныd к , что сопровождается увеличением напряжения поддержания разряда с уменьшением тока. Такой разряд называется поднормальным тлеющим, поскольку он предшествует нормальному разряду.

ДУГОВОЙ РАЗРЯД

С увеличением тока аномального тлеющего разряда рост напряжения замедляется, и на ВАХ вновь появляется падающий участок (в амперном диапазоне). Напряжение снижается в результате того, что бомбардирующие катод ионы разогревают его до высокой температуры, достаточной для существенной термоэлектронной эмиссии. Формально можно считать, что за счет термоэмиссии растет число электронов, выходящих из катода, в расчете на один ион, поступающий на катод. Иными словами, можно считать, что увеличивается коэффициент вторичной ионно-электронной эмиссии . Как следствие, для поддержания тока требуется меньшее количество ионов, а значит – менее интенсивное развитие электронных лавин и менее высокое напряжение.

Температура катода при амперных значениях тока увеличивается значительно (до 3000 К и более), термоэмиссия становится основным механизмом выхода электронов из катода, а коэффициент приближается к единице (возрастает на 1 – 2 порядка). Поэтому напряжение поддержания разряда снижается очень сильно – от сотен вольт при аномальном тлеющем разряде до десятков вольт. Электронные лавины развиваются весьма слабо: на один электрон, выходящий из катода, приходится лишь несколько электронов, попадающих на анод, что приблизительно на порядок меньше, чем в тлеющем разряде. Соответственно уменьшается количество ионов, образующихся в каждой лавине. Однако количество лавин при большом токе велико и ионы обеспечивают разогрев катода до высокой температуры, несмотря на падение их энергии в результате уменьшения напряжения.

Напряжение поддержания разряда с ростом тока уменьшается приблизительно до потенциала ионизации газа. Более низкое напряжение невозможно, поскольку ионизация принципиально необходима для существования разряда. В ряде случаев напряжение становится ниже потенциала ионизации за счет ступенчатой ионизации молекул газа электронами или за счет ионизации атомов металла, испарившихся с поверхности катода.

Положение второго падающего участка ВАХ, соответствующего переходу тлеющего разряда в дуговой, существенным образом зависит от давления газа. С ростом давления начало участка сдвигается вправо по оси тока и вниз по оси напряжения. Иными словами, вправо и вниз сдвигается максимум ВАХ в области перехода тлеющего разряда в дуговой (кривая 2 на рис. 3.1 правее и ниже кривой 1). Эффект объясняется следующим образом. Для разогрева катода до определенной температуры требуется определенная мощность, выделяющаяся на катоде в результате ионной бомбардировки. Мощность пропорциональна количеству ионов (приблизительно – току разряда) и энергии ионов (приблизительно – анодному напряжению). С ростом давления газа ток перехода нормального тлеющего разряда в аномальный увеличивается. Следовательно, уровень мощности, достаточный для разогрева катода, достигается при меньшем напряжении, и начало участка спада на ВАХ перемещается вправо и вниз.

Такое перемещение при увеличении давления до некоторого значения, очевидно, приведет к тому, что напряжение перехода аномального тлеющего разряда в дуговой уменьшится до нормального катодного падения потенциала. Это означает, что нормальный тлеющий разряд перейдет в дуговой, минуя стадию аномального тлеющего разряда (без повышения напряжения). Дальнейшее увеличение давления приведет к тому, что в дуговой разряд сможет переходить нормальный разряд, занимающий лишь часть поверхности катода.

Положение участка ВАХ, соответствующего переходу нормального тлеющего разряда в аномальный, зависит от площади катода: с её увеличением участок сдвигается в сторону больших токов (кривая 3 рис. 3.1 правее кривой 2). В результате аномальный тлеющий разряд переходит в дуговой при меньшем напряжении. Можно предполагать и противоположное изменение напряжения перехода, поскольку для разогрева катода большей площади, очевидно, требуется большая мощность. На практике это не подтверждается, так как дуговой разряд обычно развивается с локализацией на части поверхности катода и до высокой температуры разогревается лишь небольшой участок катода (формируется «катодное пятно»).

Изложенный механизм существования дугового разряда действует только в случаях, когда катод выполнен из тугоплавкого материала (W, Mo, C, Nb, Ta). Если материал катода легкоплавкий (Hg, Al, Cu, Ni), то уровень термоэмиссии, необходимый для дугового разряда, достигается, как показывает расчет, лишь после плавления катода. Однако эксперимент показывает, что на легкоплавких катодах дуговой разряд может развиваться и без плавления катода (кроме ртути). Для него также характерны низкое, порядка потенциала ионизации, напряжение горения и большие, десятки и сотни ампер, величины токов.

