Приведение матрицы к каноническому виду примеры. Виды матриц

Любая квадратичная форма с помощью невырожденного линейного преобразования может быть приведена к каноническому виду , определенному формулой

где форма f ранга от n неизвестных; числа, , считаются положительными, но часть слагаемых формулы (VII.5) могут быть отрицательными.

При таком условии заменой , ; и , невырожденное линейное преобразование приводит квадратичную форму к нормальному виду, то есть

Общее число квадратов равно рангу квадратичной формы.

Существует много линейных преобразований, приводящих квадратичную форму к нормальному виду (VII.6), но с точностью до расположения знаков такое приведение единственное .

Для квадратичных действительных форм выполняется закон инерции . Число положительных и отрицательных квадратов в нормальном виде, к которому приводится данная квадратичная форма с действительными коэффициентами действительным линейным преобразованием, не зависит от выбора этого преобразования.

Число положительных (отрицательных) квадратов в нормальной форме формы f называется положительным (отрицательным) индексом инерции (в формуле (VII.6) это k ), разница между положительными и отрицательными индексами инерции называется сигнатурой формы f (в формуле (VII.6) она равна r -k ).

Пусть дана квадратная матрица размерности n квадратичной формы f . Миноры, расположенные по главной диагонали этой матрицы, порядков 1, 2, …, n , последний из них совпадает с определителем матрицы , , то есть

называются главными минорами формы f .

Теорема VII.1. Квадратичная форма f от n неизвестных с действительными коэффициентами тогда и только тогда будет состоять из положительных членов, когда все главные миноры положительны.

Пример VII.3. Квадратичная форма

положительно определена, так как все главные миноры матрицы положительны:

, , .

Приводить квадратичную форму к каноническому виду можно, как уже отмечалось, многими способами, но нормальный вид один. Покажем это на примере.

Пример VII.4. Привести к каноническому виду квадратичную форму .

Решение . Зададим линейное преобразование:

1) тогда получим .

Для другого преобразования имеем

2) тогда получим .

Нормальный вид квадратичной формы, которому соответствуют оба канонических вида, .

Упражнение. Проверить справедливость полученных формул непосредственной подстановкой преобразований 1) и 2) в исходную квадратичную форму.

Вполне естественно возникает вопрос: «Как найти матрицу линейного преобразования (оператора)?»

Прежде чем перейти к рассмотрению следующего примера, дадим некоторые пояснения. Не нарушая сущности общего подхода, ограничимся уравнением

где правая часть есть квадратичная форма, заданная в декартовой системе координат . С другой стороны, это выражение определяет линию второго порядка. Ясно что если правая часть последнего равенства представлена суммой квадратов переменных

,

то имеем канонический вид квадратичной формы.

Оба уравнения будут описывать одну и ту же линию второго порядка, если в форме h сохранен прежний масштаб. Для получения канонического вида H обычно используют характеристическое уравнение. Недостаток такого подхода состоит в том, что неизвестна связь между системами координат и . Образно говоря, мы не знаем расположение линии L в системе координат , если она записана в каноническом виде h . Такой переход можно осуществить поворотом осей системы координат на угол j (рис. VII.1), то есть перейти от координат x , y к x 1 , y 1 по формулам

Для обратного преобразования необходимо заменить угол j
на -j .

Чтобы узнать расположение линии, мы должны найти преобразование координат, приводящее равенство H к виду h . Заметим, что для сохранения масштаба следует перейти к ортонормированной системе координат.

Пример VII.5. Задана квадратичная форма в декартовой системе координат

Требуется привести ее к каноническому виду, то есть записать ее вид в системе и найти линейное преобразование. Получить нормальный вид квадратичной формы.

Решение . Составим симметричную матрицу линейного преобразования (оператора) A

.

Построим характеристический многочлен и найдем собственные числа и собственные векторы. Затем будем последовательно выполнять задания примера. Имеем

Характеристическое уравнение представляется равенством

.

