Распределение зарядов и напряжений. Распределение зарядов в проводнике

Проводниками называют тела с высокой концентрацией свободных заряженных частиц, способных перемещаться под действием электрического поля. Если сообщить проводнику некоторый избыточный заряд, то составляющие его свободные заряженные частицы будут перемещаться (положительные - в область с меньшим потенциалом, отрицательные - наоборот) до тех пор, пока потенциалы во всех точках проводника не станут одинаковыми. При этом достигается состояние, когда внутри проводника напряженность равна нулю, а на поверхности векторы напряженности перпендикулярны к ней. Если выбрать внутри проводника замкнутую поверхность S , которая очень близка к поверхности проводника (рис. 37.1), то в соответствии с теоремой Гаусса поток вектора напряженности через эту поверхность будет равен нулю. Это означает, что внутри нее заряд отсутствует и весь избыточный заряд распределяется по внешней поверхности проводника. Выясним, от чего зависит поверхностная плотность заряда.

Для этого рассмотрим два металлических шарика, соединенных тонкой проволокой (рис. 37.2). Шарики и проволока составляют единый проводник и потому потенциалы их одинаковы во всех точках. Потенциал первого шарика равен , площадь его поверхности . Выразим заряд и поверхностную плотность заряда на поверхности этого шарика:

; .

Аналогичные выражения получаются для второго шарика:

; .

Разделив выражения для плотностей заряда, находим

Заряд, сообщенный проводнику, распределяется по внешней поверхности проводника, при этом поверхностная плотность заряда обратно пропорциональна радиусу поверхности.

Величина, обратная радиусу поверхности в данной ее точке, называется кривизной поверхности. Там, где меньше радиус, кривизна поверхности больше, и наоборот. У выступов и заострений кривизна поверхности максимальна, согласно выражению (37.1) там будет максимальна и поверхностная плотность заряда.

Таким образом, приходим к заключению:

Все точки внутри и на поверхности заряженного проводника имеют одинаковый потенциал,

Сообщенный проводнику заряд распределяется на внешней поверхности проводника,

Линии напряженности электростатического поля проводника перпендикулярны его поверхности.

Распределение электрического заряда по поверхности уединённого проводника.

Изучение электростатики проводников затруднено тем, что распределение электрического заряда по наружной поверхности одного и того же проводящего тела в разных условиях может оказаться совершенно различным. Исключение составляет случай распределения электрического заряда по поверхности уединённого проводника в бесконечном однородном изотропном пространстве. Это распределение зависит только от формы граничной поверхности проводника. Ниже для простоты изложения будем рассматривать уединённые проводники в вакууме. У математиков задача о распределении электрического заряда по поверхности проводника носит название «задача Робена». Различают объёмный (трехмерный) случай и двумерный случай задачи Робена. В двумерном случае в качестве проводника рассматривают бесконечный цилиндр произвольного поперечного сечения. Вне проводника потенциал электростатического поля удовлетворяет уравнению Лапласа, на поверхности проводника потенциал обращается в нуль, а интеграл по поверхности проводника от нормальной производной потенциала пропорционален величине суммарного электрического заряда. В плоском (двумерном) случае для решения задачи Робена эффективны методы теории функций комплексного переменного, в частности, метод конформного отображения.

Допустим, что проводник является эллипсоидом, уравнение граничной поверхности которого описывается в декартовой системе координат уравнением

Известно (Ф.Франк, Р.Мизес. Дифференциальные и интегральные уравнения математической физики. – Л.-М.: ОНТИ. Гл. редакция общетехнической литературы. – 1937.-998с., стр. 706) распределение поверхностной плотности электрического заряда по поверхности проводящего эллипсоида:

. (2)

Из этого соотношения следует оценка

где т.е. поверхностные плотности электрического заряда в точках пересечения осей эллипсоида с поверхностью. Если размер а очень велик, а размеры b и c малы, то становится очень большой. Вспомним, что эта величина пропорциональна нормальной составляющей напряжённости электростатического поля вблизи поверхности проводника. Электрический пробой зависит от величины напряжённости электростатического поля. Получается, что пробой происходит в окрестности «острого» конца вытянутого в одном направлении эллипсоида.

Для проводящего шара имеем

, , (4)

распределение поверхностной плотности электрического заряда является равномерным.

