Реакция лития с водой. Реакция лития с азотной кислотой

Оксид лития Li 2 O – бесцветное кристаллическое вещество, имеющее кубическую гранецентрированную решетку типа флюорита, CaF 2 (a = 4,628 Ǻ, Z = 4); плотность 2,013 г/см 3 (25 ºC), температура плавления 1427 ºC, кипения – около 2000 ºC; термически устойчивое соединение, выше 1000 ºC начинается сублимация. Оксид лития получается при непосредственном окислении металлического лития при температуре выше 200 ºC, а также разложением карбоната Li 2 CO 3 , нитрата LiNO 3 , гидроксида LiOH в токе сухого водорода выше 800 ºC. Существует также пероксид лития, Li 2 O 2 , который получают косвенным путем по реакции пероксида водорода со спиртовым раствором LiOH; образующийся гидрат пероксида лития разрушают нагреванием в вакууме:

2LiOH + 2H 2 O 2 + H2O = 2LiOOH + 3H2O (2)

2LiOOH + 3H 2 O → Li 2 O 2 + 4H 2 O + ½O2 (3)

Выше 350 ºC пероксид лития распадается на оксид и воду.

Оксид лития, Li 2 O, легко, но менее энергично, чем оксиды других щелочных элементов, взаимодействует с водой с образованием гидроксида, LiOH; реакция сопровождается сильным разогреванием; LiOH поглощает CO 2 из воздуха, образуя карбонат, Li 2 CO 3 . Оксид лития разрушает большинство даже коррозионно устойчивых материалов. Ниже 1000 ºС устойчивы против Li 2 O никель Ni; золото Au; и платина Pt; выше 1000 ºС – сплав платины с 40 % родия.

Оксид лития с оксидами переходных элементов IV и V-ой групп периодической системы образует многочисленные соединения, из которых наибольший интерес представляют ниобат и танталат лития, LiNbO 3 и LiTaO 3 . Эти соединения относятся к группе сегнетоэлектриков с общей формулой ABO 3 и обладают комплексом разнообразных свойств. Интересны в практическом плане соединения лития и алюминия. Из водных щелочных растворов выделяется плохо растворимый алюминат лития LiAlO 2 . Изучение системы Li 2 O – Al 2 O 3 – H 2 O (50ºС) показало, что равновесной твердой фазой является фаза переменного состава (1-x)Li 2 O∙Al 2 O 3 ∙nH 2 O, x=0,12–0,21; n=8. Алюминат лития используется для выделения лития из разбавленных растворов.

Гидроксид лития LiOH – бесцветное вещество, кристаллизуется в тетрагональной сингонии (a = 3,549 Ǻ; c = 4,334 Ǻ); плотность (25 ºС) – 2,54 г/см3. Температура плавления 473 ºС, температура кипения 924 ºС (разлагается) (табл. 2).

Таблица 2

Свойства гидроксидов щелочных металлов

Гидроксид

T кип., ºС

Растворимость в воде, г /100 г H 2 O

ΔH,кДж/моль

очень высокая

По основным свойствам гидроксид лития, LiOH, является переходным от гидроксидов щелочных к гидроксидам щелочноземельных металлов. На воздухе LiOH активно карбонизуется с образованием карбоната Li 2 CO 3 . Термически LiOH менее устойчив, чем гидроксиды остальных элементов группы, при прокаливании он разлагается на оксид и воду:

2LiOH → Li 2 O + H 2 O (4)

Для LiOH характерна более низкая по сравнению с гидроксидами других щелочных элементов растворимость в воде, которая увеличивается с повышением температуры (рис. 1), из водных растворов выделяется в виде моногидрата, LiOH∙H 2 O, который теряет кристаллизационную воду только выше 600 ºС. Гидрат гидроксида лития LiOH∙H 2 O в твердом виде состоит из димеров Li 2 (OH) 2 , связанных в цепочки мостиковыми молекулами воды (рис. 2). Сходные димеры преобладают и в парах LiOH при 800 ºС. При обычной температуре гидроксид лития и его концентрированные растворы разрушают стекло и фарфор, в расплавленном состоянии разрушают все металлы, кроме Au, Ag и Ni. Гидроксид лития образуется при непосредственном взаимодействии металлического лития или его оксида с водой, а также при гидролизе сульфида, нитрида, фосфидов и других соединений лития.

Рис. 1. Политерма растворимости гидроксида лития в воде

гидроксида лития в воде

Рис. 2. Строение LiOH ∙ H 2 O

На практике для получения LiOH используют несколько методов.

1. Методы, основанные на реакциях обмена в растворе:

Li 2 SO 4 + Ca(OH) 2 → 2LiOH + CaSO 4 (5)

Li 2 SO 4 + Ba(OH) 2 → 2LiOH + BaSO 4 (6)

    Электролиз LiCl. Раствор LiCl подвергают электролизу в ванне с ртутным катодом; при этом на нем образуется амальгама лития, LiHg. При разложении амальгамы водой получают раствор LiOH.

    Обменное разложение гашеной известью в растворе:

Li 2 CO 3 + Ca(OH) 2 → 2LiOH + CaCO 3 (7)

Этот метод имеет промышленное значение.

Сульфат лития, Li 2 SO 4 , – бесцветное кристаллическое вещество, существует в трех модификациях: моноклинная α-модификация (a = 8,44; b = 4,95; c = 8,24 Ǻ, β = 107º 54") устойчива до 500 ºC; выше 500 ºC переходит в гексагональную β-модификацию, которая при 575 ºС переходит в кубическую γ-модификацию, существующую до температуры плавления. Плотность α-Li 2 SO 4 (25 ºC) – 2,22 г/см 3 .

Энтальпия образования ΔH = –1434 кДж/моль; Li 2 SO 4 хорошо растворяется в воде (рис. 3), выше 0 ºC имеет отрицательный коэффициент растворимости, из водных растворов выделяется в виде моногидрата, Li 2 SO 4 ∙H 2 O, который обезвоживается при 500ºC.

В

Рис.3. Политерма растворимости Li 2 SO 4 в воде

термическом отношении сульфат лития более устойчив, чем другие его растворимые соли, но менее, чем сульфаты остальных щелочных элементов; подобно им, Li 2 SO 4 восстанавливается водородом при 620-700 ºC и аммиаком (720-800ºC) до Li 2 S.