Вычислив определитель матрицы, получим многочлен , корни которого , являются собственными числами. Запишем канонический вид формы (VII.7):

Найдем линейное преобразование, то есть установим связь между системами и . Так как корни действительные и различные и нет нулей, то преобразование невырожденное. Найдем собственные векторы в базисе (векторы будем представлять столбцами). Для этого решим систему уравнений

определенную для каждого из собственных чисел.

При , из (VII.8) имеем матричное уравнение

.

Полагая, с необходимостью, , получим

при , имеем . Первый собственный вектор найден , его длина .

При имеем

или

Прибавляя к первому уравнению второе и, замечая, что если полученное уравнение решать как систему с третьим, то с необходимостью перейдем к первому собственному вектору. Остается составить систему уравнений из суммы двух первых и второго уравнения, тогда получим

Полагая , после упрощений получим систему

Матрицы - удобный инструмент для решения самых различных алгебраических задач. Знание некоторых простых правил для оперирования с ними позволяет приводить матрицы к любым удобным и необходимым в данный момент формам. Часто полезным является использование канонической формы матрицы.

Инструкция

Запомните, что канонический вид матрицы не требует, чтобы на всей главной диагонали стояли единицы. Суть определения заключается в том, что единственные ненулевые элементы матрицы в ее каноническом виде – это единицы. Если они присутствуют, то располагаются на главной диагонали. При этом их количество может варьироваться от нуля до количества строчек в матрице.

Не забывайте, что элементарные преобразования позволяют любую матрицу привести к каноническому виду . Самая большая сложность – интуитивно найти наиболее простую последовательность цепочек действий и не ошибиться в вычислениях.

Выучите основные свойства операций со строчками и столбцами в матрице. К элементарным преобразованиям относят три стандартных преобразования. Это умножение строчки матрицы на любое ненулевое число, суммирование строк (в том числе прибавление к одной другой, умноженной на какое-то число) и их перестановка. Подобные действия позволяют получить матрицу эквивалентную данной. Соответственно, вы можете выполнить такие операции и со столбцами без потери эквивалентности.

Старайтесь не выполнять одновременно сразу несколько элементарных преобразований: продвигайтесь от этапа к этапу, чтобы не допустить случайной ошибки.

Найдите ранг матрицы, чтобы определить количество единиц на главной диагонали: это подскажет вам, какой окончательный вид будет иметь искомая каноническая форма, и избавит от необходимости выполнять преобразования, если требуется просто использовать ее для решения.

Воспользуйтесь методом окаймляющих миноров для того, чтобы выполнить предыдушую рекомендацию. Вычислите минор к-ого порядка, а также все окаймляющие его миноры степени (к+1). Если они равны нулю, то ранг матрицы есть число к. Не забывайте, что минор Мij – это определитель матрицы, получаемой при вычеркивании строки i и столбца j из исходной.


Внимание, только СЕГОДНЯ!

Все интересное

Матрицы, представляющие собой табличную форму записи данных, широко применяются при работе с системами линейных уравнений. Причем число уравнений определяет количество строк матрицы, а количество переменных – порядок ее столбцов. В результате…

Рангом матрицы S называют наибольший из порядков ее миноров, отличных от нуля. Минорами являются определители квадратной матрицы, которая получается из исходной путем выбора произвольных строк и столбцов. Обозначается ранг Rg S, а его вычисление…

Матрица – это математический объект, представляющий собой прямоугольную таблицу. На пересечении столбцов и строк этой таблицы расположены элементы матрицы – целые, действительные или комплексные числа. Размер матрицы устанавливается по количеству ее…

Алгебраическое дополнение – элемент матричной или линейной алгебры, одно из понятий высшей математики наряду с определителем, минором и обратной матрицей. Однако несмотря на кажущуюся сложность, найти алгебраические дополнения нетрудно. Инструкция…

Матрица - это упорядоченная совокупность чисел в прямоугольной таблице, имеющая размерность m строк на n столбцов. Решение сложных систем линейных уравнений основано на вычислении матриц, состоящих из заданных коэффициентов. В общем случае при…

Матричная алгебра – раздел математики, посвященный изучению свойств матриц, их применению для решения сложных систем уравнений, а также правилам действий над матрицами, включая деление. Инструкция 1Существует три действия над матрицами: сложение,…

