Схема записи голограммы. Голография

Схема записи голограммы представлена на рисунке 1. Денисюк осуществил запись голограммы в трехмерной среде объединив таким образом идею Габора с цветной фотографией Липпмана. Тогда участки голограммы с максимальным пропусканием света будут соответствовать тем участкам фронта предметной волны в которых ее фаза совпадает с фазой опорной волны. Поэтому при последующем освещении голограммы опорной волной в ее плоскости образуется то же распределение амплитуды и фазы которое было у предметной волны чем и обеспечивается восстановление...

55. Голография. Схема записи и восстановления голограмм. Запись голограмм на толстослойных эмульсиях. Применение голограмм

Голография (от греч. holos - весь, полный и grapho – пишу) – способ записи и восстановления волнового поля, основанный на регистрации интерференционной картины, которая образована волной, отраженной предметом, освещаемым источником света S (предметная волна), и когерентной с ней волной идущей непосредственно от источника (опорная волна). Зарегистрированная интерференционная картина называется голограммой . Схема записи голограммы представлена на рисунке 1.

Основы голографии заложены в 1948 г. физиком Д. Габором (Великобритания). Желая усовершенствовать электронный микроскоп, Габор предложил регистрировать информацию не только об амплитудах, но и о фазах электронных волн путем наложения на предметную волну попутной когерентной опорной волны. Однако из-за отсутствия мощных источников когерентного света ему не удалось получить качественных голографических изображений. Второе рождение голография пережила в 1962 – 1963 гг., когда американские физики Э. Лейт и Ю. Упатниекс применили в качестве источника света лазер и разработали схему с наклонным опорным пучком, а Ю.Н. Денисюк осуществил запись голограммы в трехмерной среде, объединив, таким образом, идею Габора с цветной фотографией Липпмана. К 1965 – 1966 гг. были созданы теоретические и экспериментальные основы голографии. В последующие годы развитие голографии шло главным образом по пути совершенствования ее применений.

Пусть интерференционная структура, образованная опорной и предметной волнами, зарегистрирована позитивным фотоматериалом. Тогда участки голограммы с максимальным пропусканием света будут соответствовать тем участкам фронта предметной волны, в которых ее фаза совпадает с фазой опорной волны. Эти участки будут тем прозрачнее, чем большей была интенсивность предметной волны. Поэтому при последующем освещении голограммы опорной волной в ее плоскости образуется то же распределение амплитуды и фазы, которое было у предметной волны, чем и обеспечивается восстановление последней.

Для восстановления предметной волны голограмму освещают источником, создающим копию опорной волны. В результате дифракции света на интерференционной структуре голограммы в дифракционном пучке первого порядка восстанавливается копия предметной волны, образующая неискаженное мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Если голограмма двумерная, одновременно восстанавливается сопряженная волна минус первого порядка , образующая искаженное действительное изображение предмета (рисунок 2).

Углы, под которыми распространяются дифракционные пучки нулевых и первых порядков, определяются углами падения на фотопластинку предметной и опорной волн. В схеме Габора источник опорной волны и объект располагались на оси голограммы (осевая схема ). При этом все три волны распространялись за голограммой в одном и том же направлении, создавая взаимные помехи. В схеме Лейта и Упатниекса такие помехи были устранены наклоном опорной волны (внеосевая схема ).

Интерференционная структура может быть зарегистрирована светочувствительным материалом одним из следующих способов:

  1. в виде вариаций коэффициентов пропускания света или его отражения . Такие голограммы при восстановлении волнового фронта модулируют амплитуду освещающей волны и называются амплитудными ;
  2. в виде вариаций коэффициента преломления или толщины (рельефа ). Такие голограммы при восстановлении волнового фронта модулируют фазу освещающей волны и поэтому называются фазовыми .

Часто одновременно осуществляется фазовая и амплитудная модуляция. Например, обычная фотопластинка регистрирует интерференционную структуру в виде вариаций почернения, показателя преломления и рельефа. После отбеливания голограммы остается только фазовая модуляция.

Зарегистрированная на фотопластинке интерференционная структура обычно сохраняется долго, то есть процесс записи отделен от процесса восстановления (стационарные голограммы ). Однако существуют фоточувствительные среды (некоторые красители, кристаллы, пары металлов), которые почти мгновенно реагируют фазовыми или амплитудными характеристиками на освещенность. В этом случае голограмма существует во время воздействия на среду предметной и опорной волн, а восстановление волнового фронта производится одновременно с записью, в результате взаимодействия опорной и предметной волн с образованной ими же интерференционной структурой (динамические голограммы ). На принципах динамической голографии могут быть созданы системы постоянной и оперативной памяти, корректоры излучения лазеров, усилители изображений, устройства управления лазерным излучением, обращения волнового фронта.

Если толщина фоточувствительного слоя значительно больше расстояния между соседними поверхностями интерференционных максимумов, то голограмму следует рассматривать как объемную . Если же запись интерференционной структуры происходит на поверхности слоя, или если толщина слоя сравнима с расстоянием d между соседними элементами структуры, то голограммы называют плоскими. Критерий перехода от двухмерных голограмм к трехмерным: .

Объемные голограммы представляют собой трехмерные структуры, в которых поверхности узлов и пучностей зарегистрированы в виде вариаций показателя преломления или коэффициента отражения среды. Поверхности узлов и пучностей направлены по биссектрисе угла, который составляют предметный и опорный пучки. Такие многослойные структуры при освещении опорной волной действуют подобно трехмерным дифракционным решеткам. Свет, зеркально отраженный от слоев, восстанавливает предметную волну.