В органических растворителях Li 2 SO 4 не растворяется, образует двойные соединения с сульфатами других щелочных металлов (MLiSO 4 ; Na 3 Li(SO 4) 2 ∙6H 2 O и др.). В отличие от сульфатов других щелочных металлов в обычных температурных условиях не образует квасцов. Алюмо-литиевые квасцы (LiAl(SO 4) 2 ∙12H 2 O) существуют только в узкой области концентраций компонентов в системе Li 2 SO 4 – Al 2 (SO 4) 3 – H 2 O при –2 ºC (и ниже).

Сульфат лития можно получить при взаимодействии H 2 SO 4 с литием, Li 2 O или LiOH, но обычно его получают при взаимодействии Li 2 CO 3 с H 2 SO 4 . Для лития известны также гидросульфаты и пиросульфат.

Нитрат лития, LiNO 3 , – бесцветное прозрачное кристаллическое вещество гексагональной сингонии (a = 4,674; c = 15,199 Ǻ), плотность 2,36 г/см3 (20 ºC), Т пл. = 254 ºC, энтальпия образования ΔH = – 428 кДж/моль, при 600 ºC начинает разлагаться с выделением кислорода и оксидов азота.

Нитрат лития гигроскопичен, хорошо растворяется в воде, растворимость резко увеличивается с повышением температуры (рис.4), образует пересыщенные растворы.

Рис.4. Политерма растворимости LiNO 3 в воде

В водном растворе LiNO 3 сильно диссоциирован, степень диссоциации в 0,1 М растворе 64 %, в 0,001 М растворе – 97,5 %. Из водных растворов ниже 30 ºC кристаллизуется LiNO 3 ∙3H 2 O, при более высокой температуре – LiNO 3 .

Получают нитрат лития взаимодействием LiOH (Li 2 CO 3) с разбавленной HNO 3 с последующим упариванием раствора и нагреванием остатка в вакууме при 200 ºC.

Ортофосфат лития, Li 3 PO 4 , – бесцветное кристаллическое вещество ромбической сингонии, плотность – 2,41 г/см 3 (20 ºC); термически устойчив, не плавится и не разлагается до температуры красного каления, Т пл 1220 ºC. Ортофосфат лития – наименее растворимая соль лития. В 100 г воды растворяется 0,022 г при 0 ºC и 0,034 г при 18 ºC. В присутствии аммиака растворимость Li 3 PO 4 уменьшается, а в присутствии аммонийных солей (NH 4 Cl) – увеличивается. Из водных растворов при обычной температуре осаждается Li 3 PO 4 ∙2H 2 O, который после сушки при 60ºC переходит в полугидрат (Li 3 PO 4 ∙0,5H 2 O), а выше 120ºC полностью обезвоживается. Li 3 PO 4 легко разлагается сильными кислотами, труднее – уксусной.

Li 3 PO 4 образует двойные соли с фосфатами других щелочных металлов и аммония, обычно лучше растворимые в воде, чем Li 3 PO 4 . Для получения ортофосфата лития используют нейтрализацию H 3 PO 4 избытком LiOH, однако при этом, помимо Li 3 PO 4 , образуется основной фосфат лития 2Li 3 PO 4 ∙LiOH, поэтому применяют осаждение Li 3 PO 4 из раствора соли лития Na 2 HPO 4 в слабощелочном растворе:

3LiX + Na 2 HPO 4 + NaOH = Li 3 PO 4 + 3NaX + H 2 O (8)

Добавление NaOH обязательно, иначе образуется растворимый Li 2 HPO 4 , что ведет к потерям лития.

Незначительная растворимость Li 3 PO 4 в воде используется в аналитической химии для отделения лития от других щелочных металлов и его количественного определения. В технологических схемах применяется осаждение Li 3 PO 4 для доизвлечения лития из различных маточных растворов (содержащих натрий и калий), после первичного извлечения лития в виде Li 2 CO 3 . Для перевода Li 3 PO 4 в растворимые соединения используют взаимодействие Li 3 PO 4 с CaCl 2 в расплаве при 850 ºC:

2Li 3 PO 4 + 3CaCl 2 = 6LiCl + Ca 3 (PO 4) 2 (9)

Карбонат лития, Li 2 CO 3 , – бесцветное мелкокристаллическое вещество, кристаллизуется в моноклинной сингонии (a = 8,39; b = 5,00; c = 6,21 Ǻ, β = 114,5º), плотность 2,11 г/см 3 (0 ºC); энтальпия образования ΔH = – 1078,70 кДж/моль; Т пл. 732 ºC. Карбонат лития – термически неустойчивое соединение, уже при температуре плавления заметно диссоциирует:

Li 2 CO 3 →Li 2 O + CO 2 . (10)

Давление CO 2 становится равным атмосферному при 1270 ºC; карбонат лития менее стоек, чем карбонаты натрия и калия, термическая диссоциация ускоряется в вакууме и в присутствии углерода вследствие восстановления CO 2 до CO и смещения равновесия реакции влево. Оксид лития в расплаве Li 2 CO 3 очень агрессивен – разрушает корунд, алунд, диоксид циркония и платину. По ряду свойств карбонат лития сходен с карбонатом кальция.

Растворимость Li 2 CO 3 мала, она значительно ниже

растворимости к

Рис.5. Политерма растворимости Li 2 CO 3 в воде

арбонатов остальных щелочных металлов (рис.5).

При 20 ºC она составляет 1,33 г /100 г H 2 O. С повышением температуры, как видно из рис. 5, растворимость понижается, т.е. карбонат лития имеет отрицательный температурный коэффициент растворимости. Кристаллогидратов карбонат лития не образует, в водных растворах заметен гидролиз, который усиливается при кипячении. Карбонаты щелочных металлов не образуют с Li 2 CO 3 соединений, они понижают растворимость Li 2 CO 3 , что объясняется действием одноименного иона. При пропускании CO 2 через водную суспензию Li 2 CO 3 карбонат лития растворяется вследствие образования более растворимого гидрокарбоната:

Li 2 CO 3 + CO 2 + H 2 O→2LiHCO 3 (11)

Гидрокарбонат лития разлагается при нагревании, выделяя Li 2 CO 3 .

Чистый карбонат лития можно получить, пропуская CO 2 в раствор LiOH. В промышленности его получают при действии поташом (K 2 CO 3) или содой (Na 2 CO 3) на растворы солей лития вблизи температуры кипения (90ºC).