Алгебраические дополнения – это одно из понятий матричной алгебры, применяемое к элементам матрицы. Нахождение алгебраических дополнений является одним из действий алгоритма определения обратной матрицы, а также операции матричного деления. …

Матрица В считается обратной для матрицы А, если при их умножении образуется единичная матрица Е. Понятие «обратной матрицы» существует только для квадратной матрицы, т.е. матрицы «два на два», «три на три» и т.д.…

Для каждой невырожденной (с определителем |A|, не равном нулю) квадратной матрицы А существует единственная обратная матрица, обозначаемая А^(-1), такая, что (А^(-1))А=А, А^(-1)=Е. Инструкция 1Е называется единичной матрицей. Она состоит из…

Математическая матрица является упорядоченной таблицей элементов с определенным числом строк и столбцов. Чтобы найти решение матрицы, необходимо определить, какое действие требуется над ней выполнить. После этого действуйте согласно имеющимся…

Математика, безусловно, является «королевой» наук. Не каждый человек способен познать всю глубину ее сущности. Математика объединяет в себя множество разделов, и каждый является своеобразным звеном математической цепи. Таким же основным…

Если в любой матрице A взять произвольные k строк и столбцов и составить из элементов этих строк и столбцов подматрицу размера k на k, то такая подматрица называется минором матрицы A. Количество строк и столбцов в наибольшем таком миноре, отличном…

1. Выясним сначала, к какому сравнительно простому виду можно привести прямоугольную многочленную матрицу путем применения одних только левых элементарных операций.

Допустим, что в первом столбце матрицы имеются элементы, не равные тождественно нулю. Возьмем среди них многочлен наименьшей степени и путем перестановки строк сделаем его элементом . После этого разделим многочлен на ; частное и остаток обозначим через и

Вычтем теперь из -й строки первую строку, предварительно умноженную на . Если при этом не все остатки равны тождественно нулю, то тот из них, который не равен нулю и имеет наименьшую степень, может быть перестановкой строк поставлен на место . В результате всех этих операций степень многочлена понизится.

Теперь мы снова повторим этот процесс и т. д. Так как степень многочлена конечна, то на некотором этапе этот процесс уже нельзя будет продолжить, т. е. на этом этапе все элементы окажутся равными тождественно нулю.

После этого возьмем элемент и применим ту же процедуру к строкам с номерами . Тогда добьемся того, что и . Продолжая так далее, мы в конце концов приведем матрицу к следующему виду:

(5)

Если многочлен не равен тождественно нулю, то, применяя левую элементарную операцию второго типа, мы сделаем степень элемента меньшей, нежели степень (если имеет нулевую степень, то станет тождественно равен нулю). Точно так же, если , то при помощи левых элементарных операций второго типа мы сделаем степени элементов меньшими, нежели степень , не изменив при этом элемента , и т. д.

Мы установили следующую теорему:

Теорема 1. Произвольная прямоугольная многочленная матрица с размерами при помощи левых элементарных операций всегда может быть приведена к виду (5), где многочлены имеют меньшую степень, нежели , если только , и все равны тождественно нулю, если .

Совершенно аналогично доказывается

Теорема 2. Произвольная прямоугольная многоценная матрица с размерами при помощи правых элементарных операций всегда может быть приведена к виду

(6)

где многочлены имеют меньшую степень, нежели , если только , и все равны тождественно нулю, если .

2. Из теорем 1 и 2 вытекает следующее

Следствие. Если определитель квадратной многоценной матрицы не зависит от и отличен от нуля, то эту матрицу можно представить в виде произведения конечного числа элементарных матриц.

Действительно, согласно теореме 1 матрицу при помощи левых элементарных операций можно привести к виду

(7)

где – порядок матрицы . Так как при применении элементарных операций к квадратной многочленной матрице определитель этой матрицы умножается лишь на постоянный отличный от нуля множитель, то определитель матрицы (7), как и определитель , не зависит от и отличен от нуля, т. е.

.

