Сообщение точки экстремума. Возрастание и убывание функций, экстремумы


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось вдоль ровной стороны пилы, а ось - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Совершенно очевидно, что и в точке , и в точке значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке - наименьшим в сравнении с соседними точками. Точки называются точками экстремума функции (от латинского extremum - «крайний»), точки и - точками максимума, а точка - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция в точке имеет максимум, если найдется интервал, содержащий точку и принадлежащий области определения функции, такой, что для всех точек этого интервала оказывается . Соответственно функция в точке имеет минимум, если для всех точек некоторого интервала выполняется условие .

На рис. 2 и 3 приведены графики функций, имеющие в точке экстремум.

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое , то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка плоской площадки - отрезка является точкой нестрогого максимума.

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция в точке имеет экстремум. Если в этой точке существует производная , то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка будет точкой минимума. Напротив, точка будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию .

Найдем ее производную: .

Находим значения функции в точках экстремума: , . График функции показан на рис. 8.

Заметим, что возможны случаи, когда экстремум достигается в точке, в которой производная не существует. Таковы точки экстремума у профиля пилы, пример такой функции дан и на рис. 1.

Задачи на максимум и минимум имеют важнейшее значение в физике, механике, различных приложениях математики. Они были теми задачами, которые привели математику к созданию дифференциального исчисления, а дифференциальное исчисление дало мощный общий метод решения задач на экстремум с помощью производной.

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее названиеэкстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Прежде, чем научиться находить экстремумы функции, необходимо понять, что же такое экстремум. Самое общее определение экстремума гласит, что это употребляемое в математике наименьшее или наибольшее значение функции на определенном множестве числовой линии или графике. В том месте, где находится минимум, появляется экстремум минимума, а там, где максимум – экстремум максимума. Также в такой дисциплине, как математический анализ, выделяют локальные экстремумы функции. Теперь давайте рассмотрим, как найти экстремумы.

Экстремумы в математике относятся к важнейшим характеристикам функции, они показывают её самое большое и самое маленькое значение. Находятся экстремумы преимущественно в критических точках находимых функций. Стоит отметить, что именно в точке экстремума функция кардинально меняет своё направление. Если просчитать производную от точки экстремума, то она, согласно определению, должна быть равна нулю или же вовсе будет отсутствовать. Таким образом, чтобы узнать, как найти экстремум функции, необходимо выполнить две последовательные задачи:

  • найти производную для той функции, которую необходимо определить заданием;
  • найти корни уравнения.

Последовательность нахождения экстремума

  1. Оформите в письменном виде функцию f(x), которая задана. Найдите её производную первого порядка f "(x). То выражение, которое получится, приравняйте к нулю.
  2. Теперь вам предстоит решить то уравнение, которое получилось. Результирующие решения и будут корнями уравнения, а также критическими точками определяемой функции.
  3. Теперь определяем, какими именно критическими точками (максимума или минимума) являются найденные корни. Следующим этапом, после того, как мы узнали, как находить точки экстремума функции, является нахождение второй производной от искомой функции f " (x). Необходимо будет подставить в конкретное неравенство значения найденных критических точек и затем посчитать, что получится. Если произойдет так, что вторая производная окажется больше нуля в критической точке, то ею и будет являться точка минимума, а в противном случае – это будет точка максимума.
  4. Остаётся посчитать значение начальной функции в необходимых точках максимума и минимума функции. Чтобы это сделать, подставляем полученные значения в функцию и рассчитываем. Однако стоит отметить, что, если критическая точка оказалась максимумом, то и экстремум будет максимальным, а если минимумом, то минимальным по аналогии.

Алгоритм нахождения экстремума

Чтобы обобщить полученные знания, составим краткий алгоритм того, как находить точки экстремума.

  1. Находим область определения заданной функции и её интервалы, которые точно определяют, на каких промежутках функция непрерывна.
  2. Находим производную от функции f "(x).
  3. Вычисляем критические точки уравнения y = f (x).
  4. Анализируем изменения направления функции f (x), а также знак производной f "(x) там, где критические точки разделяют область определения данной функции.
  5. Теперь определяем, является ли каждая точка на графике максимумом или минимумом.
  6. Находим значения функции в тех точках, которые являются экстремумами.
  7. Фиксируем результат данного исследования – экстремумы и промежутки монотонности. Вот и все. Теперь мы рассмотрели, как можно найти экстремум на любом промежутке. Если вам необходимо найти экстремум на определенном промежутке функции, то делается это аналогичным образом, только обязательно учитываются границы производимого исследования.

Итак, мы рассмотрели, как найти точки экстремума функции. При помощи несложных вычислений, а также знаний о нахождении производных, можно найти любой экстремум и вычислить его, а также графически его обозначить. Нахождение экстремумов является одним из важнейших разделов математики, как в школе, так и в Высшем учебном заведении, поэтому, если вы научитесь правильно их определять, то учиться станет намного проще и интереснее.

Введение

Во многих областях науки и в практической деятельности часто приходится сталкиваться с задачами поиска экстремума функции. Дело в том, что многие технические, экономические и т.д. процессы моделируются функцией или несколькими функциями, зависящими от переменных – факторов, влияющих на состояние моделируемого явления. Требуется найти экстремумы таких функций для того, чтобы определить оптимальное (рациональное) состояние, управление процессом. Так в экономике, часто решаются задачи минимизации издержек или максимизации прибыли – микроэкономическая задача фирмы. В этой работе мы не рассматриваем вопросы моделирования, а рассматриваем только алгоритмы поиска экстремумов функций в простейшем варианте, когда на переменные не накладываются ограничения (безусловная оптимизация), и экстремум ищется только для одной целевой функции.


ЭКСТРЕМУМЫ ФУНКЦИИ

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке. Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е.

Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

y =|x |.

Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум. не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

Например.

.

Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

f "(x) >0 при x <x 0 и f "(x)< 0 при x> x 0 , то x 0 – точка максимума;

при x <x 0 и f "(x)> 0 при x> x 0 , то x 0 – точка минимума.

Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x 2 и x 3 .


Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

Найти область определения функции f(x).

Найти первую производную функции f "(x) .

Определить критические точки, для этого:

найти действительные корни уравнения f "(x) =0;

найти все значения x при которых производная f "(x) не существует.

Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

Вычислить значение функции в точках экстремума.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...