Карбонат лития – важнейшее промышленное соединение лития, т.к. многие технологические схемы переработки литийсодержащего сырья заканчиваются осаждением Li 2 CO 3 . Кроме того, карбонат лития – источник получения другого технически важного соединения лития – LiOH и многочисленных солей лития.

История открытия:

В 1817 г. шведский химик и минералог Август Арфведсон, анализируя природный минерал петалит, установил, что в нем содержится "огнепостоянная щелочь до сих пор неизвестной природы". Позднее он нашел аналогичные соединения в составе других минералов. Арфведсон предположил, что это соединения нового элемента и дал ему название литий (от греческого liqoz – камень).
Металлический литий был выделен в 1818 году английский химиком Гемфри Дэви электролизом расплава гидроксида лития.

Нахождение в природе и получение:

Природный литий состоит из двух стабильных изотопов - 6 Li (7,42%) и 7 Li (92,58%).
Литий - сравнительно мало распространенный элемент (массовая доля в земной коре 1,8*10 -3 %, 18 г/тонну). Кроме петалита LiAl, основными минералами лития являются слюда, лепидолит - KLi 1,5 Al 1,5 (F,OH) 2 и пироксен сподумен - LiAl.
В настоящее время для получения металлического лития его природные минералы или обрабатывают серной кислотой, или спекают с CaO или CaCO 3 , а затем выщелачивают водой. Получают растворы сульфата или гидроксида лития, из которых осаждают плохо растворимый карбонат Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролизом расплава хлорида лития в смеси с хлоридом калия или бария получают металлический литий.

Физические свойства:

Простое вещество литий - мягкий щелочной металл серебристо-белого цвета. Из всех щелочных металлов он самый твердый, высокоплавкий (Ткип=180,5 и Тпл=1340° С). Это самый легкий металл (плотность 0,533 г/см 3), он плавает не только в воде, но и в керосине. Литий и его соли окрашивают пламя в карминно-красный цвет.

Химические свойства:

Литий проявляет типичные свойства щелочных металлов, взаимодействуя с водой, кислородом, другими неметаллами. Хранить его приходится под слоем под слоем минерального масла, придавливая сверху, чтобы не всплывал.
В соответствии с положением в ПСХЭ, литий наименее активный щелочной металл. Так в реакции с кислородом он образует в основном оксид лития, а не пероксиды как другие металлы. Подобно натрию литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Растворенный литий постепенно реагирует с аммиаком: 2Li + 2NH 3 = 2LiNH 2 + H 2 .
Литий отличается повышенной активностью при взаимодействии с азотом, образуя с ним уже при обычной температуре нитрид Li 3 N.
По некоторым свойствам литий и его соединения напоминают соединения магния (диагональное сходство в таблице Менделеева).

Важнейшие соединения:

Оксид лития, Li 2 O - белое кристаллическое вещество, основный оксид, с водой образует гидроксид

Гидроксид лития - LiOH - белый порошок, обычно моногидрат, LiOH*H 2 O, сильное основание

Соли лития - бесцветные кристаллические вещества, гигроскопичны, образуют кристаллогидраты состава LiX*3H 2 O. Карбонат и фторид лития подобно аналогичным солям магния малорастворимы. Карбонат и нитрат лития при нагревании разлагаются, образуя оксид лития:
Li 2 CO 3 = Li 2 O + CO 2 ; 4LiNO 3 = 2Li 2 O + 4NO 2 + O 2

Пероксид лития - Li 2 O 2 - белое кристаллическое вещество, получают реакцией гидроксида лития с пероксидом водорода: 2LiOH + H 2 O 2 = Li 2 O 2 + 2H 2 O
Используют в космических аппаратах и подводных лодках для получения кислорода:
2Li 2 O 2 + 2CO 2 = 2Li 2 CO 3 +O 2

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом. Бесцветные кристаллы, реагирует с водой и кислотами с выделением водорода. Источник водорода в полевых условиях.

Применение:

Металлический литий - высокопрочные и сверхлегкие сплавы с магнием и алюминием для авиационной и космической техники. Легирующая добавка в металлургии (связывает азот, кремний, углерод). Теплоноситель (расплав) в ядерных реакторах.

Из лития изготовляют аноды химических источников тока и гальванических элементов с твёрдым электролитом.

Соединения: специальные стекла, глазури, эмали, керамика. Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров
LiOH как добавка в электролит щелочных аккумуляторов. Карбонат лития – добавка в расплав при производстве алюминия: снижает температуру плавления электролита, увеличивает силу тока, уменьшает нежелательное выделение фтора.

Металлоорганические соединения лития (например бутиллитий LiС 4 Н 9) - широко применяются в промышленном и лабораторном органическом синтезе и как катализаторы полимеризации.

Дейтерид лития-6: как источник дейтерия и трития в термоядерном оружии (водородная бомба).

Содержание лития в организме человека составляет около 70 мг. В течение суток в организм взрослого человека поступает около 100 мкг лития. Литий способствует высвобождению магния из клеточных «депо» и тормозит передачу нервного импульса, ингибируя проводимость нервной системы. Соли лития применяются психотропные лекарственные средства, оказывая успокаивающий эффект при лечении шизофрении и депрессии. Однако передозировка может привести к тяжелым осложнениям и летальному исходу.

Нурмаганбетов Т.
ТюмГУ, 582 группа, 2011 г.

Источники:
Литий // Википедия. URL: http://ru.wikipedia.org/wiki/Литий (дата обращения: 23.05.2013).
Литий // Онлайн Энциклопедия Кругосвет. URL: http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/LITI.html (дата обращения: 23.05.2013).

Содержание статьи

ЛИТИЙ (Lithium) Li, химический элемент 1-й (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 3, относительная атомная масса 6,941. Состоит из двух стабильных изотопов 6 Li (7,52%) и 7 Li (92,48%). Искусственным путем получены еще два изотопа лития: у 8 Li период полураспада равен 0,841 с, а у 9 Li 0,168 с.

Степень окисления +1.

