Ядерно магнитно резонансная томография. Физические основы мрт

Магнитно-резонансная томография (ядерно-магнитная резонансная томография, МРТ, ЯМРТ, NMR, MRI) – нерентгенологический метод исследования внутренних органов и тканей человека. Здесь не используются Х-лучи, что делает данный метод безопасным для большинства людей.

Как проводится исследование

Технология МРТ достаточно сложна: используется эффект резонансного поглощения атомами электро-магнитных волн. Человека помещают в магнитное поле, которое создает аппарат. Молекулы в организме при этом разворачиваются согласно направлению магнитного поля. После этого радиоволной проводят сканирование. Изменение состояния молекул фиксируется на специальной матрице и передается в компьютер, где проводится обработка полученных данных. В отличие от компьютерной томографии МРТ позволяет получить изображение патологического процесса в разных плоскостях.

Магнитно-резонансный томограф
по своему внешнему виду похож на компьютерный. Исследование проходит так же, как и компьютерная томография. Стол постепенно продвигается вдоль сканера. МРТ требует больше времени, чем КТ, и обычно занимает не менее 1 часа (диагностика одного раздела позвоночника занимает 20-30 минут).

Метод был назван магнитно-резонансной томографией , а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом "ядерный" в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул. МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Метод особенно эффективен для изучения динамических процессов (например, состояния кровотока и результатов его нарушения) в органах и тканях.

Преимущества магнитно-резонансной томографии

В настоящее время о вреде магнитного поля ничего не известно. Однако большинство ученых считают, что в условиях, когда нет данных о его полной безопасности, подобным исследованиям не следует подвергать беременных женщин. По этим причинам, а также в связи с высокой стоимостью и малой доступностью оборудования компьютерная и ЯМР томографии назначаются по строгим показаниях в случаях спорного диагноза или безрезультатности других методов исследований. МРТ не может также проводиться у тех людей, в организме которых находятся различные металлические конструкции – искусственные суставы, водители ритма сердца, дефибрилляторы, ортопедические конструкции, удерживающие кости и т.п.

Как и другие методы исследования, компьютерную и магнитно-резонансную томографию назначает только врач. Далеко не во всех медицинских учреждениях проводятся эти исследования, поэтому при необходимости постарайтесь обратиться в диагностический центр.

МРТ – магнитно-резонансная томография – это современный, безопасный (без ионизирующего излучения) и надёжный метод лучевой диагностики . МРТ является уникальным и практически не имеющим аналогов исследованием для диагностики заболеваний центральной нервной системы, позвоночника, мышечно – суставной системы и ряда внутренних органов.

Специальной подготовки к исследованию не требуется, за исключением обследования органов малого таза, когда требуется наполненный мочевой пузырь. Во время исследования пациент в горизонтальном положении помещается в узкий тоннель (трубу) с сильным магнитный полем приблизительно на 15 – 20 минут, в зависимости от вида исследования. Пациент должен сохранять полную неподвижность исследуемой анатомической области. Процедура МРТ безболезненна, однако сопровождается сильным шумом. Для уменьшения дискомфорта вам будут предложены наушники.

Так же возможен психологический дискомфорт из-за нахождения в замкнутом пространстве. Сопровождающие лица могут находиться в помещении МРТ (магнитно-резонансной томографии) с пациентом при условии отсутствия у них противопоказаний к нахождению в магнитном поле и после подписания информационного согласия на каждое лицо, находящегося в области магнитного излучения.

Магнитно-резонансная томография - МРТ - до и после.

Перед проведением МРТ исследования необходимо заполнить анкету, которая позволяет выявить наличие противопоказаний к процедуре. Противопоказаниями к проведению МРТ исследования являются: наличие у пациента кардиостимуляторов (водителей ритма сердца), слуховых аппаратов и имплантов неустановленного происхождения; неадекватное поведение больного (психомоторное возбуждение, паническая атака), состояние алкогольного или наркотического опьянения, клаустрофобия (боязнь и выраженный дискомфорт при нахождении в замкнутых пространствах), невозможность сохранять неподвижность в течение всего исследования (например, вследствие сильной боли или неадекватного поведения), необходимость постоянного мониторинга жизненно-важных показателей (ЭКГ, артериальное давление, частота дыхания) и проведения постоянных реанимационных мероприятий (например, искусственного дыхания).

При наличии в анамнезе хирургических операций и инородных тел (имплантов) необходим сертификат на вживлённый материал или справка от лечащего врача, выполнявшего оперативное вмешательство (вживление) о безопасности проведения МРТ исследования с данным материалом. Информация для пациентов женского пола: менструация, наличие внутриматочной спирали, а так же кормление грудью не являются противопоказаниями для исследования. Беременность рассматривается как относительное противопоказание, в связи, с чем требуется заключение врача-гинеколога о возможности проведения МРТ исследования. Окончательное решение об отказе пациенту от проведения МРТ исследования принимает непосредственно перед исследованием дежурный врач-рентгенолог МРТ.

В связи с наличием сильного магнитного поля в помещение МРТ запрещается провоз каталок для лежачих пациентов, кресел-каталок, вспомогательных устройств, для передвижения (костыли, трости, рамки), содержащих металлические компоненты. Личные вещи, украшения и ценности, одежда, содержащая металл и электромагнитные устройства не допускаются в комнату МРТ сканирования и могут быть оставлены в сейфе в помещении управления МРТ.
Магнитно-резонансная томография безвредна!

Пациенту необходимо знать, что магнито-резонансная томография, как исследование, обладает определёнными диагностическими пределами, а так же возможной ограниченной чувствительностью и специфичностью в диагностике патологических процессов. В связи с этим, а так же при наличии сомнений в целесообразности проведения исследования рекомендуется проконсультироваться с лечащим врачом или врачом МРТ. Решение о проведении МРТ исследования и выборе анатомической области исследования принимает сам пациент на основании направления от лечащего врача или по собственной инициативе. Перед проведением МРТ исследования пациент самостоятельно указывает анатомическую область исследования в письменной форме, тем самым, подтверждая необходимость исследования данной области. После проведения МРТ исследования претензии не принимаются, и оплата за МРТ исследование не возвращается.