Неравномерность распределения электрического заряда по поверхности произвольного проводника является причиной погрешности, возникающей, например, при элементарном, упрощённом расчёте ёмкости конденсатора конечных размеров. Строгий учёт «краевых эффектов» иногда представляет собой довольно сложную задачу. В частности, вывод соотношения (2) требует введения эллипсоидальных координат, умения записать уравнение Лапласа в этих координатах, построить решение полученного уравнения в частных производных с переменными коэффициентами (т.е. получить распределение потенциала электростатического поля вне проводящего эллипсоида), вычислить напряжённость электростатического поля в окрестности граничной поверхности эллипсоида и, наконец, вычислить величину поверхностной плотности электрического заряда на поверхности проводящего эллипсоида. Только в редких исключительных случаях решение задач рассматриваемого типа можно получить в замкнутой аналитической форме, в остальных случаях решение получают с помощью численных методов, используя специальное программное обеспечение современных компьютеров.

Металлические проводники в целом являются нейтральными: в них поровну отрицательных и положительных зарядов. Положительно заряженные - это ионы в узлах кристаллической решетки, отрицательные - электроны, свободно перемещающиеся по проводнику. Когда проводнику сообщают избыточное количество электронов, он заряжается отрицательно, если же у проводника «отбирают» какое-то количество электронов, он заряжается положительно.

Избыточный заряд распределяется только по внешней поверхности проводника. Если проводник полый, то на его внутренних поверхностях нет зарядов. Это используют для полной передачи заряда от одного проводника другому (см. рис. 8).

Отсутствие поля внутри полости в проводнике позволяет создать электростатическую защиту. Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.

В электростатике рассматривается стационарное, неизменное распределение зарядов. Условием стационарности является равенство нулю напряженности поля внутри проводника: Е = 0. Если бы напряженность не была равна нулю, это создало бы электрические силы, вызывающие направленное перемещение электронов, т.е. электрический ток.

Избыточные заряды, сообщаемые проводнику, распределяется равномерно только по поверхности металлических сферы или шара. Во всех остальных случаях заряды распределяются неравномерно: чем больше кривизна поверхности, тем больше поверхностная плотность зарядов на поверхности проводника. Докажем это. Возьмем два шара радиусами R 1 и R 2 , заряженные зарядами q 1 и q 2 , соответственно. Соединим их проволочкой. Заряды будут перемещаться с одного шара на другой до тех пор, пока потенциал всей системы не станет одинаковым. Влиянием проволочки будем пренебрегать.

Таблица 14

Найдем напряженность поля заряженного проводника вблизи его поверхности, используя теорему Гаусса. Весь проводник представляет собой одну эквипотенциальную поверхность. Силовые линии перпендикулярны эквипотенциальным поверхностям. Выберем в качестве гауссовой поверхности S цилиндр очень малого размера, образующие которого перпендикулярны поверхности проводника (см. рис. 9). В пределах цилиндра поверхностную плотность заряда будем считать постоянной.

Таблица 15

Таким образом, чем более искривлена поверхность заряженного проводника, тем больше скапливается на ней зарядов и тем больше оказывается напряженность поля в этом месте. На рис.показаны силовые линии и эквипотенциальные поверхности поля заряженного тела. Наибольшая напряженность получается у острых выступов поверхности. Это приводит к так называемому «стеканию зарядов». В действительности из-за высокой напряженности вблизи острия возникают сложные явления: могут ионизироваться молекулы воздуха, дипольные молекулы втягиваются в область более сильного поля, в результате скорость потока частиц от острия оказывается большей, и образуется «электрический ветер». Этот ветер может привести во вращение легкое колесо, находящееся вблизи острия. Воздух становится проводящей средой, возникает разряд, вблизи острых концов часто наблюдается свечение. Поэтому всем деталям в электроустановках, находящихся под высоким напряжением, придают закругленную форму и делают их поверхности гладкими.

Покажем, что ~

Тема 4. Вопрос 3.

Распределение зарядов в проводниках.

Проводники в электростатическом поле.

При внесении незаряженного проводника во внешнее электростатическое поле на его поверхности появляются заряды. Явление перераспределения зарядов в проводнике при внесении его во внешнее электростатическое поле, называется электростатической индукцией (наведением зарядов, электризацией посредством наведения).