Выход электронов из катода в таком разряде обеспечивается за счет автоэлектронной эмиссии. Необходимые высокие значения напряженности электрического поля при низком анодном напряжении достигаются в результате сильного уменьшения ширины области катодного падения потенциала d к (рис. 3.2). Сокращение этой области обусловлено стягиванием разряда на катоде в узкое пятно с резким увеличением плотностей тока и пространственного заряда ионов. В пятне интенсивно испаряется материал катода, что уменьшает длину свободного пробега электронов и облегчает ионизацию, поскольку потенциалы ионизации металлов в парообразном состоянии существенно (в 2 раза) меньше потенциалов ионизации газов. Пятно обычно хаотически перемещается по катоду.

Разряд в промежутке с катодом из тугоплавкого металла называют «термоэлектронная дуга», а в случае легкоплавкого катода – «автоэлектронная дуга» (по механизму выхода электронов из катода).

На рис. 3-26, а показан внешний вид тлеющего разряда, характеризующийся чередованием темных и светящихся слоев газа, носящих названия:

  1. первая катодная темная область;
  2. первое катодное свечение;
  3. вторая катодная темная область;
  4. второе катодное свечение (катодное тлеющее свечение);
  5. фарадеева темная область;
  6. столб разряда;
  7. анодная темная область;
  8. анодное свечение.

Рис. 3-26. Тлеющий разряд:
а - внешний вид;
б -распределение интенсивности свечения;
в - распределение потенциала;
г - напряженность поля;
д - распределение объемных зарядов.

Катодное падение потенциала при нормальном тлеющем разряде (свечением покрыта только часть поверхности катода) зависит от материала катода и рода газа и не зависит от давления газа и тока (табл. 3-16).

Таблица 3-16

Нормальное катодное падение потенциалов, В

Материал катода

100± 2

Ширина области нормального катодного падения потенциала зависит от материала катода и рода газа. Зависимость от давления газа определяется соотношением .

Для нормального тлеющего разряда характерна пропорциональность между площадью катода, покрытой свечением, и током, т. е. постоянная (нормальная) плотность тока на катоде (табл. 3-17).

Таблица 3-17

Нормальные плотности тока на катоде , при

Материал катода

При изменении давления газа р0 нормальная плотность тока изменяется по закону

где - нормальная плотность тока на катоде при ; - постоянная, зависящая от геометрии электродов и рода газа. При плоских электродах обычно (для Ne=1,5).

Когда при увеличении анодного тока вся поверхность катода покрывается свечением, катодное падение потенциала начинает возрастать с увеличением плотности тока. Такое катодное падение называется аномальным катодным падением потенциала, а сам разряд называется аномальным тлеющим разрядом.

При аномальном тлеющем разряде увеличение плотности тока сопровождается уменьшением ширины участка катодного падения потенциала.

На рис. 3-27 приведены рассчитанные теоретически универсальные кривые зависимости аномального катодного падения потенциала и ширины участка катодного падения потенциала от плотности тока . Их совпадение с экспериментальными данными удовлетворительно для инженерных расчетов.

Рис. 3.27

Прикатодные области разряда 1-4 (рис. 3-26), в которых сосредоточено катодное падение потенциала, являются жизненно необходимыми для существования тлеющего разряда. Участки 5 (фарадеева темная область) и 6 (столб разряда) являются пассивными участками разряда с хорошей электропроводностью, связывающими анод с катодными областями разряда.

В столбе разряда газ находится в сильно ионизированном состоянии, причем концентрации электронов и ионов примерно равны, т. е. объемный заряд компенсирован. Газ, находящийся в таком состоянии, называется плазмой.

При сближении анода с катодом сокращается, а затем исчезает столб разряда.

Дальнейшее сближение электродов на некоторое критическое расстояние приводит к исчезновению анодных участков разряда. При этом падение напряжения на разряде уменьшается на величину анодного падения потенциала, примерно равную ионизационному потенциалу газа.

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

Основную роль в поддержании тлеющего разряда играют первые две области его катодной части. Характерной особенностью этого типа разряда является резкое падение потенциала вблизи катода, которое связано с большой концентрацией положительных ионов на границе I и II областей, обусловленной сравнительно малой скоростью движения ионов у катоду. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны из катода. В области тлеющего свечения электроны производят интенсивную ударную ионизацию молекул газа и теряют свою энергию. Здесь образуются положительные ионы, необходимые для поддержания разряда. Напряженность электрического поля в этой области мала. Тлеющее свечение в основном вызывается рекомбинацией ионов и электронов. Протяженность катодного темного пространства определяется свойствами газа и материала катода.