Но тогда в силу той же теоремы 1 матрица (7) имеет диагональный вид и потому может быть приведена при помощи левых элементарных операций типа 1 к единичной матрице . Тогда и обратно, единичную матрицу можно привести к при помощи левых элементарных операций с матрицами . Следовательно,

Из доказанного следствия получаем (см. стр. 137 – 138) равносильность двух определений 2 и 2" эквивалентности многочленных матриц.

3. Вернемся к нашему примеру системы дифференциальных уравнений (4). Применим теорему 1 к матрице операторных коэффициентов . Тогда, как было указано на стр. 138, система (4) заменится равносильной системой

(4")

где . В этой системе мы функции можем выбрать произвольно, после чего последовательно определятся функции , причем на каждом этапе этого определения приходится интегрировать одно дифференциальное уравнение с одной неизвестной функцией.

4. Перейдем теперь к установлению «канонического» вида, к которому можно привести прямоугольную многочленную матрицу , применяя к ней как левые, так и правые элементарные операции.

Среди всех не равных тождественно нулю элементов матрицы возьмем тот элемент, который имеет наименьшую степень относительно , и путем соответствующей перестановки строк и столбцов сделаем его элементом . После этого найдем частные и остатки от деления многочленов и на :

Если хотя бы один из остатков , например , не равен тождественно нулю, то, вычитая из -го столбца первый столбец, предварительно помноженный на , мы заменим элемент остатком , который имеет меньшую степень, нежели . Тогда мы имеем возможность снова уменьшить степень элемента, стоящего в левом верхнем углу матрицы, поместив на это место элемент с наименьшей степенью относительно .

Если же все остатки ; равны тождественно нулю, то, вычитая из -й строки первую, помноженную предварительно на , а из -го столбца – первый, предварительно помноженный на , мы приведем нашу многочленную матрицу к виду

Если при этом хотя бы один из элементов не делится без остатка на , то, прибавляя к первому столбцу тот столбец, который содержит этот элемент, мы придем к предыдущему случаю и, следовательно, снова сможем заменить элемент многочленом меньшей степени., мы матрицу (8) приведем к виду строк на соответствующие отличные от нуля числовые множители, мы сможем добиться того, чтобы старшие коэффициенты многочленов, и установим формулы, связывающие эти многочлены с элементами матрицы .

Раздел 3. Матрицы

3.1 Основные понятия

Матрицей называется прямоугольная таблица чисел, содержащая т строк одинаковой длины (или п столбцов одинаковой длины). Матрица записывается в виде:

или, сокращенно,
, где
(т.е.
) – номер строки,
(т.е.
) – номер столбца.

Матрицу А называют матрицей размера
и пишут
. Числа, составляющие матрицу, называются ее элементами. Элементы, стоящие на диагонали, идущей из верхнего левого угла, образуют главную диагональ.

Пример 1. Элемент
расположен в 1-й строке и 2-м столбце, а элементнаходится в 3-й строке и 1-м столбце.

Пример 2. Матрица
имеет размер
, так как она содержит 2 строки и 4 столбца. Матрица
имеет размер
, так как она содержит 3 строки и 2 столбца.

Матрицы равны между собой, если равны все соответствующие элементы этих матриц, т.е.
, если
, где
,
.

Матрица, у которой число сток равно числу столбцов, называется квадратной . Квадратную матрицу размера
называют матрицей п-го порядка.

Пример 3. Матрицы ииз примера 2 называются прямоугольными. Матрица
– это квадратная матрица 3-го порядка. Она содержит 3 строки и 3 столбца.

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной . Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется единичной. Обозначается буквой Е .

Пример 4.
– единичная матрица 3-го порядка.

Квадратная матрица называется треугольной , если все элементы, расположенные по одну сторону от главной диагонали, равны нулю. Матрица, все элементы которой равны нулю, называется нулевой . Обозначается буквой О .

В матричном исчислении матрицы О и Е играют роль 0 и 1 в арифметике.

,
.

Матрица размера
, состоящая из одного числа, отождествляется с этим числом, т.е.
есть 5.