В ряде случаев возникает диагностическая необходимость проведения МРТ исследования с внутривенным контрастным усилением. Данные исследования проводятся только по направлению лечащего врача или врача МРТ. Введение контрастного препарата содержит минимальный риск побочных реакций. Пациенту будет предложено заполнить дополнительную анкету – лист информационного согласия на внутривенное введение контрастного препарата. Противопоказаниями к проведению внутреннего контрастного усиления является беременность, кормление грудью, ранее выявленная повышенная чувствительность к препаратам данной группы, а так же почечная недостаточность.

Для повышения диагностической эффективности МРТ исследований пациентам рекомендуется приносить с собой данные предыдущих МРТ исследований, других методов лучевой, лабораторной или функциональной диагностики, а так же амбулаторные карты или направления от лечащих врачей с указанием области и цели исследования.
Наш центр оснащен магнитно-резонансным томографом Magnetom Harmony компании Siemens

В нашем центре проводятся МРТ исследования головного мозга (головы), позвоночника, суставов и всего тела. В нашей клинике установлен Магнитно-резонансный томограф на основе использования сверхпроводящего магнита с напряженностью поля 1.0 Тл.

Кроткий дизайн магнита (всего 160 см, включая кожух) и передне-фронтальный доступ к пациенту для обеспечения комфорта пациента, значительно снижая проблему клаустрофобии.

Набор высокопроизводительных градиентов (20 мТл/м со скоростью нарастания 50 Тл/м/сек, 30 мТл/м при 75 Тл/м/сек и 30 мТл/м при 125 Тл/м/сек по каждой из x, y, z осей), циркулярно-поляризованная технология мультиэлементных радиочастотных катушек, объединенных в единый виртуальный массив для их панорамного использования, и новейшие уникальные импульсные последовательности в их клинически ориентированной вариации (TrueFisp, VIBE, HASTE, EPI, PSIF-Diffusion и пр.) для проведения всевозможных рутинных и скоростных обследований как на задержке дыхания, так и без нее (нейро: голова и отделы позвоночника, ортопедия, абдоминальные, ангиографические и кардиологические обследования), но и протонную спектроскопию, функциональные исследования головного мозга и пр.

Сканер с технологией Maestro Class , позволяющей обеспечить интеллектуальность и экспертность МРТ (магнитно-резонансная томография) обследований (Inline обработка и коррекци я смещений в процессе сбора данных 1D, 2D, 3D PACE) и увеличить дополнительно скорость сбора данных с использованием iPAT технологии до 2-3-х раз. Как следствие, Maestro Сlass расширяет возможности существующих приложений и открывает новые.

Магнито-резонансные явления, их применение в медицине.

1. Расщепление энергетических уровней в магнитном поле. Эффект Зеемана.

2. Резонансные методы исследования вещества.

3. Магнитный резонанс.

4. Электронный парамагнитный резонанс

5. Ядерный магнитный резонанс

6. Метод ЭПР в биологии и медицине

1. Так как макроскопические свойства магнетиков обусловлены их строением, рассмотрим магнитные характеристики электронов, ядер, атомов и молекул, а также поведение этих частиц в магнитном поле.

Сила тока, соответствующая движению электрона, который вращается с частотой , равна

Где e-заряд электрона

Так как , то

Так как магнитный момент контура с током P=IS, то

(3)

Момент импульса электрона (1-й постулат Бора)

Отношение магнитного момента частицы к ее моменту импульса называют магнито-механическим

(4)

Магнито-механическое отношение выражают через множитель Ланде g:

(5)

Электрон обладает также и собственным моментом импульса, который называется спином. Спину соответствует магнитный момент. Спиновое иагнито-механическое соотношение вдвое больше орбитального:

(6)

Соотношения (5) и (6) показывают, что между магнитным и механическим моментом существует вполне определенная «жесткая» связь, так как e и m e –величины постоянные.

Рассмотрим атом, помещенный в магнитное поле. Его энергия определяется по формуле

(7)

Где E 0 -энергия атома в отсутствии магнитного поля

Магнетон Бора, g-множитель Ланде,

В-индукция магнитного поля,

m j -магнитное квантовое число.

Так как m j может принимать (2j+1) значений от +j до –j, то из (7) следует, что каждый энергетический уровень при помещении атома в магнитное поле расщепляется на 2j+1 подуровней. Это показано на рис. для j=1/2.

Расстояние между соседними подуровнями равно

Расщепление энергетических уровней приводит к расщеплению спектральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.

Запишем (7) для двух подуровней Е 1 и Е 2 , образованных при наложении магнитного поля:

, (9)

Е 01 и Е 02 -энергии атома при отсутствии магнитного поля

Используя условие частот , (9) можно записать

Где -частота спектральной линии при отсутствии магнитного поля, -расщепление спектральной линии в магнитном поле.

Согласно правилам отбора для магнитного квантового числа Это соответствует трем возможным частотам:

Т.е. в магнитном поле спектральная линия расщепляется на триплет.

Примечание: в современной квантовой механике состояние движения электрона в атоме характеризуется 4 квантовыми числами.

Главное квантовое число n=1,… -определяет уровни энергии электрона

Орбитальное квантовое число l=0.1…n-1-характеризует момент импульса электрона L e относительно ядра:

Магнитное квантовое число m j =0. всего 2l+1 значений. Оно определяет проекции орбитального момента импульса на произвольное направление z:

Основное квантовое число m s принимает значения +1/2 и -1/2 и характеризует значение проекции спина:

2. Резонансные методы исследования вещества , обладая высокой информативностью и точностью, позволяют исследовать химический состав, симметрию, структуру, энергетический спектр вещества, электрические, спин-орбитальные, магнитные, сверхтонкие взаимодействия.

Слово «резонанс» в широком смысле означает возрастание отклика колебательной системы на периодическое внешнее воздействие при сближении частоты последнего с одной из частот собственных колебаний системы.

Несмотря на различную природу колебательных систем, которые способны резонировать, общая картина резонанса сохраняется: вблизи резонанса возрастают амплитуда колебаний и энергия, передаваемая колебательной системой извне.

Наиболее удобным и распространенным видом периодического внешнего воздействия является э/м излучение.

При квантовом описании колебательная система характеризуется набором разрешенных значений энергии (энергетическим спектром). Этот спектр для систем связанных частиц может носить дискретный характер. Переменное э/м поле частоты можно рассматривать как совокупность фотонов с энергией . При совпадении энергии фотона с разностью энергий каких-либо двух уровней наступает резонанс, т.е. резко возрастает число поглощаемых системой фотонов, вызывающих квантовые переходы с нижнего уровня E i на верхний E k .