Литий был открыт в 1817 шведским химиком и минералогом Августом Арфведсоном (Arfvedson August) (1792–1841), когда он работал в качестве ассистента в лаборатории Йёнса Якоба Берцелиуса . На основании химического анализа петалита (LiAlSi 4 O 10) Арфведсон предположил, что в этом слоистом силикатном минерале есть некий щелочной элемент. Он отметил, что его соединения похожи на соединения натрия и калия, однако карбонат и гидроксид менее растворимы в воде. Арфведсон предложил для нового элемента название литий (от греческого liqoz – камень), указывающее на его происхождение. Он показал также, что этот элемент содержится в сподумене (силикатный пироксен) LiAlSi 2 O 6 и в лепидолите (слюда), который имеет примерный состав K 2 Li 3 Al 4 Si 7 O 21 (OH,F) 3 .

В 1818 английский химик и физик Гемфри Дэви выделил металлический литий электролизом расплавленного гидроксида лития.

Распространение лития в природе и его промышленное извлечение.

Содержание лития в кристаллических горных породах составляет 1,8·10 –3 % по массе, что косвенно отражает относительное малую распространенность элемента во Вселенной. На Земле он имеет почти такую же распространенность как галлий (1,9·10 –3 %) и ниобий (2,0·10 –3 %). Промышленные месторождения минералов лития есть на всех континентах. Наиболее важным минералом является сподумен, большие месторождения которого имеются в США, Канаде, Бразилии, Аргентине, странах СНГ, Испании, Швеции, Китае, Австралии, Зимбабве и Конго.

Почти всю мировую добычу минералов лития контролируют три главных компании – Sons of Gwalia (Австралия), Tanco (Канада) и Bikita Minerals (Зимбабве). Добыча минералов лития за период 1994–2000 увеличилась с 6300 до 11 900 т. в год. При этом 50% мировых мощностей по добыче сподумена, лепидолита и других литиевых минералов в последние годы простаивает. Таким образом, есть необходимые резервы для наращивания объемов выпуска литиевой продукции и дефицит лития потребителям не грозит.

Для получения нужных соединений лития сподумен нагревают до ~1100° С, а затем промывают серной кислотой при 250° С и выщелачивают образовавшийся сульфат лития водой. Действием карбоната натрия или хлороводорода его переводят в карбонат или хлорид, соответственно. Другим способом хлорид может быть получен прокаливанием промытой руды с известняком (карбонатом кальция) при 1000° С с последующим выщелачиванием водой в виде гидроксида лития и действием хлороводорода. В США также широко используется добыча соединений лития из природных рассолов.

Потребление минералов лития распределяется следующим образом: 25% используют заводы по производству огнеупорных изделий, 20% идет в производство специальных сортов стекол, столько же – на изготовление керамических изделий и глазурей, 12% потребляет собственно химическая промышленность, 10% – металлургическая, 5% литиевых минералов используется в производстве стекловолокна и 8% идет на нужды других отраслей. К областям специального применения относится растущий рынок сегнетоэлектриков, таких как танталат лития, для модулирования лазерных лучей. Предполагается, что в будущем будет резко расти спрос на металл и его соли в производстве литиевых батарей, используемых в мобильных телефонах и переносных компьютерах (в 1990-х темпы роста составляли 20–30% в год). В то же время будет падать потребление карбоната лития в алюминиевой промышленности, где новые технологии вообще не предусматривают использование этой соли.

Характеристика простого вещества и промышленное получение металлического лития.

Литий – серебристо-белый металл, мягкий и пластичный, тверже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объемноцентрированную решетку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решетку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружен 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340° С, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см 3).

В 1818 немецкий химик Леопольд Гмелин (Gmelin Leopold) (1788–1853) установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

В целом, литий менее реакционноспособен, чем его аналоги. В то же время он намного легче других щелочных металлов реагирует с азотом, углеродом, кремнием и этим напоминает магний. Литий легко вступает в прямую реакцию с азотом с образованием нитрида Li 3 N (ни один другой щелочной металл не обладает этим свойством). Эта реакция, хотя и медленно, идет уже при комнатной температуре, а при 250° C ход ее значительно ускоряется. При сжигании литий образует оксид Li 2 O (с примесью пероксида Li 2 O 2),

С водой литий реагирует с образованием гидроксида и выделением водорода. Литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Если сравнить молярные отношения, то он почти на 50% более растворим, чем натрий (15,66 и 10,93 моль на килограмм NH 3 , соответственно). В таком растворе литий медленно реагирует с аммиаком с выделением водорода и образованием амида LiNH 2 .

Потенциал восстановления для лития (–3,045 В) на первый взгляд кажется аномальным, так как он ниже, чем у других щелочных элементов. Это связано с тем, что катиону лития, имеющему наименьший радиус, соответствует максимальная энергия гидратации, что делает образование гидратированного катиона энергетически более выгодным по сравнению с другими щелочными металлами.

В значительных количествах металлический литий первыми выделили в 1855 (независимо друг от друга) немецкий химик Роберт Бунзен и англичанин О.Матиссен. Как и Дэви, они получали литий электролизом, только электролитом в их опытах служил расплав хлорида лития. Первое промышленное производство лития было налажено в Германии в 1923. Металлический литий и сейчас получают электролизом расплавленной смеси 55% хлорида лития и 45% хлорида калия при ~450° С. Выделяющийся на аноде хлор – ценный побочный продукт.

Для получения лития иногда применяют и восстановление другими элементами, образующими устойчивые оксиды:

2Li 2 O + Si = SiO 2 + 4Li

Сегодня в мире производится более 1000 т лития в год.

Металлический литий был впервые использован в коммерческих целях в 1920-е в виде сплава со свинцом для изготовления подшипников. Сейчас он применяется в производстве высокопрочных легких алюминиевых сплавов для строительства самолетов. С магнием литий образует чрезвычайно легкие сплавы, используемые для изготовления бронированных пластин и элементов космических объектов. Например, сплав, содержащий 14% лития, 1% алюминия и 85% магния, имеет плотность 1,35 г см –3 .

Литий стал эффективным средством для удаления из расплавленных металлов растворенных в них газов. Небольшими добавками лития легируют чугун, бронзы, монель-металл (сплав, выплавляемый из медно-никелевых руд), а также сплавы на основе магния, алюминия, цинка, свинца и некоторых других металлов.

Мелкодисперсный элементарный литий намного ускоряет реакцию полимеризации изопрена. Расплавленный металлический литий-7, имеющий малое сечение захвата тепловых нейтронов, используется в качестве теплоносителя в ядерных реакторах.