В области положительного столба концентрация электронов и ионов приблизительно одинакова и очень велика, что обуславливает большую электропроводность положительного столба и незначительное падение в нем потенциала. Свечение положительного столба определяется свечением возбужденных молекул газа. Вблизи анода вновь наблюдается сравнительно резкое изменение потенциала, связанное с процессом генерации положительных ионов. В ряде случаев положительный столб распадается на отдельные светящиеся участки - страты, разделенные темными промежутками.

Положительный столб не играет существенной роли в поддержании тлеющего разряда, поэтому при уменьшении расстояния между электродами трубки длина положительного столба сокращается и он может исчезнуть совсем. Иначе обстоит дело с длиной катодного темного пространства, которая при сближении электродов не изменяется. Если электроды сблизились настолько, что расстояние между ними станет меньше длины катодного темного пространства, то тлеющий разряд в газе прекратится. Опыты показывают, что при прочих равных условиях длина d катодного темного пространства обратно пропорциональна давлению газа. Следовательно, при достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные , или катодные лучи .

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления , т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке длиной около 0,5 м, с впаянными у концов плоскими металлическими электродами (рис. 85.1). На электроды подается напряжение порядка 1000 В. При атмосферном давлении тока в трубке практически нет. Если понижать давление, то примерно при 50 мм рт. ст. возникает разряд в виде светящегося извилистого тонкого шнура, соединяющего анод с катодом. По мере понижения давления шнур утолщается и приблизительно при 5 мм рт. ст. заполняет все сечение трубки - устанавливается тлеющий разряд. Его основные части показаны на рис. 85.1. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой.

Между катодом и светящейся пленкой находится астоново темное пространство. По другую сторону светящейся пленки помещается слабо светящийся слой, по контрасту кажущийся темным и называемый катодным (или круксовым) темным пространством. Этот слой переходит в светящуюся область, которую называют тлеющим свечением. Все перечисленные слои образуют катодную часть тлеющего разряда.

С тлеющим свечением граничит темный промежуток - фарадеево темное пространство. Граница между ними размыта. Вся остальная часть трубки заполнена светящимся газом; ее называют положительным столбом. При понижении давления катодная часть разряда и фарадеево темное пространство расширяются, а положительный столб укорачивается. При давлении порядка 1 мм рт. ст. положительный столб распадается на ряд чередующихся темных и светлых изогнутых слоев - страт.

Измерения, осуществленные с помощью зондов (тоненьких проволочек, впаянных в разных точках вдоль трубки), а также другими методами, показали, что потенциал изменяется вдоль трубки неравномерно (см. график на рис. 85.1).

Почти все падение потенциала приходится на первые три участка разряда по катодное темное пространство включительно. Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала. В области тлеющего свечения потенциал не изменяется - здесь напряженность поля равна нулю. Наконец, в фарадеевом темном пространстве и положительном столбе потенциал медленно растет. Такое распределение потенциала вызвано образованием в области катодного темного пространства положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

Основные процессы, необходимые для поддержания тлеющего разряда, происходят в его катодной части. Остальные части разряда не существенны, они могут даже отсутствовать (при малом расстоянии между электродами или при низком давлении). Основных процессов два - вторичная электронная эмиссия из катода, вызванная бомбардировкой его положительными ионами, и ударная ионизация электронами молекул газа.

Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны ускоряются электрическим полем. Приобретя достаточную энергию, они начинают возбуждать молекулы газа, в результате чего возникает катодная светящаяся пленка. Электроны, пролетевшие без столкновений в область катодного темного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают (см. графики на рис. 83.1). Таким образом, интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы вначале имеют очень малую скорость. Поэтому в катодном темном пространстве создается положительный пространственный заряд, что приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

Электроны, возникшие в катодном темном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов и суммарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. Благодаря высокой концентрации электронов и ионов в области тлеющего свечения идет интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом тлеющее свечение есть в основном свечение рекомбинации.

Из области тлеющего свечения в фарадеево темное простран ство электроны и ионы проникают за счет диффузии (на границе между этими областями поле отсутствует, но зато имеется большой градиент концентрации электронов и ионов).

\ Для учителя физики

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Разработка урока с презентацией по физике на тему: "Электрический ток в газах"

Разработку урока по физике подготовила : Семенченко Галина Васильевна, г. Барнаул КГОУНПО ПУ -13, преподаватель физики,астрономии и электротехники, email: [email protected]

Эпиграф:

«Позавчера мы ничего не знали об электричестве, вчера мы ничего не знали об огромных резервах энергии, содержащихся в атомном ядре, о чем мы не знаем сегодня?»