Магнитный резонанс

Если облучать вещество переменным э/м полем, то при некоторой частоте будет происходить резонансное поглощение энергии э/м поля, которое можно измерить экспериментально. На практике удобнее частоту переменного поля (задаваемого генератором) зафиксировать, а менять величину постоянного магнитного поя Н. Тогда резонанс наступает при определенном значении поля Н, которое и измеряется. Это явление называется магнитным резонансом. Зная магнитный момент электрона, можно вычислить частоту электронного резонанса. В зависимости от типа частиц, составляющих резонирующую систему, различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

4. Электронный парамагнитный резонанс (ЭПР) открыт в 1944 г. Е.К.Завойским при исследовании поглощения э/м энергии парамагнитными солями металлов. Он заметил, что монокристалл CuCl 2 , помещенный в постоянное магнитное поле 40Гаусс (4мТл), начинает поглощать микроволновое излучение с частотой около 133 МГц.

Специально вводимые в диамагнитные кристаллы примесные парамагнитные ионы оказались прекрасными зондами для изучения методом ЭПР локальной структуры и симметрии, природы химических связей примесного иона с кристаллическим окружением, электронно-колебательных взаимодействий и т.д.

Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра.

Излучение, прошедшее через измеряемый образец, в радиоспектрометре и в спетрофотометре попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце компьютера.

5. Ядерный магнитный резонанс (ЯМР) состоит в резонансном поглощении э/м энергии, обусловленном магнетизмом ядер. Частота э/м поля, вызывающего переходы между соседними уровнями, определяется условием частот Бора. При этом стало возможным детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности водородных сигналов.



Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

6. ЭПР в медицине и биологии .

Современные ЭПР-спектрометры позволяют изучать парамагнитные молекулы непосредственно в процессе функционирования биологических систем на разных уровнях их структурно-функциональной организации, таких, как молекулы биополимеров, макромолекулярные комплексы и субклеточные структуры, клетки, отдельные органы животных и растений, а также целые организмы.

Широкие возможности метода ЭПР в медицинской науке и практике продемонстрированы исследованиями, регистрирующими свободные радикалы в различных клеточных суспензиях: мышечной ткани, гипофизе, щитовидной железе, надпочечниках, эпителиальных клетках хрусталика глаза. Методом ЭПР было исследовано влияние некоторых токсичных веществ на человека.

Особый интерес для медицинской микробиологии могут представлять данные о том, что на содержание свободных радикалов в тканях, клетках и биомакромолекулах существенное влияние оказывают малые количества структурно связанной воды и кислород. Метод ЭПР использовался для контроля за сохранением таких биологических материалов, как кровь, вакцины, сыворотки, кровезаменители, пищевые продукты. Ряд тяжелых заболеваний, таких как холера, сахарный диабет и др., сопровождаются существенным обезвоживанием организма.

Особое направление в применении ЭПР - спектроскопии для биомедицинских исследований представляет так называемый спин-иммунологический метод. Его с успехом используют для определения малых количеств наркотических веществ в биологических жидкостях (моче, крови, слюне). В отличие от радио-иммунологического сип-иммунологический метод не требует специальной защиты для обеспечения безопасности, как это принято при работе с изотопами.

В ряде работ были показаны возможности метода ЭПР для диагностики ишемической болезни сердца. С использованием метода ЭПР можно диагностировать инсулинозависимый сахарный диабет по степени его тяжести.

С помощью метода ЭПР проводятся биодозиметрические обследования населения, пострадавшего при радиоактивном загрязнении окружающей среды.


Магнитно-резонансная томография (МРТ) является одним из современных методов лучевой диагностики, позволяющим неинвазивно получать изображения внутренних структур тела человека.

Метод был назван магнитно-резонансной томографией, а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом "ядерный" в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул.

МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Преимущества МРТ

Важнейшим преимуществом МРТ по сравнению с другими методами лучевой диагностики является :
отсутствие ионизирующего излучения и как следствие эффектов канцеро- и мутагенеза, с риском возникновения которых сопряжено (хотя и в очень незначительной степени) воздействие рентгеновского излучения.
МРТ позволяет проводить исследование в любых плоскостях с учетом анатомических особенностей тела пациента, а при необходимости – получать трехмерные изображения для точной оценки взаиморасположения различных структур.
МРТ обладает высокой мягкотканной контрастностью и позволяет выявлять и характеризовать патологические процессы, развивающиеся в различных органах и тканях тела человека.
МРТ является единственным методом неинвазивной диагностики, обладающим высокой чувствительностью и специфичностью при выявлении отека и инфильтрации костной ткани.
развитие МР-спектроскопии и диффузионной МРТ, а также создание новых органотропных контрастных препаратов является основой развития “молекулярной визуализации” и позволяет проводить гистохимические исследовании in vivo.
МРТ лучше визуализирует некоторые структуры головного и спинного мозга, а также другие нервные структуры, в связи с этим она чаще используется для диагностики повреждений, опухолевых образований нервной системы, а также в онкологии, когда необходимо определить наличие и распространенность опухолевого процесса

Физические основы МРТ

В основе МРТ лежит феномен ядерно-магнитного резонанса , открытый в 1946г. физиками Ф.Блохом и Э.Перселлом (Нобелевская премия по физике, 1952г.). Суть этого феномена состоит в способности ядер некоторых элементов, находящихся под воздействием статического магнитного поля, принимать энергию радиочастотного импульса. В 1973г. американский ученый П.Лотербур предложил дополнить феномен ядерно-магнитного резонанса наложением градиентных магнитных полей для пространственной локализации сигнала. С помощью протокола реконструкции изображений, использовавшегося в то время при проведении компьютерной томографии (КТ), ему удалось получить первую МР-томограмму. В последующие годы МРТ претерпела целый ряд качественных преобразований, став в настоящее время наиболее сложной и многообразной методикой лучевой диагностики. Принцип МРТ позволяет получать сигнал от любых ядер в теле человека, но наибольшей клинической значимостью обладает оценка распределения протонов, входящих в состав биоорганических соединений, что определяет высокую мягкотканную контрастность метода, т.е. обследовать внутренние органы.