В будущем, возможно, перспективными источниками электроэнергии станут системы из батарей Li/FeS x . Эти батареи похожи на обычные свинцовые кислотные батареи наличием твердых электродов (отрицательный из сплава Li/Si, положительный из FeS x ) и жидкого электролита (расплав LiCl/KCl при 400° С).

Соединения лития.

Литий большее сходен с магнием, чем со своими соседями по группе. Эта так называемая диагональная периодичность является следствием близости ионных радиусов элементов: R(Li +) 76 пм, R(Mg 2+) 72 пм; для сравнения R(Na +) 102 пм. Арфведсон первым отметил при открытии лития как нового элемента, что его гидроксид и карбонат значительно менее растворимы, чем соответствующие соединения натрия и калия, и что карбонат (подобно карбонату магния) легче разлагается при нагревании. Подобным образом, фторид лития (как и фторид магния) гораздо менее растворим в воде, чем фториды других щелочных элементов. Это связано с высокой энергией кристаллической решетки, образованной катионами и анионами малых размеров. Напротив, соли лития с большими неполяризуемыми анионами, такими как перхлорат-ион, значительно более растворимы, чем соли других щелочных элементов, вероятно, из-за высокой энергии сольватации катиона лития. По той же причинам безводные соли очень гигроскопичны.

Соли лития склонны к образованию гидратов, обычно тригидратов, например LiX·3H 2 O (X = Cl, Br, I, ClO 3 , ClO 4 , MnO 4 , NO 3 , BF 4 и т.д.). В большинстве этих соединений литий координирует шесть молекул Н 2 О, образуя цепочки из октаэдров с общими гранями. Сульфат лития, в отличие от сульфатов других щелочных элементов, не образует квасцы, так как гидратированный катион лития слишком мал, чтобы занять соответствующее место в структуре квасцов.

Оксид лития Li 2 O – единственный среди оксидов щелочных элементов, образующихся в качестве основного продукта при нагревании металла выше 200° С (на воздухе). Его получают и прокаливанием нитрата при 600° С (в присутствии меди):

4LiNO 3 = 2Li 2 O + 4NO 2 + O 2

Он образуется при нагревании нитрита лития выше 190° С или карбоната лития выше 700° С в токе высушенного водорода.

Оксид лития добавляют к смесям реагентов при твердофазном синтезе двойных и тройных оксидов для понижения температуры процесса. Он является компонентом рентгенопрозрачных стекол и стекол с небольшим температурным коэффициентом линейного расширения. Оксид лития добавляют в глазури и эмали. Он повышает их химическую и термическую стойкость и прочность, снижает вязкость расплавов.

Пероксид лития Li 2 O 2 в промышленности получают реакцией LiOH·H 2 O с пероксидом водорода с последующей дегидратацией гидропероксида острожным нагреванием при пониженном давлении. Это белое кристаллическое вещество разлагается до оксида лития при нагревании выше 195° С. Его используют в космических аппаратах для получения кислорода:

2Li 2 O 2 + 2CO 2 = 2Li 2 CO 3 +O 2

Гидроксид лития LiOH плавится при 470° С, при более высокой температуре испаряется и частично диссоциирует на оксид лития и воду:

2LiOH = Li 2 O + H 2 O

В парах при 820–870° С содержится 90% димера (LiOH) 2 .

Растворимость гидроксида лития в воде составляет 12,48 г на 100 г при 25° С. При выпаривании водных растворов гидроксида лития образуется моногидрат, который легко теряет воду при нагревании в инертной атмосфере или при пониженном давлении.

Гидроксид лития используется в производстве смазок на основе стеарата лития и для поглощения диоксида углерода в закрытых помещениях, например, в космических кораблях и на подводных лодках. Его преимущество по сравнению с другими щелочами – малая атомная масса. Добавка гидроксида лития к электролиту щелочных аккумуляторов примерно на одну пятую увеличивает их емкость и в 2–3 раза – срок службы.

Карбонат лития Li 2 CO 3 – наиболее промышленно важное соединение лития и исходное вещество для получения большинства других его соединений. В отличие от других солей лития, Li 2 CO 3 является безводным. Он мало растворим в воде, причем растворимость карбоната лития понижается с повышением температуры. При 25° С она равна 1,27 г на 100 г воды, а при 75° С – 0,85 г на 100 г воды.

Термическая устойчивость карбоната лития существенно ниже, чем аналогичных соединений других щелочных элементов. Выше температуры плавления (732° С) он разлагается:

Li 2 CO 3 = Li 2 O + CO 2

Карбонат лития используется в качестве флюса при нанесении фарфоровой эмали и в производстве специальных закаленных стекол, при этом ионы лития замещают более крупные ионы натрия. Соединение лития либо вводят в состав стеклянной шихты, либо натриевое стекло обрабатывают расплавом солей, содержащих ионы лития, чтобы вызвать обмен катионов на его поверхности.

Еще одна область применения карбоната лития – в производстве алюминия. Он на 7–10% увеличивает качество продукции за счет снижение температуры плавления электролита и увеличения силы тока. Кроме того, на 25–50% уменьшается нежелательное выделение фтора.

В 1949 было обнаружено, что небольшие (1–2 г) дозы карбоната лития при приеме через рот приводят к эффективному воздействию на маниакально-депрессивные психозы. Механизм воздействия еще не совсем понятен, однако побочные явления пока не обнаружены. Такие дозы поддерживают концентрацию лития в крови около 1 ммоль л –1 , и его действие может быть связано с влиянием лития на баланс Na/K и (или) Mg/Ca.

Нитрат лития LiNO 3 гигроскопичен и хорошо растворим в воде (45,8 масс. % при 25° С, то есть 6,64 моль л –1). Из водных растворов кристаллизуется в виде тригидрата.

Нитрат лития используется в виде низкотемпературных расплавов в лабораторных термостатах. Например смесь LiNO 3:KNO 3 (1:1) плавится при 125° С. Кроме того, нитрат лития применяют в пиротехнических смесях.

Фторид лития LiF мало растворим в воде (1,33 г/л при 25° С). Его получают взаимодействием гидроксида лития или солей лития с фтороводородом, фторидом аммония, гидродифторидом аммония или их водными растворами.