/Луи де Бройль/

Электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду.

При столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы.

Процесс взаимной нейтрализации ионов называется рекомбинацией ионов.

При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию.

Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

Процесс прохождения электрического тока в газах называется газовым разрядом.

Разряды бывают двух видов:

Самостоятельный – разряд, возникающий без чьей – либо помощи в газах.

Несамостоятельный – разряд, возникающий в газах с помощью ионизатора.

Ионизаторы – это факторы, вызывающие ионизацию газа.

К факторам относятся:

  • нагревание газа до высокой температуры;
  • рентгеновских лучей;
  • лучей, возникающих при радиоактивном распаде;
  • космических лучей;
  • бомбардировки молекул газа быстро движущимися электронами или ионами.

Несамостоятельный разряд

Электропроводность газа создается внешними ионизаторами;

С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается;

Несамостоятельный газовый разряд не сопровождается свечением газа.

Самостоятельный разряд

Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником свободных зарядов является ударная ионизация молекул газа.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

Виды самостоятельных разрядов.

В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда.

Тлеющий разряд.

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше.

Основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

При достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные, или катодные лучи.

Вид тлеющего разряда

Тлеющий разряд полученный с помощью генератора

Применение тлеющего разряда

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков.

Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами.

Широко используется явление катодного распыления, т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку.

Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

Тлеющий разряд на производстве

Обработка коронным разрядом поверхностей

Коронный разряд

Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения).

При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. В случае коронирования катода (отрицательная корона) электроны, вызывающие ударную ионизацию молекул газа, выбиваются из катода при бомбардировке его положительными ионами.

Если коронируют анод (положительная корона), то рождение электронов происходит вследствие фотоионизации газа вблизи анода.

Корона - вредное явление, сопровождающееся утечкой тока и потерей электрической энергии. Для уменьшения коронирования увеличивают радиус кривизны проводников, а их поверхность делают более гладкой.

Вид коронного разряда

слайд№ 13

Частный случай коронного разряда – кистевой

При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым.

С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.

Огни святого Эльма

Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма.

Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками.

Огни святого Эльма перед грозой в океане

Слайд№ 17

Искровой разряд

Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми.

Каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами.

Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом.

Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 107 108 Па, и повышению температуры до 10000 С.

Применение искрового разряда

При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях).

Электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью.

Электроискровой станок

Слайд № 21

Характерным примером искрового разряда является молния.

Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

Молнии бывают линейные и шаровые.

Шаровая молния - это одиночная ярко светящаяся относительно стабильная небольшая масса, которая наблюдается в атмосфере, плавающая в воздухе и перемещающаяся вместе с потоками воздуха, содержащая в своем теле большую энергию, исчезающая тихо или с большим шумом типа взрыва и не оставляющая после своего исчезновения никаких материальных следов, кроме тех разрушений, которые она успела натворить.

Шаровая молния

Слайд № 23

Как вести себя во время грозы?

  1. Нельзя укрываться в грозу возле одиноко стоящих деревьев, столбов и других высоких местных предметов, надо отойти на 15 метров.
  2. Опасно находиться в воде или поблизости от неё.
  3. Палатку ставить у воды нельзя, так как молнии часто ударяют в речные берега.
  4. Никогда не следует недооценивать опасность молнии.
  5. Если гроза застала вас в автомобиле, не выходите из него. Закройте все двери и окна и переждите ненастье внутри.
  6. Находясь во время грозы в загородном доме, отключите из сети электроприборы, а телевизор – от индивидуальной антенны.
  7. Молния редко ударяет в кустарник, практически не попадает в клён и берёзу, чаще всего попадает в дуб и тополь.

Дуговой разряд

Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт).

Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало.

В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (ртутная дуговая лампа).

Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.

Применение дугового разряда

В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света.

Дуговой разряд применяется как источник света в прожекторах и проекционных аппаратах.

Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. Дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

В 1882 году Н. Н. Бенардос дуговой разряд впервые использовал для резки и сварки металла.

В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим.

Знаменитые физики, изучавшие дуговой разряд.

Применение плазмы

Низкотемпературная плазма применяется в газоразрядных источниках света - в светящихся трубках рекламных надписей, в лампах дневного света. Газоразрядную лампу используют во многих приборах, например, в газовых лазерах - квантовых источниках света.

Высокотемпературная плазма применяется в магнитогидродинамических генераторах.

Недавно был создан новый прибор - плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...