Пучки, отраженные от разных слоев усиливают друг друга, если они синфазны, то есть разность хода между ними равна (условие Липпмана – Брэгга ). Условие автоматически выполняется только для той длины волны, в свете которой регистрировалась голограмма. Это обусловливает избирательность голограммы по отношению к длине волны источника, в свете которого происходит восстановление волнового фронта. Возникает возможность восстанавливать изображение с использованием источника сплошного спектра (Солнце, лампа накаливания). Если экспонирование проводилось светом, содержащим несколько спектральных линий (красную, синюю, зеленую), то для каждой длины волны образуется своя трехмерная интерференционная структура. Соответствующие длины волн будут выделяться из сплошного спектра при освещении голограммы, что обусловит восстановление не только структуры волны, но и ее спектрального состава, то есть получение цветного изображения. Трехмерные голограммы одновременно образуют только одно изображение (мнимое или действительное) и не дают волны нулевого порядка.

Свойства голограмм .

А) Основное свойство голограмм, отличающее ее от фотографического снимка, состоит в том, что на снимке регистрируется только распределение амплитуды падающей на него предметной волны, в то время как на голограмме, кроме того, регистрируется и распределение фазы предметной волны относительно фазы опорной волны. Информация об амплитуде предметной волны записана на голограмме в виде контраста интерференционного рельефа, а информация о фазе – в виде формы и частоты интерференционных полос. В результате голограмма при освещении ее опорной волной восстанавливает копию предметной волны.

Б) Свойства голограммы, регистрируемой обычно на негативном фотоматериале, остаются такими же, как и в случае позитивной записи – светлым местам объекта соответствуют светлые места восстановленного изображения, а темным – темные. Это легко понять, принимая во внимание, что информация об амплитуде предметной волны заключена в контрасте интерференционной структуры, распределение которого на голограмме не меняется при замене позитивного процесса негативным. При такой замене только сдвигается на фаза восстановленной предметной волны. Это незаметно при визуальном наблюдении, но иногда проявляется в голографической интерферометрии.

В) Если при записи голограммы свет от каждой точки объекта попадает на всю поверхность голограммы, каждый малый участок последней способен восстановить все изображение объекта. Однако меньший участок голограммы восстановит меньший участок волнового фронта, несущего информацию об объекте. Если этот участок будет очень мал, то качество восстановленного изображения ухудшается.

В случае голограмм сфокусированного изображения каждая точка объекта посылает свет на соответствующий ей малый участок голограммы. Поэтому фрагмент такой голограммы восстанавливает только соответствующий ему участок объекта.

Г) Полный интервал яркостей, передаваемый фотографической пластинкой, как правило, не превышает одного – двух порядков, между тем реальные объекты часто имеют значительно бóльшие перепады яркостей. В голограмме, обладающей фокусирующими свойствами, используется для построения наиболее ярких участков изображения весь свет, падающий на всю ее поверхность, и она способна передать градации яркости до пяти – шести порядков.

Д) Если при восстановлении волнового фронта освещать голограмму опорным источником, расположенным относительно голограммы так же, как и при ее экспонировании, то восстановленное мнимое изображение совпадает по форме и положению с самим предметом. При изменении положения восстанавливающего источника, при изменении его длины волны или ориентации голограммы и ее размера соответствие нарушается. Как правило, такие изменения сопровождаются аберрациями восстановленного изображения.

Е) Минимальное расстояние между двумя соседними точками предмета, которые еще можно видеть раздельно при наблюдении изображения предмета с помощью голограммы, называют разрешающей способностью голограммы . Она растет с увеличением размеров голограммы. Угловое разрешение круглой (диаметра D ) голограммы определяется по формуле: . Угловое разрешение голограммы квадратной формы со стороной квадрата, равной L , определяется по формуле: .

В большинстве схем голографирования предельный размер голограммы ограничивается разрешающей способностью регистрирующего фотоматериала. Это обусловлено тем, что увеличение размеров голограммы сопряжено с ростом угла между предметным и опорным пучками и пространственной частоты. Исключением является схема безлинзовой фурье-голографии, в которой не увеличивается при увеличении размеров голограммы.

Ж) Яркость восстановленного изображения определяется дифракционной эффективностью , которая определяется как отношение светового потока в восстановленной волне к световому потоку, падающему на голограмму при восстановлении. Она определяется типом голограммы, условиями ее записи, а также свойствами регистрирующего материала.

Максимально достижимая дифракционная эффективность голограмм составляет:

Для двумерных пропускающих голограмм

– амплитудных – 6,25 %,

– фазовых – 33,9 5;

Для двумерных отражающих – соответственно 6,25 и 100 %;

Для трехмерных пропускающих голограмм – 3,7 и 100 %;

–для трёхмерных отражающих – 7,2 и 100 %.

Применения голографии . При восстановлении голограмм создается полная иллюзия существования объекта, неотличимого от оригинала. Это свойство голограмм используется в лекционных демонстрациях, при создании объемных копий произведений искусства, голографических портретов. Трехмерные голографические изображения используются при исследовании движущихся частиц, капель дождя или тумана, треков ядерных частиц в пузырьковых и искровых камерах.

С помощью голографических устройств осуществляются различные волновые преобразования, в том числе обращение волнового фронта в целях исключения оптических аберраций. Одно из первых применений голографии было связано с исследованием механических напряжений. Голография применяется для хранения и обработки информации. При этом обеспечивается большая плотность записи и надежность записи.