Еще в прошлом веке это вещество начали применять в металлургии как компонент многих флюсов. Фторид лития обладает термолюминесцентными свойствами. Он используется в рентгеновской и g -дозиметрии. Кристаллы фтористого лития, прозрачные для ультракоротких волн длиной до 100 нм, применяют в производстве оптических приборов, кроме того, фторид лития является компонентом электролитов при получении алюминия и фтора. Он входит в состав эмалей, глазурей, керамики, люминофоров и лазерных материалов.

Для атомной техники важно моноизотопное соединение пития – 7 LiF, применяемое для растворения соединений урана и тория непосредственно в реакторах.

Хлорид лития LiCl хорошо растворим в воде (84,67 г на 100 г при 25° С) и многих органических растворителях. Большое сродство к воде служит основой для широкого применения рассолов хлорида (и бромида) лития в осушителях и воздушных кондиционерах.

Хлорид лития является сырьем для получения металлического лития. Другая область применения этого соединения – в качестве флюса при пайке алюминиевых частей автомобиля. Его используют и в производстве флотационных жидкостей, как катализатор органического синтеза. Хлорид лития служит средством против обледенения самолетов. Он является твердым электролитом в химических источниках тока для имплантированных кардиостимуляторов.

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом при 630–730° С в сосуде из железа, не содержащего углерод. Он образует бесцветные кристаллы с кубической решеткой типа хлорида натрия. Гидрид лития имеет плотность 0,776 г/см 3 , температуру плавления 692° С (в инертной атмосфере). При электролизе в расплаве проводит электрический ток с выделением водорода на аноде. Под действием электромагнитного излучения в видимой, ультрафиолетовой или рентгеновской области окрашивается в голубой цвет благодаря образованию коллоидного раствора лития в гидриде лития.

Гидрид лития относительно устойчив в сухом воздухе, быстро гидролизуется парами воды. Реагирует с водой, кислотами и спиртами с выделением водорода. Из 1 кг гидрида лития можно получить 2,82 м 3 этого газа. Гидрид лития используется для получения водорода, которым наполняют метеорологические шары-зонды в полевых условиях. Кроме того, он служит восстановителем в органическом синтезе, а также для получения бороводородов, алюмогдидрида лития LiAlH 4 и других гидридных соединений.

Дейтерид лития-6 применяется в термоядерном оружии. Будучи твердым веществом, он позволяет хранить дейтерий при плюсовых температурах, кроме того, второй его компонент (литий-6) – это единственный промышленный источник получения трития:

6 3 Li + 1 0 n ® 3 1 H + 4 2 He

Стеарат лития Li(C 17 H 35 COO) легко образуется из гидроксида лития и животного или другого природного жира, применяется как загуститель и желирующий агент при превращении масел в консистентные смазки. Эти многоцелевые смазки сочетают высокую устойчивость к действию воды, хорошие свойства при низких температурах (–20° С) и отличную стабильность при высоких температурах (более 150° С). Они занимают почти половину общего рынка автомобильных смазок в США.

Комплексные соединения . Из всех щелочных элементов литий наиболее склонен к образованию комплексов, образует стабильный комплекс с ЭДТА (натриевой солью этилендиаминтетрауксусной кислоты). Устойчивыми являются комплексы лития с краун-эфирами.

Литиеорганические соединения легко получаются непосредственным взаимодействием лития с алкилгалогенидами (обычно используют хлориды) в петролейном эфире, циклогексане, бензоле или диэтиловом эфире:

2Li + RX ® LiR + LiX

Из-за высокой химической активности как реагентов, так и продуктов реакции нужно использовать инертную атмосферу, исключающую воздух и влагу. Выход продукта существенно увеличивается в присутствии 0,5–1% натрия в металлическом литии. Арильные производные лития получают из бутиллития (LiBu) и арилиодида:

LiBu + ArI ® LiAr + BuI

Наиболее удобный путь для получения винильных, аллильных и других ненасыщенных производных – реакция фениллития с тетравинилоловом:

4LiPh + Sn(CH=CH 2) 4 ® 4LiCH=CH 2 + SnPh 4

Если важнее выделить продукт реакции, чем использовать его в дальнейшем синтезе, используют реакцию между избытком лития и ртутьорганическим соединением:

2Li + HgR 2 ® 2LiR + Hg

Литиеорганические соединения термически неустойчивы, и большинство из них постепенно разлагается до гидрида лития и алкена при комнатной или более высокой температуре. Среди наиболее устойчивых соединений – бесцветные кристаллические LiСН 3 (разлагается выше 200° С) и LiС 4 Н 9 (разлагается в небольшой степени при выдерживании в течение нескольких дней при 100° С). Обычно алкильные производные лития имеют тетрамерное или гексамерное строение.

Металлоорганические соединения лития (в частности, LiСН 3 и LiС 4 Н 9) являются ценными реактивами. Последние десятилетия они все более используются в промышленном и лабораторном органическом синтезе. Ежегодное производство одного только LiС 4 Н 9 подскочило от нескольких килограммов до 1000 т. В большом количестве он применяется как катализатор полимеризации, алкилирующий агент и предшественник металлированных органических реагентов. Многие синтезы, подобные реакциям с участием реактивов Гриньяра, имеют явные преимущества по сравнению с ними по скорости реакции, отсутствию усложняющих процесс побочных реакций или удобству работы.

В реакциях литиеорганических соединений с алкилиодидами или, что более полезно, с карбонилами металлов образуются новые связи С–С. В последнем случае продуктами являются альдегиды или кетоны. Термическое разложение LiR приводит к удалению b -водородного атома с образованием олефина и LiH, этот процесс промышленно значим для получения алкенов с длинной концевой цепью. Арилпроизводные лития в неполярных растворителях дают карбоновые кислоты с диоксидом углерода и третичные спирты – с ароматическими кетонами. Литиеорганические соединения являются также ценными реагентами в синтезе других металлоорганических соединений путем обмена металл – галоген.

Наиболее ионными из металлоорганических соединений лития являются карбиды, образующиеся при взаимодействии лития с алкинами в жидком аммиаке. Самая крупная область промышленного применения LiHC 2 – производство витамина А. Он влияет на этинилирование метилвинилкетона, приводящего к образованию ключевого промежуточного карбинольного соединения.

Елена Савинкина

Ли́тий (лат. Lithium; обозначается символом Li) - элемент главной подгруппы первой группы, второго периода периодической системы химических элементов таблицы Менделеева , с атомным номером 3. Простое вещество литий (CAS-номер: 7439-93-2) - мягкий щелочной металл серебристо-белого цвета.