Матрица, полученная из данной, заменой каждой ее строки столбцом с тем же номером, называется матрицей, транспонированной к данной. Обозначается
. Так, если
, то
если
, то
. Транспонированная матрица обладает следующим свойством:
.

3.2 Операции над матрицами

Сложение

Операция сложения матриц вводится только для матриц одинаковых размеров.

Суммой двух матриц
и
называется матрица
такая, что
(
,
).

Пример 5. .

Аналогично определяется разность матриц.

Умножение на число

Произведением матрицы
на число k называется матрица
такая, чтоb ij = ka ij (i =
,
j =).

Пример 6.
,
,
.

Матрица
называетсяпротивоположной матрице А.

Разность матриц
можно определить так:
.

Операции сложения матриц и умножение матрицы на число обладают следующими свойствами:


где А , В , С – матрицы, α и β – числа.

Элементарные преобразования матриц

Элементарными преобразованиями матриц являются:

      перестановка местами двух параллельных рядов матрицы;

      умножение всех элементов ряда матрицы на число, отличное от нуля;

      прибавление ко всем элементам ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.

Две матрицы А и В называются эквивалентными , если одна из них получается из другой с помощью элементарных преобразований. Записывается А ~В .

При помощи элементарных преобразований любую матрицу можно привести к матрице, у которой в начале главной диагонали стоят подряд несколько единиц, а все остальные элементы равны нулю. Такую матрицу называют канонической , например
.

Пример 7. Привести к каноническому виду матрицу
.

Решение: Выполняя элементарные преобразования, получаем

(поменяли местами I и III столбцы) ~
(I строку сложили со II строкой и результат записали во вторую строку; после этого I строку сложили с III строкой и результат записали в третью строку) ~
(I столбец умножили на (-3), сложили со II столбцом и результат записали во II столбец; затем I столбец умножили на (-2), сложили с III столбцом и результат записали в III столбец; после этого I столбец снова умножили на (-2) и сложили с IV столбцом, а результат записали в IV столбец) ~
(III столбец умножили на (-2), сложили со II столбцом и результат записали во II столбец; III столбец разделили на 2 и результат записали в III столбец; III столбец умножили на (-1), сложили с IV столбцом и результат записали в IV столбец) ~
(II строку умножили на 3, сложили с III строкой и результат записали в III строку) ~
(II столбец умножили на (-1), сложили последовательно с III и IV столбцами и результат записали соответственно в III и IV столбец) ~
. Получили матрицу канонического вида.

Произведение матриц

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы А т×п =(а ij ) на матрицу В п×р =(b jk ) называется матрица С т×р =(с ik ) такая, что

c ik = a i 1 b 1 k + a i 2 b 2 k + ∙∙∙+ a in b nk , где i =
,
k =
,

т.е. элемент i -ой строки и k -го столбца матрицы произведения С равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы k -го столбца матрицы В.

Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А Е = Е А = А , где А – квадратная матрица, Е – единичная матрица того же размера.

Пример 4.

=.

Матрицы А и В называются перестановочными (коммутирующими ), если АВ =ВА .

Умножение матриц обладает следующими свойствами:

    А ∙(В С ) = (А В )∙С ;

    А ∙(В + С ) = АВ + АС ;

    (А + В )∙С = АС + ВС ;

    α (АВ ) = (αА )В ,

если, конечно, написанные суммы и произведения матриц имеют смысл.

Для операции транспонирования верны свойства:

    (А + В ) Т =А Т + В Т;

    (АВ ) Т = В Т ∙А Т.

Если задан многочлен , томатричным многочленом f (A ) называется выражение вида , где
для любого натуральногоп . Значением матричного многочлена f (A ) при заданной матрице А является матрица.

Элемент строки назовем крайним , если он отличен от нуля, а все элементы этой строки, находящиеся левее его, равны нулю. Матрица называется ступенчатой , если крайний элемент каждой строки находится правее крайнего элемента предыдущей строки.

Пример 5. В матрицах А и В отмечены крайние элементы каждой строки:

–не ступенчатая

–ступенчатая



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...