Теоретически любые атомы, содержащие нечетное число протонов и/или нейтронов, обладают магнитными свойствами. Находясь в магнитном поле, они ориентируются вдоль его линий. В случае приложения внешнего переменного электромагнитного поля, атомы фактически являющиеся диполями, выстраиваются по новым линиям электромагнитного поля. При перестройки вдоль новых силовых линий ядра генерируют электромагнитный сигнал, который можно зарегистрировать приемной катушкой.

В фазу исчезновения магнитного поля, ядра-диполи возвращаются в первоначальное положение, при этом скорость возвращения в первоначальное положение определяется двумя временными константами, Т1 и Т2:
Т1 – это продольное (спин-решетковое) время, отражающее скорость потери энергии возбужденными ядрами
Т2 – это поперечное релаксационное время, зависящее от скорости, с которой возбужденные ядра обмениваются энергией друг с другом

Получаемый от тканей сигнал зависит от числа протонов (протоновой плотности) и значений Т1 и Т2. Применяемые при МРТ пульсовые последовательности предназначены для лучшего использования различий тканей по Т1 и Т2 с целью создания максимального контраста между тканями в норме и патологии.

МРТ позволяет получать большое количество типов изображений, используя пульсовые последовательности с различными временными характеристиками электромагнитных импульсов.

Пульсовые интервалы строят таким образом, чтобы сильнее подчеркивать различия в Т1 и Т2. Наиболее часто используют последовательности «инверсия восстановления» (IR) и «спиновое эхо» (SE) , которые зависят от протонной плотности.

Основным техническим параметром, определяющим диагностические возможности МРТ , является напряженность магнитного поля , измеряемая в Т (тесла). Высокопольные томографы (от 1 до 3 Т) позволяют проводить наиболее широкий спектр исследований всех областей тела человека, включающий функциональные исследования, ангиографию, быструю томографию. Томографы этого уровня являются высокотехнологичными комплексами, требующими постоянного технического контроля и крупных финансовых затрат .

Напротив, низкопольные томографы обычно являются экономичными, компактными и менее требовательными с технической и эксплуатационной точек зрения. Однако возможности визуализации мелких структур на низкопольных томографах ограничены более низким пространственным разрешением, а спектр обследуемых анатомических областей преимущественно ограничен головным и спинным мозгом, крупными суставами.

Обследование одной анатомической области методом МРТ включает выполнение нескольких так называемых импульсных последовательностей. Различные импульсные последовательности позволяют получить специфические характеристики тканей человека, оценить относительное содержание жидкости, жира, белковых структур или парамагнитных элементов (железо, медь, марганец и др.).
Стандартные протоколы МРТ включают в себя Т1-взвешенные изображения (чувствительные к наличию жира или крови) и Т2-взвешенные изображения (чувствительные к отеку и инфильтрации) в двух-трех плоскостях.

Структуры, практически не содержащие протонов (кортикальная кость, кальцификаты, фиброзно-хрящевая ткань), а также артериальный кровоток имеют низкую интенсивность сигнала и на Т1-, и на Т2-взвешенных изображениях.

Время проведения исследования обычно составляет от 20 до 40 мин в зависимости от анатомической области и клинической ситуации.

Точность диагностики и характеризации гиперваскулярных процессов (опухоли, воспаление, сосудистые мальформации) может быть существенно повышена при использовании внутривенного контрастного усиления . Многие патологические процессы (например, мелкие опухоли головного мозга) часто не выявляются без внутривенного контрастирования.

Основой для создания МР-контрастных препаратов стал редкоземельный металл гадолиний (препарат – магневист ). В чистом виде данный металл обладает высокой токсичностью, однако в форме хелата становится практически безопасным (в том числе отсутствует нефротоксичность). Побочные реакции возникают крайне редко (менее 1% случаев) и обычно имеют легкую степень выраженности (тошнота, головная боль, жжение в месте инъекции, парестезии, головокружение, сыпь). При почечной недостаточности частота побочных эффектов не увеличивается.
Введение МР-контрастных препаратов при беременности не рекомендуется, так как неизвестна скорость клиренса из амниотической жидкости.

Разработаны и другие классы контрастных агнетов для МРТ, в том числе – органспецифические и внутрисосудистые .

Ограничения и недостатки МРТ

Большая продолжительность исследования (от 20 до 40 мин)
обязательным условием получения качественных изображений является спокойное и неподвижное состояние пациента, что определяет необходимость седации у беспокойных пациентов или применения анальгетиков у пациентов с выраженным болевым синдромом
необходимость пребывания пациента в неудобном, нефизиологичном положении при некоторых специальных укладках (например, при исследовании плечевого сустава у крупных пациентов)
боязнь замкнутого пространства (клаустрофобия) может быть непреодолимым препятствием для проведения обследования
технические ограничения, связанные с нагрузкой на стол томографа, при обследовании пациентов с избыточной массой тела (обычно более 130 кг).
ограничением к проведению исследования может оказаться окружность талии, несовместимая с диаметром туннеля томографа (за исключением проведения обследования на томографах открытого типа с низкой напряженностью магнитного поля)
невозможность достоверного выявления кальцинатов, оценки минеральной структуры костной ткани (плоские кости, кортикальная пластинка)
не позволяет детально характеризовать паренхиму легких (в этой области она уступает возможностям КТ)
в значительно в большей степени, чем при КТ, возникают артефакты от движения (качество томограмм может быть резко снижено из-за артефактов от движения пациента - дыхания, сердцебиения, пульсации сосудов, непроизвольных движений) и металлических объектов (фиксированных внутри тела или в предметах одежды), а также от неправильной настройки томографа
существенно ограничивается распространение и внедрение данной методики исследования из-за высокой стоимостью самого оборудования (томографа, РЧ-катушек, программного обеспечения, рабочих станций и т.д.) и его технического обслуживания

Основными противопоказаниями к МРТ (магнитно-резонансной томографии) являются:

абсолютные :
наличие искусственных водителей ритма
наличие больших металлических имплантантов, осколков
наличие металлических скобок, зажимов на кровеносных сосудах
искусственные сердечные клапаны
искусственные суставы
вес больного свыше 160 кг

!!! Наличие металлических зубов, золотых нитей, и другого шовного и скрепляющего материала противопоказанием к МРТ – исследованию не является, хотя снижают качество изображения.

относительные :
клаусторофобия – боязнь замкнутого пространства
эпилепсия, шизофрения
беременность (первый триместр)
крайне тяжелое состояние больного
невозможность для пациента сохранять неподвижность во время обследования

Особой подготовки к проведению МРТ-исследования в большинстве случае не требуется , но при исследовании сердца и его сосудов волосы на груди должны быть выбриты. При исследовани органов малого таза (мочевой пузырь, простата) нужно приходить с наполненным мочевым пузырем.Исследования органов брюшной полости проводятся натощак.