Объемность изображения делает перспективным создание голографического кино и телевидения. Главная трудность при этом – создание огромных голограмм, которые могло бы наблюдать одновременно большое число зрителей. Кроме того, голограмма должна быть динамической. Для создания голографического телевидения необходимо преодолеть трудность, обусловленную необходимостью расширения на несколько порядков полосы частот, чтобы осуществлять передачу объемных движущихся изображений.

Голограмма может быть изготовлена не только оптическим методом, но и рассчитана на ЭВМ (цифровая голограмма). Машинные голограммы используются для получения объемных изображений не существующих ещё объектов. Машинные голограммы сложных оптических поверхностей используют как эталоны для интерференционного контроля поверхностей изделий.

Известна также акустическая голография, которая может сочетаться с методами визуализации акустических полей.


Дополнительный материал

При встрече опорной и предметной волн в пространстве образуется система стоячих волн. Максимумы амплитуды стоячих волн соответствуют зонам, в которых интерферирующие волны находятся в одной фазе, а минимумы – зонам, в которых интерферирующие волны находятся в противофазе. Для точечного опорного источника О 1 и точечного предмета О 2 поверхности максимумов и минимумов представляют собой систему гиперболоидов вращения. Пространственная частота интерференционной структуры (величина, обратная ее периоду) определяется углом, под которым сходятся в данной точке световые лучи – исходящий из опорного источника и исходящий из предмета: , где – длина волны. Плоскости, касательные к поверхности узлов и пучностей в каждой точке пространства, делят пополам угол. В схеме Габора опорный источник и предмет расположены на оси голограммы, угол близок к нулю и пространственная частота минимальна. Осевые голограммы называют также однолучевыми , так как используется один пучок света, одна часть которого рассеивается предметом и образует предметную волну, а другая часть, прошедшая через объект без искажения, - опорную волну.

В схеме Лейта и Упатниекса когерентный наклонный опорный пучок формируется отдельно (двулучевая голограмма ). Для двулучевых голограмм пространственная частота больше, чем для однолучевых голограмм. Поэтому для регистрации двулучевых голограмм требуются фотоматериалы с более высоким пространственным разрешением.

Если опорный и предметный пучок падают на фоточувствительный слой с разных сторон (~ 180 0 ), то максимальна и близка к 2/ (голограммы во встречных пучках ). Интерференционные максимумы располагаются вдоль поверхности материала в его толще. Эта схема была впервые предложена Денисюком. Так как при освещении такой голограммы опорным пучком восстановленная предметная волна распространяется навстречу освещающему пучку, такие голограммы иногда называют отражательными .

Типы голограмм . Структура голограммы зависит от способа формирования предметной и опорной волн и от способа записи интерференционной картины. В зависимости от взаимного расположения предмета и пластинки, а также от наличия оптических элементов между ними, связь между амплитудно-фазовыми распределениями предметной волны в плоскостях голограммы и предмета различна. Если предмет лежит в плоскости голограммы или сфокусирован на нее, то амплитудно-фазовое распределение на голограмме будет таким же, как и в плоскости предмета (голограмма сфокусированного изображения ; рисунок 3).

Когда предмет находится достаточно далеко от пластинки, либо в фокусе линзы Л, то каждая точка предмета посылает на пластинку параллельный световой пучок. При этом связь между амплитудно-фазовыми распределениями предметной волны в плоскости голограммы и в плоскости предмета дается преобразованием Фурье (комплексная амплитуда предметной волны на пластинке – так называемый фурье-образ предмета). Голограмма в этом случае называется голограммой Фраунгофера (рисунок 4).

Если комплексные амплитуды предметной и опорной волн являются фурье-образами предметной и опорного источника, то голограмму называют голограммой Фурье . При записи голограммы Фурье предмет и опорный источник располагают обычно в фокальной плоскости линзы (рисунок 5).

В случае безлинзовой фурье-голограммы опорный источник располагают в плоскости предмета (рисунок 6). При этом фронт опорной волны и фронты элементарных волн, рассеянных отдельными точками предмета, имеют одинаковую кривизну. В результате структура и свойства голограммы практически такие же, как у фурье-голограммы.

Голограммы Френеля образуются в том случае, когда каждая точка предмета посылает на пластинку сферическую волну. По мере увеличения расстояния между объектом и пластинкой голограммы Френеля переходят в голограммы Фраунгофера, а с уменьшением этого расстояния – в голограммы сфокусированных изображений.


S

Действительное изображение

Мнимое изображение

Рисунок 6 – Схема безлинзовой записи голограммы Фурье

Голограмма

исунок 5 – Схема записи голограммы Фурье

Опорный источник

Опорный пучок

Л

Опорный пучок

Рисунок 4 – Схема записи голограммы Фраунгофера

Рисунок 3 – Схема записи голограммы сфокусированного изображения

Рисунок 1 – Схема записи голограммы

Рисунок 2 – Схема восстановления

голографического изображения предмета

Опорный пучок

Голограмма

Голография - набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.

Данный метод был предложен в 1947 году Дэннисом Габором, он же ввёл термин голограмма и получил "за изобретение и развитие голографического принципа" Нобелевскую премию по физике в 1971 году.

История голографии

Первая голограмма была получена в 1947 году (задолго до изобретения лазеров) Деннисом Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа. Он же придумал само слово "голография", которым он подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Получить качественную голограмму без когерентного источника света невозможно.

Особенности схемы:


После создания в 1960 году красных рубинового (длина волны 694 нм, работает в импульсном режиме) и гелий-неонового (длина волны 633 нм, работает непрерывно) лазеров, голография начала интенсивно развиваться.