1) Если в поле внести незаряженный металлический проводник из двух контактирующих частей, на их поверхностях возникнут индуцированные заряды. Если эти части развести с помощью изолирующих ручек, то каждая часть окажется заряженной соответствующим зарядом (см. рис.). При этом напряженность поля внутри проводников всегда равна нулю.

2) Незаряженный проводник, внесенный в электростатическое поле искажает поле (см. рис.- линии со стрелками – силовые линии внешнего однородного поля; перпендикулярные им линии – это эквипотенциальные поверхности; ± - обозначены наведенные заряды).

3) Величина наведенного (индуцированного) заряда всегда меньше величины наводящего заряда. Только в случае, когда наводящий заряд находится внутри металлической полости, наведенный заряд оказывается таким же по величине, но при этом поверхностная плотность зарядов оказывается различной. На рисунке: точечный заряд окружен незаряженным металлическим полым телом. И внутренняя и внешняя поверхности сферические, но центры их смещены. На внешней поверхности индуцированный заряд распределяется равномерно, а на внутренней – сложным образом.

4) Наведенные заряды влияют на электрическое поле наводящих зарядов.

5). Индуцированный заряд возникает и на уже заряженном теле. Если рядом находятся два положительных заряда +Q и +q , они должны отталкиваться. Но наведенный отрицательный заряд на одном из зарядов может оказаться бόльшим, чем его собственный заряд, и заряды будут притягиваться друг к другу.

Электростатическая защита: Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.

Тема 5. Вопрос 1.

Электроемкость.

Все проводники обладают свойством накапливать электрические заряды. Это свойство называется электроемкостью. Количественная характеристика этого свойства также называется электроемкостью и обозначается С . Различают электроемкость уединенного проводника (собственная емкость), находящегося вдали от других проводников, и взаимную емкость системы из двух и более проводников.

Фарада – единица измерения емкости в СИ - является чрезвычайно большой величиной. Так, емкость земного шара примерно 7×10 - 4 Ф, поэтому обычно пользуются микро-, нано- и пикофарадами.

Собственная емкость зависит только от формы и размеров проводника и от диэлектрических свойств окружающей среды (вакуум, воздух, керосин,…) и не зависит ни от материала проводника (Fe, Cu, Al,…), ни от того, заряжен он или нет. Каждый уединенный проводник обладает «своей» емкостью, если, например, изогнуть кусок проволоки или сделать вмятину в шарике, их емкость изменится.

Вычисление емкости представляет собой сложную математическую задачу, и если проводник имеет сложную конфигурацию, то аналитически эта задача не решается.

Вычислим электроемкость уединенной сферы (шара) .

Тема 5. Вопрос 2.

Электроемкость.

Вычислим емкость плоского конденсатора – это две металлические параллельные пластины (обкладки) одинаковых размеров, разделенные слоем диэлектрика (вакуум, воздух и др.). Если расстояние между пластинами значительно меньше размеров пластин: d << L, H , поле между пластинами можно считать однородным. В действительности вблизи краев пластин поле неоднородно (см. рис., на котором показана половина плоского конденсатора, линии со стрелками – это силовые линии, без стрелок – эквипотенциальные поверхности). Учесть эти краевые эффекты трудно.

Тема 5. Вопрос 3.

Электроемкость.

Взаимная емкость также зависит от формы и размеров проводников и, кроме того, от их взаимного расположения. Система из двух проводников называется конденсатором в том случае, когда расстояние между ними достаточно мало, и электрическое поле (когда они заряжены) сосредоточено в основном между проводниками. Сами проводники при этом называют обкладками. Вычислить емкость такой системы можно для обкладок простей формы: плоских, сферических и цилиндрических (без учета краевых эффектов).

Цилиндрический конденсатор . Это два соосных металлических цилиндра, в промежутке между которыми – диэлектрик (вакуум, воздух и др.). Длина цилиндров-обкладок l , радиусы R и r (см. рис.). Если сообщить внутренней обкладке заряд +q , на внешней обкладке индуцируются заряды -q и +q , положительный заряд с внешней поверхности наружной обкладки уводится в землю. Поле конденсатора в основном сосредоточено между обкладками, если расстояние между ними (R - r) << l . Краевые эффекты не учитываем.