!!! В помещение МР-томографа не должны вноситься никакие металлические объекты, так как они могут быть притянуты магнитным полем с большой скоростью, нанести травму пациенту или медицинскому персоналу и надолго вывести из строя томограф.

Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Спасибо

Общие сведения

Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

Применение в экономике и науке

1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
2. В фармакологии для производства лекарств,
3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

Суть метода

Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

Виды магнитно-резонансной спектроскопии

  • Биологических жидкостей,
  • Внутренних органов.
Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

Показания

1. Заболевания головного мозга,
2. Исследования функций отделов головного мозга,
3. Заболевания суставов,
4. Заболевания спинного мозга,
5. Заболевания внутренних органов брюшной полости,
6. Заболевания системы мочевыведения и воспроизводства,
7. Заболевания средостения и сердца ,
8. Заболевания сосудов.

Противопоказания

Абсолютные противопоказания:
1. Кардиостимулятор ,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.

Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога ),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства ).

Подготовка к исследованию

Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

Как проводится исследование?

Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

Использование контрастного вещества при ЯМР

Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

Противопоказания к использованию контрастного вещества:

  • Беременность,
  • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

Исследование сосудов (магнитно-резонансная ангиография)

С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

Показания:

  • Врожденные пороки сердца ,
  • Аневризма , расслоение ее,
  • Стеноз сосудов,

Исследование головного мозга

Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

При ЯМР головного мозга исследуются:
  • основные сосуды шеи,
  • кровеносные сосуды, питающие головной мозг,
  • ткани головного мозга,
  • орбиты глазниц,
  • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

Функциональная ЯМР

Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

Исследование позвоночника

Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

Показания:

  • Изменение формы межпозвонковых дисков, в том числе грыжи,
  • Травмы спины и позвоночника,
  • Остеохондроз , дистрофические и воспалительные процессы в костях,
  • Новообразования.

Исследование спинного мозга

Проводится одновременно с обследованием позвоночника.

Показания:

  • Вероятность новообразований спинного мозга, очаговое поражение,
  • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
  • Кисты спинного мозга,
  • Для контроля над восстановлением после операций,
  • При вероятности заболеваний спинного мозга.

Исследование суставов

Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

Используется для диагностики:

  • Хронических артритов ,
  • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
  • Переломов,
  • Новообразований мягких тканей и костей,
  • Повреждений, не обнаруживаемых иными методами диагностики.
Применяется при:
  • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
  • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
  • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
  • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

Исследование височно-нижнечелюстного сустава

Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

Показания:

  • Нарушение подвижности нижней челюсти,
  • Щелчки при открывании – закрывании рта,
  • Боли в виске при открывании – закрывании рта,
  • Боль при прощупывании жевательной мускулатуры,
  • Боль в мускулатуре шеи и головы.

Исследование внутренних органов брюшной полости

Обследование поджелудочной железы и печени назначается при:
  • Неинфекционной желтухе ,
  • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
  • В качестве контроля над ходом лечения,
  • При травматических разрывах,
  • Камнях в желчном пузыре или желчных протоках,
  • Панкреатите любой формы,
  • Вероятности новообразований,
  • Ишемии органов паренхимы.
Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

Обследование почек назначается при:

  • Подозрении на новообразование,
  • Заболеваниях органов и тканей, находящихся возле почек,
  • Вероятности нарушения формирования органов мочевыведения,
  • В случае невозможности проведения экскреторной урографии.
Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

Исследование при заболеваниях системы воспроизводства

Обследования малого таза назначаются при:
  • Вероятности новообразования матки , мочевого пузыря, простаты,
  • Травмах,
  • Новообразованиях малого таза для выявления метастазов,
  • Болях в области крестца,
  • Везикулите,
  • Для обследования состояния лимфатических узлов.
При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

Исследование в период беременности

Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

Меры предосторожности

1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

Перед применением необходимо проконсультироваться со специалистом.

Физические основы МРТ

Для построения любых изображений необходимо измерить и сопоставить интенсивность сигнала в каждой точке будущего изображения ее координатам (т.е. расположению на изображении) или, другими словами, определить распределение интенсивности этого сигнала в двумерном (2D) или трехмерном (3D) пространстве. При проведении магнитно-резонансной томографии (МРТ) изображения срезов организма получают, измеряя распределение сигнала ядер водорода 1 H (протонов). Протоны являются составной частью практически всех молекул организма человека и, прежде всего, молекул воды и жировой ткани. Молекулы воды в организме могут находиться в свободном состоянии (внеклеточная и внутриклеточная вода) и в связанном состоянии (с ионами, углеводами, белками и даже, за счет энтропийных сил, с липидами). В зависимости от того, в каком состоянии находятся молекулы воды, сигналы протонов при одних и тех же условиях измерения будут иметь разные магнитные характеристики, что и определит относительный контраст тканей на МРТ-изображении. Вся сложная система МР-томографа нужна для измерения этого собственного сигнала ядер водорда тканей, что принципиально отличает МРТ от основной массы других методов лучевой диагностики и предопределяет ее уникальное дифференциально-диагностическое значение.

В основе магнитно-резонасной томографии (МРТ) лежит явление ядерного магнитного резонанса (ЯМР) ядер водорода. Протоны обладают спином и, соответственно, магнитным моментом, как любые движущиеся заряженные частицы. Наиболее наглядная модель протона - это стрелка компаса, которая также обладает магнитным моментом. Если компас поместить в магнитное поле Земли, то его стрелка начнет колебаться вокруг направления силовых линий этого поля. Тоже самое происходит и с протонами. Когда пациента помещают в однородное магнитное поле МР-томографа (в клинической практике его напряженность не должна превышать 3,0 Тл), то ядра водорода тканей организма взаимодействуют с магнитным полем прибора. В результате магнитные моменты или спины протонов ориентируются под определенным углом к направлению силовых линий магнитного поля (см. рис. 2.1.1-Б), подобно тому, как это происходит в магнитном поле Земли со стрелкой компаса, и начинают вращаться (прецессировать ) с частотой, которая, как и угол отклонения спинов от направления силовых линий магнитного поля a o , прямопропорциональна напряженности поля B o и называется частотой прецессии ,частотой Лармора или резонансной частотой (таблица 2.1.1). В результате весь образец намагничивается, то есть возникает суммарная намагниченность образца параллельная оси, направленной вдоль силовых линий магнитного поля (обычно ее обозначают как ось Z ), которую называют продольной намагниченностью .