В 1962 году была создана классическая схема записи голограмм Эмметта Лейта и Юриса Упатниекса из Мичиганского Технологического Института (голограммы Лейта-Упатниекса), в которой записываются пропускающие голограммы (при восстановлении голограммы свет пропускают через фотопластинку, хотя на практике некоторая часть света от неё отражается и также создаёт изображение, видимое с противоположной стороны).

Схема Лейта-Упатниекса

В этой схеме записи луч лазера делится специальным устройством, делителем (в простейшем случае в роли делителя может выступать любой кусок стекла), на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и регистрирующую среду (например, фотопластинку). Обе волны (объектная и опорная) падают на пластинку с одной стороны. При такой схеме записи формируется пропускающая голограмма, требующая для своего восстановления источника света с той же длиной волны, на которой производилась запись, в идеале - лазера.

В 1967 году рубиновым лазером был записан первый голографический портрет.

В результате длительной работы в 1968 году Юрий Николаевич Денисюк получил высококачественные (до этого времени отсутствие необходимых фотоматериалов мешало получению высокого качества) голограммы, которые восстанавливали изображение, отражая белый свет. Для этого им была разработана своя собственная схема записи голограмм. Эта схема называется схемой Денисюка, а полученные с её помощью голограммы называются голограммами Денисюка.

Особенности схемы:

  • наблюдение изображения в белом свете;
  • нечувствительность к вибрациям элемента "объект-РС";
  • высокая разрешающая способность регистрирующей среды.

В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму. Она принципиально отличается от всех остальных голограмм тем, что состоит из множества (от десятков до сотен) отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не содержит полную информацию об объекте, кроме того, она, как правило, не имеет вертикального параллакса (то есть нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера (которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров) и размерами фотопластинки.

Мало того, можно создать мультиплексную голограмму объекта, которого вовсе не существует, например, нарисовав выдуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов (например, линзовые растры), однако она всё равно далека от традиционных методов голографии по реалистичности.

В 1986 году Абрахам Секе выдвинул идею создания источника когерентного излучения в приповерхностной области материала путем облучения его рентгеновским излучением. Поскольку пространственное разрешение в голографии зависит от размеров источника когерентного излучения и его удаленности от объекта, то оказалось возможным восстановить окружающие эмиттер атомы в реальном пространстве.

В отличие от оптической голографии, во всех предложенных на сегодняшний день схемах электронной голографии восстановление изображения объекта осуществляется с помощью численных методов на компьютере.

В 1988 году Бартон предложил такой метод для восстановления трехмерного изображения, основанный на использовании фурье-подобных интегралов, и продемонстрировал его эффективность на примере теоретически рассчитанной голограммы для кластера известной структуры. Первое восстановление трехмерного изображения атомов в реальном пространстве по экспериментальным данным проведено для поверхности Cu(001) Харпом в 1990 году.

Физические принципы

Основной закон голографии

Если светочувствительный материал, на котором зарегистрирована картина интерференции нескольких световых волн, поместить в положение, в котором он находился в процессе записи, и осветить снова некоторыми из этих волн, то произойдет восстановление остальных. Эта особенность объясняется тем, что на голограмме записываются не только интенсивность, как на обычной фотопластинке, но и фаза исходящего от объекта света. Именно информация о фазе волны необходима для формирования при восстановлении трехмерного пространства, а не двухмерного, даваемого обычной фотографией. Таким образом, голография основана на восстановлении волнового фронта.

Голографический процесс состоит из двух этапов - записи и восстановления.

  • Волна от объекта интерферирует с "опорной" волной, и образующаяся при этом картина записывается.
  • Второй этап - формирование нового волнового фронта и получение изображения исходного объекта.

Запись информации о фазе волны, идущей от объекта, может быть осуществлена только источником света со стабильными фазовыми характеристиками. Идеальным для этой цели являетсялазер - когерентный источник света высокой интенсивности и высокой монохроматичности.

Принцип суперпозиции

Повседневный опыт показывает, что освещенность, создаваемая двумя или несколькими обычными некогерентными источниками света, является простой суммой освещенностей, создаваемой каждым из них в отдельности. Это явление называют принципом суперпозиции .

Еще Гюйгенс в своем "Трактате" писал: "Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных сторон, лучи его производят действие, проходя один сквозь другой без всяких помех". Причина этого в том, что каждый источник, состоящий из множества атомов и молекул, излучает одновременно огромное количество волн, не связанных по фазе. Разность фаз меняется быстро и беспорядочно, и, несмотря на то, что между некоторыми волнами возникает интерференция, интерференционные картины сменяются с такой частотой, что глаз не успевает заметить изменения освещенности. Поэтому интенсивность результирующего колебания воспринимается как сумма составляющих исходных колебаний, а излучение источника представляет собой "белый" свет , т. е. не монохроматический, а состоящий из различных длин волн. По той же причине этот свет является неполяризованным, а естественным, т. е. не имеет преимущественной плоскости колебания.

Когерентные колебания

В особых условиях принцип суперпозиции не соблюдается. Это наблюдается, когда разность фаз световых волн остается постоянной в течение достаточно длительного для наблюдения времени. Волны как бы "звучат в такт". Такие колебания называются когерентными.

Основным признаком когерентности является возможность интерференции. Это значит, что при встрече двух волн они взаимодействуют, образуя суммарно новую волну. В результате этого взаимодействия результирующая интенсивность будет отличаться от суммы интенсивностей отдельных колебаний - в зависимости от разности фаз образуется или более темное, или более светлое поле, или вместо равномерного поля чередующиеся полосы разной интенсивности интерференционные полосы.