Тема 5. Вопрос 4.

Электроемкость.

Взаимная емкость также зависит от формы и размеров проводников и, кроме того, от их взаимного расположения. Система из двух проводников называется конденсатором в том случае, когда расстояние между ними достаточно мало, и электрическое поле (когда они заряжены) сосредоточено в основном между проводниками. Сами проводники при этом называют обкладками. Вычислить емкость такой системы можно для обкладок простей формы: плоских, сферических и цилиндрических (без учета краевых эффектов)

Сферический конденсатор . Это две металлические концентрические сферы, разделенные сферическим слоем диэлектрика. Если внутренней обкладке сообщить заряд +q , на внутренней поверхности внешней обкладки индуцируется заряд -q , а на внешней ее поверхности +q. Этот заряд отводится в землю за счет заземления (см. рис.). Поле такого конденсатора сосредоточено только между обкладками.

Тема 5. Вопрос 5.

Электроемкость.

Соединения конденсаторов.

Конденсаторы можно соединять параллельно или последовательно, или смешанным образом: часть параллельно, часть последовательно. При параллельном соединении емкость системы увеличивается и становится равной сумме емкостей. При последовательном соединении емкость системы всегда уменьшается. Последовательное соединение применяют не для уменьшения емкости, а главным образом для уменьшения разности потенциалов на каждом конденсаторе, чтобы не было пробоя конденсатора.

Введем более простое обозначение для разности потенциалов. Иногда U называют напряжением, это устаревший термин. Напряжение U = IR – это произведение силы тока на сопротивление (см. ниже – ток), а через конденсатор ток идти не должен. Если происходит пробой диэлектрика, конденсатор приходится выбрасывать.
запишем формулу для каждого конденсатора и для всей системы (заменив Dj ®U ); подставляя q в последнюю формулу, получим: С паралл =С 1 + С 2 Обобщим на случай 3-х и более конденсаторов параллельное соединение
емкость системы при параллельном соединении конденсаторов(i=1,2,…,n ) n - число конденсаторов

Тема 6. Вопрос 1.

Идеальной физической моделью заряда в электростатике является точечный заряд.

Точечным зарядом называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других тел или до рассматриваемой точки поля. Иными словами, точечный заряд - это материальная точка, которая имеет электрический заряд.

Если заряженное тело настолько велико, что его нельзя рассматривать как точечный заряд, то в этом случае необходимо знать распределение зарядов внутри тела.

Выделим внутри заряженного тела малый объем и обозначим через электрический заряд, находящийся в этом объеме. Предел отношения , когда объем неограниченно уменьшается, называют объемной плотностью электрического заряда в данной точке . Обозначают ее буквой :

Единицей объемной плотности заряда в СИ является кулон на кубический метр (Кл/м 3).

В случае неравномерно заряженного тела плотность различна в разных точках. Распределение заряда в объеме тела задано, если известно как функция координат.

В металлических телах заряды распределяются только внутри тонкого слоя, прилегающего к поверхности. В этом случае удобно пользоваться поверхностной плотностью заряда , которая представляет собой предел отношения заряда к площади поверхности, по которой распределен этот заряд:

где - заряд, находящийся на участке поверхности площадью .

Следовательно, поверхностная плотность заряда измеряется зарядом, приходящимся на единицу поверхности тела. Распределение зарядов по поверхности описывается зависимостью поверхностной плотности (x, y, z) от координат точек поверхности.

Единицей поверхностной плотности заряда в СИ является кулон на квадратный метр (Кл/м 2).

В том случае, если заряженное тело по форме представляет собой нить (диаметр поперечного сечения тела много меньше его длины , удобно использовать линейную плотность заряда

где - заряд, находящийся на длине тела.

Единицей линейной плотности заряда в СИ является кулон на метр (Кл/м).

Если известно распределение зарядов внутри тела, то можно вычислить напряженность электростатического поля, создаваемого этим телом. Для этого заряженное тело мысленно разбивают на бесконечно малые части и, рассматривая их как точечные заряды, вычисляют напряженность поля, создаваемую отдельными частями тела. Суммарную напряженность поля находят затем суммированием полей, создаваемых отдельными частями тела, т.е.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...