Таблица 2.1.1. Частота прецессии ядер водорода 1 Н при различных напряженностях магнитного поля МРТ-систем.

Если, затем в зазор магнита подать радиочастотный импульс E 0 с частотой w , равной частоте Лармора (часто обозначаемой как резонансная частота w o ), то прецессирующие ядра водорода смогут поглотить энергию этого радиочастотного импульса, в результате чего угол отклонения a их магнитных моментов от направления силовых линий магнитного поля МР-томографа изменится, так как за счет этой поглощенной дополнительной энергии ядра приобретут способность противостоять воздействию магнитного поля прибора. В зависимости от длительности действия возбуждающего радиочастотного импульса угол отклонения спинов по отношению к первоначальному направлению Da может составлять, например, 90 о или 180 о: Такие радиочастотные импульсы назвают, соответственно, 90–градусными или 180-градусными. При этом суммарный вектор продольной намагниченности образца (по оси Z , направленной вдоль силовых линий магнитного поля) изменится (чаще – уменьшится) на величину, которая зависит от длительности действия радиочастотного импульса. Так как исходно (до помещения в магнитное поле томографа) магнитные моменты ядер водорода были направлены хаотически – в разные стороны (рис.2.1.1-А), то и после их попадания в магнитное поле (рис.2.1.1 АÒБ), спины хотя и вращаются по конусу, ориентированному по направлению силовых линий магнитного поля, но их прецессия осуществляется асинхронно (или некогерентно ), то есть с разной фазой f прецессии (рис.2.1.1-Б). В результате, в каждый момент времени для любого спина направленного в одну из сторон, имеется другой аналогичный спин с обратным (противоположным) направлением. Таким образом, суммарный вектор намагниченности образца в плоскости перпендикулярной оси Z , направленной вдоль силовых линий магнитного поля, обычно обозначаемой как плоскость XY , равен нулю (рис.2.1.1-Б).

Рисунок 2.1.1. Общая схема получения сигнала ядерного магнитного резонанса в виде спада свободной индукции (пояснения в тексте).


На следующем этапе образец с помощью передающей катушки облучают радиочастотным полем E 0 , частота которого (ее еще называют резонансной частотой МРТ-системы ) (рис.2.1.1 БÒВ) обычно составляет несколько дестятков мегагерц (табл. 2.1.1).

За счет действия радиочастотного импульса вращение всех спинов синхронизируется (становятся когерентными ), то есть их фаза f становится одинаковой f=f 0 , и в плоскости XY возникает суммарный сигнал магнитных моментов ядер водорода или поперечная суммарная намагниченность образца (рис.2.1.1-В). Если в просвете магнита размещена приемная радиочастотная катушка (радиоантена), способная измерить радиосигнал в этой плоскости, то вращение суммарного вектора намагниченности образца в плоскости XY вызовет возникновение в приемной катушке переменного тока, который и может быть зафиксирован. Измерение электрических колебаний после выключения возбуждающего радиочастотного имупльса таким приемным контуром фактически означает измерение сигнала ЯМР протонов тканей организма. Сам сигнал магнитного резонанса ядер водорода (его еще называют сигналом свободной индукции или ССИ (рис. 2.1.1-В) имеет затухающий характер, который отражает возвращение спиновой системы к исходному (до подачи возбуждающего радиочастотного импульса) состоянию, то есть происходит ЯМР-релаксация (рис.2.1.1 ВÒБ) магнитноактивных ядер: за счет рассеивания накопленной энергии в окружение спинов, называемое решеткой , к исходному значению возвращается угол отклонения спинов (спин-решеточная релаксация ) и нарушается взаимная синхронизация вращения спинов, то есть взаимоотношение между отдельными спинами (спин-спиновая релаксация ). Указанные процессы количественно характеризуются временами спин-решеточной Т 1 или спин-спиновой Т 2 релаксации , а точнее скоростями спин-решеточной W 1 или спин-спиновой W 2 релаксации . Времена релаксации в тканях зависят от температуры, подвижности ядер водорода (в жидкостях они длиннее, чем в мягких тканях) и от наличия парамагнитных или ферромагнитных релаксационных центров (чем больше концентрация таких парамагнитных или ферромагнитных веществ, тем короче вермена релаксации ядер водорода). Время спин-спиновой релаксации Т 2 кроме того зависит еще и от микрокружения протонов (рН, йонной силы раствора и т.д.), что делает эту характеристику протонов тканей более чувствительнойк развитию патологического процесса, чем время Т 1 . Отметим, что времена релаксации тканей организма человека зависят и от возраста. При миелинизации головного мозга человека в течение первого года жизни соотношение времен релаксации серого и белого вещества мозга меняется на обратное, которое и сохраняется затем в течение всей жизни (рис. 2.1.2): времена релаксации белого вещества головного мозга новорожденного больше, чем у серого, а уже в возрасте старше 1 года белое вещество головного мозга релаксирует быстрее.



Рисунок 2.1.2. Времена релаксации белого и серого вещества головного мозга в течение жизни человека уменьшаются. Обратить внимание стоит на «перекрест» уровней времен релаксации в первый год жизни.

Сами времена релаксации с возрастом уменьшаются, при этом содержание воды в головном мозге уменьшается с 93-95% сразу после рождения до 82-84% к концу второго года жизни.

Итак, резонансная частота всех ядер водорода объекта w o почти одинакова и прямопропорциональна величение напряженности магнитного поля B o . Если в этих условихя по одной из осей создать магнитное поле, напряженность которого будет линейно меняться вдоль этой оси, то частота прецессии протонов w будет линейно связана с их расположением (координатой) по выбранной оси. То есть будет осуществлено частотное пространственное кодирование положения точек по одной из осей (рис. 2.1.3). Такое линейное изменение магнитного поля создают наложением дополнительного градиентного магнитного поля G или, другими словами, включением градиента магнитного поля в определенном направлении.