Монохроматические волны всегда когерентны, однако светофильтры, часто называемые монохроматическими, в действительности никогда не дают строго монохроматического излучения, а только сужают спектральный диапазон и, конечно, не превращают обычного излучения в когерентное.

Получение когерентного излучения

Ранее был известен только один способ получения когерентного излучения - с помощью специального прибора - интерферометра . Излучение обычного источника света разделялось на два пучка, когерентных между собой. Эти пучки могли интерферировать. Теперь известен другой способ, использующий индуцированное излучение. На этом принципе основаны лазеры.

Дифракция в голографии

Основным физическим явлением, на котором основана голография, является дифракция - отклонение от своего первоначального направления света, проходящего вблизи краев непрозрачных тел или сквозь узкие щели. Если на экране нанесена не одна, а несколько щелей, то возникает интерференционная картина, состоящая из серии чередующихся светлых и темных полос, более ярких и узких, чем при одной щели. В середине расположена самая яркая полоса "нулевого порядка", по обе стороны от нее - полосы постепенно убывающей интенсивности первого, второго и прочих порядков. С увеличением числа щелей на экране полосы становятся все уже и ярче. Экран с большим количеством тонких параллельных щелей, количество которых часто доводят до 10 000, называется дифракционной решеткой.

Решетка, представляющая собой голограмму, характеризуется прежде всего тем, что дифракция происходит не на щели, а на кружке. Дифракционная фигура от круглого непрозрачного объекта представляет собой яркий центральный кружок, окруженный постепенно ослабевающими кольцами. Если вместо непрозрачного диска на пути волны поместить диск с окружающими его кольцами, то кружок на изображении станет ярче, а полосы бледнее. Если прозрачность от темного к светлому участку меняется не скачками, а постепенно, по синусоидальному закону, то такая решетка образует полосы только нулевого и первого порядков, а помехи в виде полос высших порядков не появляются. Это свойство очень важно при записи голограммы. Если переход от темного кольца к светлому будет осуществляться строго по синусоидальному закону, то кольца на изображении пропадут и изображение будет представлять собой маленький яркий кружок, почти точку. Таким образом, круглая синусоидальная решетка будет формировать из параллельного пучка лучей (плоской волны) такое же изображение, как собирательная линза.

Такая решетка, называемая зонной решеткой (пластинкой Сорэ, пластинкой Френеля), используется иногда вместо линзы. Например, она применяется в очках, заменяя тяжелые очковые линзы высоких рефракций. Получение зонных решеток возможно различными путями, как механическими, так и оптическими, интерференционными. Использование этих решеток, полученных интерференционным путем, и положено в основу голографии.

Запись голограммы

Чтобы записать голограмму сложного несамосветящегося объекта, его освещают излучением лазера. На ту же пластинку, на которую падает рассеянный отраженный объектом свет, направляют когерентную опорную волну. Эта волна отделяется от излучения лазера с помощью зеркал.

Свет, отраженный каждой точкой объекта, интерферирует с опорной волной и образует голограмму этой точки. Так как любой объект представляет собой совокупность рассеивающих свет точек, то на фотопластинку накладывается множество элементарных голограмм - точек, которые в совокупности дадут сложную интерференционную картину объекта.

Проявленную голограмму помещают в то место, где она находилась при записи, и включают лазер. Так же как при восстановлении голограммы точки, при освещении голограммы пучком света лазера, участвовавшего в записи, происходит восстановление световых волн, исходивших от объекта при записи. Там, где при записи находился объект, видно мнимое изображение. Сопряженное с ним действительное изображение формируется по другую сторону от голограммы, со стороны наблюдателя. Оно обычно незаметно, но в отличие от мнимого может быть получено на экране.

Ю. Н. Денисюк (1962) разработал метод, в котором для регистрации голограммы вместо тонкослойной эмульсии используются трехмерные среды. В такой толстой голограмме возникают стоячие волны, что существенно расширило возможности метода. Трехмерная дифракционная решетка, кроме описанных ранее свойств голограммы, обладает рядом важных особенностей. Наиболее интересна возможность восстановления изображения с помощью обычного источника сплошного спектра - лампы накаливания, солнца и других излучателей. Кроме того, в трехмерной голограмме отсутствуют волны нулевого порядка и действительное изображение, а следовательно, снижаются помехи.

1. Схема записи голограмм Денисюка

Итак, мы начинаем практический курс по голографии. Первые занятия будут посвящены ознакомлению с работой на схеме Денисюка - самой популярной голографической схеме. И это неудивительно, ведь схема Денисюка - самая простая из голографических схем. Тем не менее, с ее помощью можно записывать голограммы самого высокого качества.
Свое название схема получила по имени известнейшего российского ученого - Юрия Николаевича Денисюка , который в начале семидесятых годов изобрел метод записи отражающих голограмм на прозрачных фотопластинках. До этого голограммы записывались по методу Лейта -Упатниекса , и для их наблюдения требовался лазер. Чтобы голограммы можно было видеть в обычном, белом свете, Денисюк предложил освещать фотопластинку и объект одним и тем же лазерным пучком. Для этого потребовалась разработка специальных фотопластинок, которые должны быть прозрачными и иметь очень большую разрешающую способность. Задача была успешно решена.