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na), а затем в сподумене LiAl и в лепидолите KLi 1.5 Al 1.5 (F,OH) 2 . Металлический литий впервые получил Гемфри Дэви в 1825 году.
Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος - камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Нахождение в природе

Геохимия лития Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.
Основные минералы лития - слюда лепидолит - KLi 1.5 Al 1.5 (F, OH) 2 и пироксен сподумен - LiAl . Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах.
Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты - граниты с магматическим топазом, высоким содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития.
Другой тип месторождений лития - рассолы некоторых сильносоленых озёр. Месторождения Месторождения лития известны в России (более 50% запасов страны сосредоточено в редкометальных месторождениях Мурманской области), Боливии, Аргентине, Мексике, Афганистане, Чили, США, Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве, Конго.

Получение

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси). 2LiCl = 2Li + Cl 2 В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Физические свойства

Литий - серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.
Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды).
Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранится в керосине (к тому же плотность лития столь мала, что он будет в нём плавать) и может непродолжительное время храниться на воздухе.
Во влажном воздухе медленно реагирует с азотом, находящимся в воздухе, превращаясь в нитрид Li 3 N, гидроксид LiOH и карбонат Li 2 CO 3 . В кислороде при нагревании горит, превращаясь в оксид Li 2 O. Есть интересная особенность, что в интервале температур от 100 °C до 300 °C литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется.
В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура возгорания находится около 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.
Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H 2 . Реагирует также с этиловым спиртом (с образованием алкоголята), с водородом (при 500-700 °C) с образованием гидрида лития, с аммиаком и с галогенами (с иодом - только при нагревании). При 130 °C реагирует с серой с образованием сульфида. В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид). При 600-700 °C литий реагирует с кремнием с образованием силицида. Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор.
Литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.