Для того чтобы узнать резонансную частоту протонов w измеренный переменный ССИ (ЯМР-сигнал) обрабатывают, используя преобразование Фурье (Fourier Transformation или FT ). Фурье-преобразование позволяет выяснить конкретный вклад ядер с различными резонансными частотами в формировании полученного при измерении ЯМР-сигнала. В результате такой обработки вместо зависимости измеренной амплитуды затухающего ЯМР-сигнала от времени получается распределение вкладов (количества) магнитных ядер от их резонансной частоты. Такое распределение называется спектром ЯМР . Амплитуда пика (точнее площадь под кривой спектральной линии) прямопропорциональна концентрации ядер с данной частотой прецессии, а положение пика на спектре однозначно определяется частотой этой прецессии. Сами времена релаксации с возрастом уменьшаются, при этом содержание воды в головном мозге уменьшается с 93-95% сразу после рождения до 82-84% к концу второго года жизни.

Рисунок 2.1.3. Включение градиента магнитного поля G в направлении «голова-ноги» приводит к тому, что частота протонов каждого слоя (среза) по этому направлению отличается друг от друга на величину Dw пропорциональную величине изменения магнитного поля DG . Резонансная частота w o остается прежней только в одном слое. В результате, по резонансной частоте протонов слоя можно точно определить его расположение по направлению изменения напряженности магнитного поля, то есть его координату по этой оси.

Рисунок 2.1.4. При измерении ЯМР-сигнала трех одинаковых объектов, по-разному расположенных на оси X , в отсутствии градиента магнитного поля (А ) получаем однородный ЯМР-сигнал, который после Фурье-преобразования, даст одну спектральную линию (пик) большой апмлитуды (резонансная частота одна и та же у всех трех образцов). В присутствии градиента магнитного поля (Б ) каждый из образцов будет иметь свой пик (свою частоту) на спектре в соотвествии с их расположением вдоль оси X. А мплитуда каждого из пиков будет в три раза меньше, чем амплитуда большого пика на спектре до включения градиента.

Фактически пространственное частотное кодирование позволяет получить одну из «проекций» будущего изображения объекта, а точнее распределение ЯМР-сигнала по одной из осей трехмерного пространства за счет формирования ЯМР-спектра. Так, если разместить в постоянном магнитном поле три одинаковых пробирки с водой в ряд по оси X (рис. 2.1.4 - А), то на ЯМР-спектре будет получен один пик, содержащий ЯМР-сигналы всех трех пробирок, так как их резонансная частота будет одинакова. При создании линейного изменения магнитного поля по этой оси на ЯМР-спектре будут получены три пика, взаимное расположение которых будет однозначно отражать расположение пробирок по оси X (рис. 2.1.4 - Б). Таким образом, ЯМР-спектр будт представлять собой «проекцию» расположения пробирок по оси X .

Меняя направление градиента магнитного поля по всему трехмерному пространству можно получить целую серию таких «проекций» (рис.2.1.5), по которым (как в рентгеновской компьютерной томографии) можно восстановить изображение объектов (метод обратных проекций). Однако такая процедура потребует очень большого времени, так как в каждой из трех плоскостей необходимо будет получить множество проекций: надо пройти от 0 о до 180 о с шагом порядка 1-2 о, который, вообще говоря, будет зависить от заданного разрешения.

Рисунок 2.1.5. Получение ЯМР-спектров по двум осям X и Y (А) позволяет определить расположение объектов на плоскости XY . Многократное повторение этой процедуры по всем направлениям (Б) даст возможность определить форму исходных объектов.

В то же время включение градиента магнитного поля влияет не только на резонансную частоту ядер w , но и на их фазу f . За счет этого эффекта в присутствии градиента магнитного поля расфазировка спинов происходит гораздо быстрее, то есть спин-спиновая релаксация ускоряется. В то же время скорость изменения фазы спинов напрямую зависит от величины магнитного поля в данной точке, а это значит, что конкретная фаза спинов по направлению действия градиента магнитного поля зависит от их расположения в пространстве (рис.2.1.6).

Рисунок 2.1.6. В отсутствии градиента магнитного поля изменения фазы (А) незначительны. При постоянной продолжительности действия градиента магнитного поля, меняя его полярность (Б) или амплитуду (В), можно управлять величиной фазового угла.

В результате действия этого фазокодирующего градиента фазовый угол спинов содержит информацию о координатах ядер в пространстве по направлению его действия, а сама процедура может быть использована для фазового пространственного кодирования .

Таким образом, с помощью частотного и/или фазового пространственного кодирования можно однозначно сопоставить амплитуду ЯМР сигнала той или иной точки с ее координатами в пространстве.

Однако, измерение ССИ в условиях градиентных магнитных полей имеет определенные технические трудности, так как этот сигнал очень слабый и относительно быстро затухает (из-за ускоренной спин-спиновой релаксации). Для того, чтобы его измерить в этих условиях приходится повторно формировать этот сигнал при наличии градиетнов магнитных полей. Существуют два способа формирования такого сигнала: с помощью получения спинового эхо или формируя градиентное эхо.

Спиновое эхо формируется за счет включения через некоторое время t после подачи первого возбуждающего радиочастотного 90 о -импульса дополнительного 180 о -импульса, который «разворачивает» релаксирующие спины на 180 о, и они оказываются зеркально отраженными по отношению к плоскости XY (в эту плоскость спины поворачиваются после подачи 90 о -импульса), где через время t спины снова соберутся, формируя сигнал спинового эхо . При этом все влияние на релаксацию неоднородности магнитного поля нивелируется. Наиболее удачной аналогией поведения спинов может служить пример с бегунами (рис.2.1.7), которые после старта (возбуждающий 90 о -импульс) бегут с разной скоростью(скорость спин-спиновой релаксации и действие неоднородности поля).

Рисунок 2.1.7. Получение спинового эхо: все участники (спины) стартуют одновременно (после 90 о -импульса) и удаляются друг от дурга за счет разной скорости бега (спин-спиновой релаксации и неоднородности магнитного поля). «Собирающий» 180 о -импульс зеркально отражает участников забега относительно линии старта, и более быстрые бегуны догонят более медленных только на линии старта.

Однако после «зеркального отражения» («собирающий» 180 о -импульс) по отношению к линии старта (плоскость XY ) те из бегунов, которые были быстрее и убежали дальше, оказываются дальше от линии старта и догоняют более медленных. Учитывая, что все факторы, влиявшие на бег спортсменов при их старте, продолжают действовать в том же направлении и после «отражения», их действие на скорость бега нивелируется, и бегуны достигают линии старта одновременно.