На первом рисунке показана схема записи голограмм Денисюка, а на втором - фотография реальной установки. Узкий световой пучок 2 от лазера 1 направляется зеркалом 3 на пространственный фильтр 4 , который расширяет пучок до нужной величины и одновременно повышает его однородность. Расширенный пучок 5 освещает фотопластинку 6 и объект 7 , закрепленный на жестком основании 8 . Лазерный свет отражается от объекта на фотопластинку с обратной стороны. В плоскости фотопластинки встречаются два пучка: идущий от лазера, он называется опорным, и от объекта, он называется сигнальным. Эти пучки создают интерференционную картину , которая и регистрируется на фотопластинке. Картина интерференции - это мельчайшие перепады интенсивности света с периодом менее 1 микрона. Чтобы зарегистрировать такую мелкую картину требуется полная неподвижность объекта и фотопластинки во время экспонирования. Поэтому мягкие предметы и живые объекты, например, портрет человека, в схеме с лазером непрерывного действия записать нельзя.

November 23rd, 2012

Компания NICE Interactive

Продолжаю выполнять заявки своих френдов из Месяц уже близиться к концу, а я еще далек от завершения очереди ваших вопросов. Сегодня мы разбираем, обсуждаем и дополняем задание trudnopisaka :

Технологии создания трехмерных голограмм. Бывают ли они непрозрачными? С чем можно сравнить энергетические затраты на их создание? Какие есть перспективы развития?

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы этаинтерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.


Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны.

Полученная интерференционная картина является кодированным изображением, описывающим объект таким, каким он виден из всех точек фотопластинки. В этом изображении сохранена информация как об амплитуде, так и о фазе отраженных от объекта волн и, следовательно, заложена информация о трехмерном (объемном) объекте.
Фотографическая запись картины интерференции предметной волны и опорной волны обладает свойством восстанавливать изображение объекта, если на такую запись снова направить опорную волну. Т.е. при освещении записанной на пластине картины опорным пучком восстановится изображение объекта, которое зрительно невозможно отличить от реального. Если смотреть через пластинку под разными углами, можно наблюдать изображение объекта в перспективе с разных сторон. Конечно, полученную таким чудесным способом фотопластинку нельзя назвать фотографией. Это - голограмма.

В 1962 г. И. Лейт и Ю. Упатниекс получили первые пропускающие голограммы объемных объектов, выполненные с помощью лазера. Схема, предложенная ими, используется в изобразительной голографии повсеместно:
Пучок когерентного излучения лазера направляется на полупрозрачное зеркало, с помощью которого получают два пучка - предметный и опорный. Опорный пучок направляют непосредственно на фотопластинку. Предметный пучок освещает объект, голограмму которого регистрируют. Отраженный от объекта световой пучок - объектный попадает на фотопластинку. В плоскости пластинки два пучка - объектный и опорный образуют сложную интерференционную картину, которая вследствие когерентности двух пучков света остается неизменной во времени и представляет собой изображение стоячей волны. Остается только зарегистрировать ее обычным фотографическим путем.


Японский концерт с 3D голограммой Hatsune Miku

Если голограмму записать в некоторой объемной среде, то полученная модель стоячей волны однозначно воспроизводит не только амплитуду и фазу, но и спектральный состав записанного на ней излучения. Это обстоятельство было положено в основу создания трехмерных (объемных) голограмм.
В основу работы объемных голограмм положен дифракционный эффект Брэгга. B результате интерференции волн, распространяющихся в толстослойной эмульсии, образуются плоскости, засвеченные светом большей интенсивности. После проявления голограммы на засвеченных плоскостях образуются слои почернения. В результате этого создаются так называемые брэгговские плоскости, которые обладают свойством частично отражать свет. Т.е. в эмульсии создается трехмерная интерференционная картина.

Такая толстослойная голограмма обеспечивает эффективное восстановление объектной волны при условии, что угол падения опорного пучка при записи и восстановлении останется неизменным. Не допускается также изменение длины волны света при восстановлении. Такая избирательность объемной пропускающей голограммы позволяет записать на пластинке до нескольких десятков изображений, изменяя угол падения опорного пучка соответственно при записи и восстановлении.

Схема записи пропускающих объемных голограмм аналогична схеме Лейта-Упатниекса для двумерных голограмм.

При восстановлении объемной голограммы, в отличие от плоских пропускающих голограмм, образуется только одно изображение вследствие отражения от голограммы восстанавливающего пучка только в одном направлении, определяемом углом Брэгга.

Отражательные объемные голограммы записываются по иной схеме. Идея создания данных голограмм принадлежит Ю.Н.Денисюку. Поэтому голограммы этого типа известны под именем их создателя.

Опорный и предметный световые пучки образуются с помощью делителя и посредством зеркала направляются на пластину с двух сторон. Предметная волна освещает фотографическую пластину со стороны эмульсионного слоя, опорный - со стороны стеклянной подложки. Плоскости Брэгга в таких условиях записи располагаются почти параллельно плоскости фотопластины. Таким образом, толщина фотослоя может быть сравнительно небольшой.
На приведенной схеме объектная волна образуется с пропускающей голограммы. Т.е. вначале изготавливаются обычные пропускающие голограммы по описанной выше технологии, а потом уже с этих голограмм (которые называются мастер-голограммами) изготавливают в режиме копирования голограммы Денисюка.

Основное свойство отражательных голограмм - это возможность восстановления записанного изображения с помощью источника белого света, например, лампы накаливания или солнца. Не менее важным свойством является цветовая избирательность голограммы. Это значит, что при восстановлении изображения белым светом, оно восстановится в том цвете, в каком было записано. Если для записи был использован, например, рубиновый лазер, то восстановленное изображение объекта будет красным.