Литий - химический элемент первой группы периодической системы элементов Д.И. Менделеева, подгруппы щелочных металлов, порядковый номер 3, атомный вес 6,94. Известны два изотопа лития Li6 и Li7 с относительной распространенностью 7,3 и 92,7%; получен радиоактивный изотоп с массовым числом 8. Радиус атома 1,56, радиус иона 0,78 А.
Литий был открыт в 1817 г. шведским химиком А. Арфведсоном при анализе минерала петалита. В свободном виде был получен в 1855 г. Р. Бунзеном и О. Матиссеном путем электролиза расплавленного хлористого лития.
Литий - металл серебристо белого цвета. Его плотность 0,534 г/см3 (при 20°). Температура плавления лития 180 температура кипения 1330°, Расширение при плазлении 1,51%.
Электропроводность лития составляет около 20% от электропроводности серебра, он обладает наибольшей среди металлов удельной теплоемкостью, равной 0,941 кал (при 20-100°); твердость лития по шкале твердости 0,6; по своей пластичности он напоминает свинец. Стойкость лития несколько выше стойкости остальных щелочных металлов; он плавится, не загораясь; температура его воспламенения 220-250°. Потенциал ионизации лития 5,37 в. Электродный потенциал: в расплаве 2,1 в, в растворе 3,0 в.
Зависимость давления паров лития от температуры характеризуется следующими цифрами (мм рт. ст.): 300°-5,07*10в-20, 400° - 4,78*10в-13, 500° - 6,54*10в-9, 600 - 3,36*10в-6, 700° - 2,83*10в-4, 800 - 7,76*10в-3, 900° - 0,101; 1000о - 0,782, 1100° - 4,16, 1200° - 16,7, 1300° - 54,0, 1350° - 91,0.
На воздухе литий быстро покрывается темно-красной пленкой, состоящей из нитрида Li3N (65-75%) и окиси лития Li2O (35-25%); поэтому хранить литий необходимо в герметически закрытых сосудах или в инертной жидкости.
Литий очень энергично реагирует с водородом, азотом, окислами и сульфидами, образуя нерастворимые в металлах химические соединения; соединения эти имеют небольшой удельный вес и легко всплывают на поверхность расплавленного металла. На этом основано действие лития как раскислителя и дегазатора, для чего он применяется обычно в виде 2%-ных лигатур с металлами (в первую очередь с медью, но может применяться и с кальцием), подлежащими дегазации и раскислению. Прибавление даже очень небольших количеств лития обеспечивает полное раскиление цветных металлов, хромоникелевой стали и чугуна.
На способности лития легко соединяться с азотом основано его использование для очистки инертных газов (гелия или аргона), требующихся в производстве титана, циркония и других металлов. Металлический литий находит применение для создания защитной атмосферы в закалочных и других печах, предназначенных для термообработки деталей; вдуваемый в расплавленном виде в герметизированную закалочную печь литий активно соединяется с вредными газами печной атмосферы.
Литий применяется в качестве одного из компонентов легких сплавов. Технические литиевые сплавы обычно содержат очень небольшие добавки лития. В большинстве случаев литий образует с другими металлами интерметаллические соединения; известны, например, соединения его с магнием (LiMg2) и алюминием (AlLi и AlLi2), найденные советским химиком П.Я. Сальдау. С магнием, алюминием и цинком литий образует твердые растворы значительных концентраций. Литий входит в состав некоторых легких сплавов высокой прочности на алюминиевой основе, например склерона (4% Cu и 0,1% Li), применяемых для изготовления деталей грузовых автомашин и основных рам трамвайных и железнодорожных вагонов Сплав магния с 11,5% Li, 5% Ag и 15% Cd имеет плотность 1,6 г/см3, предел текучести 30,2 кг/мм2 и относительное удлинение 8%.
Использование лития как компонента антифрикционных сплавов основано на образовании интерметаллических соединений, обладающих большой твердостью и высокой температурой плавления: SnLi7 - 783° (15,8% Li), ZnLi2 - 520° (17,6% Li), Pb2Li7 - 726° (10,1% Li) и др. Образование интерметаллического соединения Pb2Li7 придает свинцу повышенную твердость. Добавка 0,2% лития повышает твердость свинцоволитиевого сплава более чем в три раза по сравнению с твердостью свинца.
Металлический литий применяется в качестве катализатора в производстве синтетического каучука.
Особенно важное значение приобретает литий для производства атомной энергии. Достаточно сказать, что тритий можно получить в термоядерных реакторах при бомбардировке нейтронами дейтерия или таких элементов, как бор, азот и литий.
Исходным веществом для получения трития является изотоп лития Li6 Расширяя производство лития и отделяя изотоп Li6 от изотопа Li7, можно направлять первый на производство атомной энергии, а второй - в различные отрасли народного хозяйства.
До 1914 г литий производился только для экспериментальных целей. В период с 1914 по 1942 г. мировое производство лития составляло около 2,25 т в год. В 1942 - 1946 гг. США производили до 4,5 т лития в год, а в период с 1947 по 1952 г. около 13,5 т. Потребность промышленности США в металлическом литии в 1955 г. составляла до 450 т. На одну водородную бомбу требуется около 4 т металлического лития, этим объясняется быстрый рост производства этого металла в капиталистических странах мира.
Одновременно наблюдается быстрый рост производства соединений лития, имеющих важное значение для промышленности и техники. Так, производство соединений лития в США в пересчете на Li2O характеризуется следующими цифрами (т/год): 1947 г. - 120; 1950 г. - 445; 1954 г. - 2020; 1956 г. - 6500, а на 1957 г. планировалось более 10 тыс. т.
Окись лития Li2O - белый порошок. Плотность его 2,02 г/с.м3, температура плавления 1700°. При высокой температуре окись лития разъедает поверхность платины; она не взаимодействует с водородом, углеродом и окисью углерода. При нагревании выше 1000° начинает возгоняться.
Окись лития может быть получена путем термического разложения углекислой соли лития или его гидрата окиси. Окись лития - исходный материал при вакуум-термическом получении лития.
Углекислый литий Li2CO3 белый порошок. Плотность его 2,111 г/см3, температура плавления 732°, коэффициент преломления 1,567. Упругость диссоциации (мм рт. ст.): при 610° - 1; при 723° - 4; при 810° - 15; при 888° - 32, при 965° - 63; при 1270° - 760. Карбонат лития испаряется при нагревании; он трудно растворяется в воде и на этом основано его отделение от карбонатов других щелочных металлов.
Из углекислого лития можно получить любой галогенид лития, а также металлический литий.
Гидрат окиси лития LiOH - белый порошок. Плотность его 2,54 г/см3, температура плавления 445°, температура кипения 925°. При нагревании гидрат окиси лития разлагается с образованием окиси лития и паров воды Упругость диссоциации (мм рт. ст.): при 520° - 2; при 610° -23; при 670° - 61; при 724° - 121, при 812° - 322; при 925° - 760. При высокой температуре гидрат окиси летит. Растворимость гидрата окиси лития в воде значительно меньше, чем гидратов окисей других щелочных металлов, на этом и основано его отделение.
Гидрат окиси лития - исходный материал для производства других литиевых соединений, галогенидов, углекислого лития и т. д. Добавка 50 г гидрата окиси лития на 1 л электролита щелочных аккумуляторов повышает их емкость на 20% и увеличивает вдвое срок службы. Применение гидрата окиси лития для производства литиевых солей ряда органических кислот, например стеариновой, позволяет получить специальные смазки, не замерзающие при низких температурах (-50°) и не разлагающиеся при высоких температурах (120-150°). Эти смазки применяются и в порошковой металлургии в качестве внутренней связки, позволяющей получить наибольшую плотность брикетов при пониженных давлениях. Высокая точка плавления стеарата лития позволяет использовать его в производстве винипластов.
Хлористый литий LiCl - белое кристаллическое вещество Плотность его 2,068 г/см3, температура плавления 614°, температура кипения - 1360° Упругость паров хлористого лития (мм рт. ст.): при 783°- 1, при 880° - 2, при 932° - 10; при 1045° - 40; при 1129° - 100; при 1290° - 400, при 1360° - 760.
Хлористый литий обладает высокой гигроскопичностью, но легко обезвоживается; это позволяет применять его в установках по кондиционированию воздуха и на производствах, где необходимо сохранять постоянную влажность (синтетическое и натуральное волокно, прецизионное машиностроение, полиграфия). Обезвоженный хлористый литий служит исходным сырьем для получения лития электролитическим способом.
Фтористый литий LiF - белый кристаллический порошок. Плотность его 2,295 г/см3, температура плавления 870°, температура кипения 1670° Плохо растворяется в воде.
Фтористый литий применяется в качестве добавки при электролитическом получении лития. Он нашел применение в производстве инфракрасной и ультрафиолетовой оптики; крупные прозрачные искусственные кристаллы фтористого лития служат для приготовления из них оптических систем. Фтористый и хлористый литий используются в качестве флюса при сварке алюминия и его сплавов.
Гидрид лития LiH - белое кристаллическое вещество. Плотность его 0.75 г/см3, температура плавления 680°, упругость диссоциации при 850° составляет 760 мм рт. ст. Гидрид лития образуется при взаимодействии металлического лития и водорода при повышенных температурах (450-500°), наибольшей скорости реакция достигает при 650°.
Гидрид лития - сильный восстановитель. При взаимодействии 1 кг гидрида с водой выделяется 2,8 м3 водорода. Поэтому гидрид лития используется как средство получения водорода для сигнальных и спасательных целей в морском флоте и в морской авиации, для заполнения выделяющимся при попадании в воду водородом спасательных поясов или сигнальных буйков.
Гидрид лития находит все более широкое применение при синтезе различных органических соединений, например полимеризации этилена, получении более реакционноопособных литиевых алкилов и арилов, определении ароматических нитросоединений и многих других реакциях органического синтеза.
Карбид лития Li2C2 - бесцветные или серые кристаллы. Образуется при взаимодействии лития с углеродом при температуре 650-700°; очень бурно реагирует с водой с образованием углерода и гидрата окиси лития.
Нитрид лития Li3N - очень темное, с зеленоватым оттенком вещество с металлическим блеском. Плавится при 845° и может быть переплавлен в атмосфере азота или в вакууме. Взаимодействие лития с азотом начинается при комнатной температуре и заметно возрастает с повышением температуры. При взаимодействии с водой нитрид лития выделяет аммиак.
Перекись лития Li2O2 содержит до 35% освобождаемого кислорода и поэтому может являться безбаллонным источником для получения этого газа, например в целях освежения воздуха в изолированных помещениях (при кесонных работах, в подводных лодках, самолетах и т. п.).
Все перечисленные выше соединения лития находят все большее применение в различных областях промышленности.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...