Градиентное эхо получают резко меняя полярность градиента магнитного поля, в результате чего меняется на противоположное направление релаксации спинов, при этом быстро релаксирующие (из-за спин-спиновой релаксации и действия градиента и неоднородности магнитного поля) спины оказываются дальше от исходного положения, к которому из-за изменения направления стремятся спины. При этом воздействие градиентов и недонородности магнитного поля не только не нивелируется, но и дополнительно ускоряет поперченную релаксацию ядер. В уже приведенной аналогии с бегунами (рис. 2.1.8) после старта (возбуждающий радиочастоный импульс) расстояние между участниками забега увеличивается за счет разной скорости (скорость спин-спиновой релаксации и действие неоднородности магнитного поля).

Рисунок 2.1.8. Получение градиентного эхо: все участники (спины) стартуют одновременно (возбуждающий радиочастотный импульс) и удаляются друг от дурга за счет разной скорости бега (спин-спиновой релаксации и неоднородности магнитного поля). После разворота бегунов на месте (переключение знака градиента) более быстрые бегуны оказываются дальше от линии старта, чем медленные. В результате быстрые спортсмены догонят более медленных только на линии старта.

В некоторый момент (переключение полярности градиента) бегуны разворачиваются на месте и бегут обратно к линии старта, при этом более быстрые спортсмены оказываются позади более медленных и вынуждены их догонять. В этом случае «мешающие» бегу факторы действуют в разных направлениях и не нивелируются: например, если ветер до разворота дул в спину, то при беге в обратную сторону будет дуть в лицо. Благодаря изменению направления релаксации возбуждающий радиочастотный импульс при формировании градиентного эхо может быть меньше 90 о, что является необходимым условием при использовании спинового эхо. Радиочастотные импульсы и импульснный градиент магнитного поля включаются в определенном порядке, получившем название импульсной последовательности (ИП ). Время от одного возбуждающего радиочастотного импульса до другого (то есть от одного пакета импульсов до начала другого) называют временем повторения (Repetition Time или TR ). Время от начала релаксации спинов до максимального значения эхо-сигнала называют временем эхо (Echo Time или TE). При сравнении импульсных последовательностей спиновой эхо и градиентное эхо (рис. 2.1.9) обращает внимание, что за счет более быстрой релаксации градиентное эхо позволяет использовать более короткие времена TR и TE .

Рисунок 2.1.9. После подачи возбуждающего 90 о -импульса сигнал спинного эхо формируется через время TE за счет включения 180 о радиочастотного импульса (А ). При градиентном эхо источником формирования эхо-сигнала является изменение полярности градиента (Б ).

Независимо от выбранного способа получения эхо-сигнала для формирования полноценного изображения при магнитно-резонансной томографии (МРТ) необходимо получить информацию о распределении ЯМР-сигнала, который будет представлять собой тот или иной эхо-сигнал, в каждой точке трехмерного пространства. При 2D МРТ сначала возбуждают один срез (см. рис. 2.1.10), за счет подачи селективного возбуждающего радиочастотного импульса в присутствии срезвыбирающего градиента магнитного поля. Чем больше величина градиента магнитного поля, тем тоньше будет толщина среза и меньше соотношение сигнал/шум. Увеличение количества срезов увеличит и время исследования.

Рисунок 2.1.10. В результате включения селективного возбуждающего радиочастотного импульса с частотой w о в присутствии градиента магнитного поля G о в направлении «голова-ноги» протоны только одного среза будут формировать ЯМР-сигнал, так как только для этого среза имеется точное соответствие условиям магнитного резонанса – только его частота равна w о. Для измерения сигнала соседнего среза необходимо повторить процедуру, изменив величину градиента магнитного поля.

Рисунок 2.1.11. Для получения полноценного двумерного МРТ изображения используется подача трех импульсных градиентных магнитного поля в трех взаимно перпендикулярных направлениях:

А. Для возбуждения протонов выбранного среза совместно с возбуждающим 90 о радиочастотным импульсом с частотой w о включается импульсный срезвыбирающий градиент, создающий условия для ЯМР на частоте w о только в одном из срезов (отмечено стрелками). Затем, подавая в перепендикулярном друг другу направлении импульсные фазокодирующий и частотнокодирующий градиенты магнитного поля, измеряют ЯМР-сигнал каждой точки этого среза отдельно. Для этого измерения с помощью 180 о радиочастотного импульса и нового импульса срезвыбирающего градиента формируют сигнал спинового эхо, фиксация величины которого происходит в присутствии импульсного частотнокодирующего градиента магнитного поля.

Б. Двумерное распределение точек среза получают за счет одновременного включения в перепендикулярном друг другу направлениях фазокодирующего и частотнокодирующего градиентов магнитного поля, в результате чего каждая точка этого среза получает свой фазовый угол и частоту, однозначно определющих ее располжение в срезе.

После выбора среза в перпендикулярной плоскости подаются фазокодирующий (или подготавливакющий ) и частотнокодирующий (или считывающий ) градиенты (рис. 2.1.11-А), которые позволяют однозначно связать (закодировать) измеренные эхо-сигналы с их распределением в выбранном срезе. В результате действия фазокодирующего градиента протоны в выбранном срезе расположенные в разных строках или слоях имеют различный фазовый угол, а за счет частотнокодирующего градиента в перпендикулярном направлении (по длине этого «фазово-однородной» строчки) частота протонов линейно меняется в соответствии с величиной градиента (рис.2.1.11-Б). Для получения информации о всех строках среза необходимо повторять всю процедуру в зависимости от выбранной матрицы копления в направлении действия фазокодирующего градиента магнитного поля (например, при матрице МР-томограммы размерностью 256х256 точек или пиксел необходимо проведение 256 циклов для каждого среза), что существенно удлиняет время исследования. Но при этом, чем больше фазокодирующих циклов приходится проводить, тем выше будет отношение сигнал/шум.

Размерность матрицы копления по направлению частотнокодирующего градиента прямо не влияет на время исследования, но при ее увеличении уменьшается отношение сигнал/шум, что требует большего числа коплений, а значит и больешго времени. Вся полученная информация после двумерного преобразования Фурье представляется в виде ряда (в соответствии с выбранным количеством срезов) 2D томограмм. Кроме того, время копления очевидно зависит и от числа срезов, так как для получения изображений всех срезов процедуру следует повторить в соответствии с этим числом.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...