Уникальная 3D-голограмма в ГУМе!

В соответствии со свойством цветовой избирательности можно получить цветную голограмму объекта, в точности передающую его естественный цвет. Для этого необходимо при записи голограммы смешать три цвета: красный, зеленый и синий либо провести последовательное экспонирование фотопластинки этими цветами. Правда, технология записи цветных голограмм находится еще в экспериментальной стадии и потребует еще значительных усилий и экспериментов. Примечательно при этом, что многие, посетившие выставки голограмм, уходили оттуда в полной уверенности, что видели цветные объемные изображения!

Технология связи при помощи объемных голограмм, описанная впервые в "Звездных войнах" еще 30 лет назад, судя по всему, становится реальностью. Еще в 2010 году команда физиков из Университета Аризоны смогла разработать технологию передачи и просмотра движущихся трехмерных изображений в реальном времени. Разработчики из Аризоны называют свою работу прототипом "голографического трехмерного телеприсутствия". В реальности показанная сегодня технология представляет собой первую в мире практическую трехмерную систему передачи подлинно трехмерных изображений без необходимости использования стереоскопических очков.

"Голографическое телеприсутствие означает, что мы можем записать трехмерное изображение в одном местоположении и показать его в трехмерном режиме при помощи голограммы в другом, которое будет удалено на многие тысячи километров. Показ может проводиться в реальном времени", - говорит руководитель исследований Нассер Пейгамбарьян.


Для создания эффекта виртуальной инсталляции (3D голограммы) объекта в месте инсталляции натягивается специальная проекционная сетка. На сетку осуществляется проекция с помощью видеопроектора, который располагается за этой сеткой на расстоянии 2-3 метра. В идеале проекционная сетка натягивается на ферменную конструкцию, которая полностью обшивается темной тканью для затемнения и усиления эффекта. Создается подобие некого темного куба, на переднем плане которого разворачивается 3D изображение. Лучше чтобы действие происходило в полной темноте, тогда не будет виден темный куб и сетка, а только 3D голограмма!

Существующие системы 3D-проекций способны производить либо статические голограммы с превосходной глубиной и разрешением, либо динамические, но смотреть на них можно только под определенным углом и в основном через стереоскопические очки. Новая технология объединяет в себе преимущества обеих технологий, но лишена их многих недостатков.

В сердце новой системы находится новой фотографический полимер, разработанный калифорнийской исследовательской лабораторией Nitto Denko, работающей с электронными материалами.

В новой системе трехмерное изображение записывается на несколько камер, захватывающих объект с разных позиций и затем кодирует в цифровой сверхбыстрый лазерный поток данных, который создает на полимере голографические пиксели (хогели). Само по себе изображение - это результат оптического преломления лазеров между двумя слоями полимера.

Прототип устройства имеет 10-дюймовый монохромный экран, где картинка обновляется каждые две секунды - слишком медленно, чтобы создать иллюзию плавного движения, но все же динамика тут есть. Кроме того, ученые говорят, что показанный сегодня прототип - это лишь концепция и в будущем ученые обязательно создадут полноцветный и быстро обновляющийся поток, создающих натуральные трехмерные и плавно двигующиеся голограммы.

Профессор Пейгамбарьян прогнозирует, что примерно через 7-10 лет в домах у обычных потребителей могут появиться первые голографические системы видеосвязи. "Созданная технология абсолютно устойчива ко внешним факторам, таким как шумы и вибрация, поэтому она подходит и для промышленного внедрения", - говорит разработчик.


Голографическая 3D-установка AGP

Авторы разработки говорят, что одним из наиболее реальных и перспективных направлений разработки является именно телемедицина. "Хирурги из разных стран по всему миру смогут использовать технологию для трехмерного наблюдения за проведением операций в реальном времени и принимать участие в операции", - говорят исследователи. "Вся система полностью автоматизирована и контролируется компьютером. Лазерные сигналы сами кодируются и передаются, а приемник способен самостоятельно проводить рендеринг изображения".

И последние новости 2012 года по этой теме:

Технологии создания трехмерных изображений, которые "растут как грибы" в последнее время, воплощаясь в виде трехмерных телевизионных экранов и дисплеев компьютеров, фактически не создают полноценного трехмерного изображения. Вместо этого с помощью стереоскопических очков или других ухищрений в каждый глаз человека посылаются немного разнящиеся изображения, а уже головной мозг зрителя соединяет все это воедино прямо в голове в виде трехмерного образа. Такое "насилие" над органами чувств человека и повышенная нагрузка на мозг вызывает напряжение зрения и головные боли у некоторых людей. Поэтому, для того, что бы сделать настоящее трехмерное телевидение требуются технологии, способные создавать реальные трехмерные изображения, другими словами, голографические проекторы . Люди уже давно научились создавать высококачественные статические голограммы, но когда дело заходит о движущихся голографических изображениях, тут возникают большие проблемы.

Исследователи из бельгийского нанотехнологического исследовательского центра Imec, разработали и продемонстрировали работающий опытный образец голографического проектора нового поколения, в основе которого лежат технологии микроэлектромеханических систем (microelectromechanical system, MEMS). Использование технологий, лежащих на грани между нано- и микро-, позволит в ближайшем времени создать новый дисплей, способный демонстрировать движущиеся голографические изображения.

В основе нового голографического проектора лежит пластина, на которой находятся крошечные, в половину микрона размером, отражающие свет подвижные площадки. Эта пластина освещается светом от нескольких лазеров, направленных на нее под различными углами. Регулируя положение по вертикальной оси светоотражающих площадок можно добиться того, что волны отраженного света начинают интерферировать между собой, создавая трехмерное голографическое изображение. Это все звучит невероятно и кажется очень сложным, но, тем не менее, на одном из снимков можно увидеть статическое цветное голографическое изображение, сформированное с помощью этих крошечных светоотражающих площадок.

Пока еще исследователи Imec не создали дисплей, способный работать с движущимися изображениями. Но, согласно заявлению Франческо Пессолано (Francesco Pessolano), ведущего исследователя проекта Imec NVision: "Главное для нас было понять основной принцип, пути его реализации и проверить работоспособность опытного образца. Все остальное - это всего лишь дело техники и реализуется достаточно легко". Согласно планам Imec, первый опытный голографический проектор и система его управления должны появиться не позже середины 2012 года, вероятно что это не будет громоздкой вещью, ведь 400 миллиардов светоотражающих площадок, требующихся для создания качественного изображения, можно разместить на пластине, размером с пуговицу. Так что ждать осталось уже совсем не долго, а попозже люди смогут забыть про обычные экраны и дисплеи и полностью погрузиться в виртуальный трехмерный мир.

А какие же перспективы этого направления? Мне кажется вот они...

Голограмма Цоя на Сцене

Голограмма Тупака Шакура

Вот это тоже мне понравилось - http://kseniya.do100verno.com/blog/555/12 012 - посмотрите...

Кто еще знает современные методы воспроизведения голографиеского изображения?

Голография – метод записи и последующего восстановления пространственной структуры световых волн, основанный на явлениях интерференции и дифракции когерентных пучков света.

Фото-пластика, на которой записана эта информация, называется голограммой .

На голограмме регистрируется не оптическое изображение объекта, а интерференционная картина, возникающая при наложении световой волны, рассеянной объектом (предметной волны), и когерентной с ней опорной (или референтной) волны.

Основные области применения голографии:

Запись и хранение информации в т.ч. и визуальной (оптическая голографическая память);

Оптическая обработка информации и система распознавания объектов;

Голографическая интерферометрия.

Построить схему, рассмотреть процесс записи голограммы.

В этом процессе на фотоматериале (например, фотопленке) записывается и фиксируется сложная интерференционная картина, которая создается наложением (взаимодействием) двух световых волн - базовой (опорной) монохроматической волны и вторичной волны, отраженной или рассеянной объектом. Запись голограммы происходит по схеме, представленной на рис.1.

Монохроматический когерентный лазерный луч расширяется коллиматором и далее делится расщепителем на два луча. Один (опорный) луч отражается от зеркала и направляется непосредственно на фотопленку. Другой (объектный) луч направляется соответствующим зеркалом на объект, отражается от него и воспринимается (регистрируется) фотопленкой. Именно этот (отраженный, рассеянный) луч несет разнообразную изобразительную информацию об объемных (трехмерных) параметрах и характеристиках (размерах, поверхности, контуре, неровностях, прозрачности) объекта. Такой луч по существу создает объемный образ объекта, который человек может видеть и наблюдать непосредственно (естественным зрением).

Световые волны опорного и рассеянного объектного лучей создают на поверхности фотопленки интерференционную картину, состоящую из множества пятен, форма и интенсивность которых зависят от амплитуды и фазы падающих и взаимодействующих световых волн. Фотопленка экспонируется и затем проявляется по стандартным рецептам. Полученная (проявленная) пленка является голограммой, сохраняющей интерференционную картину регистрируемого объекта. Голограмма имеет вид туманного негатива, на котором детали объекта явно не просматриваются.

Построить схему, рассмотреть процесс восстановления (воспроизведения) голограммы.

Восстановление объемного изображения объекта по его голограмме (проявленной фотопленке) осуществляется по схеме, представленной на рис.2.

Голограмма освещается одним опорным лучом, причем сохраняются исходные условия, прежняя относительная ориентация опорного луча и фотопленки. При соблюдении указанных условий лазерного освещения голограммы из-за дифракции света возникают два изображения. Следует учитывать, что ранее, в процессе начального образования голограммы объекта, возникла определенная дифракционная картина с тесно расположенными интерференционными полосами, точный вид которых определяется трехмерной структурой объекта. При повторном освещении этой дифракционной картины по схеме (рис.2) дифрагированный свет будет иметь параметры и характеристики, заданные исходным объектом голографической съемки.

Одно из двух изображений, полученных при воспроизведении голограммы, является мнимым (рис.2), поскольку для его наблюдения требуется линза. Однако для этого достаточна естественная линза человеческого глаза и наблюдатель может видеть мнимое (но неискаженное и трехмерное) изображение объекта, рассматривая его непосредственно через голограмму.

Второе (действительное, реальное) изображение формируется в другом направлении лазерного луча, проходящего через голограмму. Это изображение можно проецировать на экран и наблюдать без промежуточной линзы. Часть воспроизводящего луча проходит через голограмму без дифракции, не изменяя направления. Заметной практической ценности этот недифрагированный луч не представляет.

Рассмотренные схемы записи (рис.1) и воспроизведения (рис.2) голограммы, предложенные Э.Лейтом и Дж.Упатниексом, относятся к разряду оптимальных (технически совершенных). В этих схемах используется внеосевая геометрия, в которой опорный и объектный лучи падают на фотопленку под углом друг к другу. Поэтому при воспроизведении голограммы реальное и мнимое изображения оказываются по разные стороны опорного луча, что существенно облегчает раздельное наблюдение изображений.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...