Аксиома паралельных. Видеоурок «Аксиома параллельных прямых

Рис.1-2

Например, дано задание провести две параллельные прямые, причем так, чтобы через данную точку М проходила хотя бы одна из прямых. Таким образом, через заданную точку М проведем взаимно перпендикулярные прямые МN и СD . А через точку N проведем вторую прямую АВ , она должна быть перпендикулярной к прямой МN .

Сделаем вывод: прямая АВ перпендикулярна к прямой МN и прямая СD тоже перпендикулярна в прямой МN , а так как данные прямые параллельны к одной прямой, то, как следствие прямая СD параллельна АВ . Значит, через точку М проходит прямая СD , которая параллельна прямой АВ . Узнаем: можно ли провести еще одну прямую через точку М , чтобы она была параллельна прямой АВ ?

Данное утверждение является ответом на наш вопрос: через точку на плоскости, которая не лежит на данной прямой, можно провести всего одну прямую, которая будет параллельна к данной прямой. Такое отвержение в другой формулировке без доказательств еще в давние времена принял ученый Евклид. Известно, что такие утверждения, принятые без доказательства, называют аксиомами.

Вышеописанное утверждение называется аксиомой о параллельных прямых. Данная аксиома Евклида имеет огромное значение для доказательства многих теорем.

Рассмотрим обратную теорему. Если прямая пересекает параллельные прямые, то и углы, лежащие при параллельных прямых накрест, соответственно равны.

Рис. 3

Доказательство: допустим, что АС и ВD являются параллельными прямыми, тогда прямая АВ является их секущей прямой. Нам нужно доказать, что ÐСАВ =Ð АВD .

Нам нужно провести так прямую АС1 , чтобы ÐС1АВ=ÐАВD . В соответствии с аксиомой параллельности прямых АС1||ВD , в условии же мы имеем АС||ВD . А это означает, что через данную точку А проходят две прямые, причем они параллельны прямой ВD . Получается противоречие аксиоме параллельности прямых, а это означает, что прямая АС1 проведена неверно.

Правильно будет, если ÐСАВ=ÐАВD . Сделаем вывод: в том случае, когда одной из параллельных прямых перпендикулярна данная прямая, то она будет перпендикулярна и ко второй прямой.

Получается, если (MN)^(CD) и (CD)||(AB) , то Ð1=Ð2=90о . А это значит: (MN)^(AB) (Рис. 1) .

Докажем теорему: если две прямые являются параллельными к третьей, то они будут параллельны одна ко второй.

Рис. 4

Пусть прямая a параллельна прямой с и прямая b тоже параллельна прямой с (рис. 4 а) . Нам нужно доказать, что a||b .

Предположим, что прямые a и b не являются параллельными, но они пересекаются в точке М (рис. 4 б) . А это значит, что две прямые a и b , которые параллельны к прямой с проходят через одну точку, а это полное противоречие аксиоме параллельности прямых. Значит наши прямые a и b параллельны.

Аксиома параллельности Евклида

Аксиома параллельности Евклида , или пятый постулат - одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида:

Евклид различает понятия постулат и аксиома , не объясняя их различия; в разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, равно как не совпадает и их порядок. В классическом издании «Начал» Гейберга сформулированное утверждение является пятым постулатом.

На современном языке текст Евклида можно переформулировать так:

Если сумма внутренних углов с общей стороной, образованных двумя прямыми при пересечении их третьей, с одной из сторон от секущей меньше 180°, то эти прямые пересекаются, и притом по ту же сторону от секущей.

Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида). Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида». Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.

Эквивалентные формулировки постулата о параллельных

В современных источниках обычно приводится другая формулировка постулата о параллельных, эквивалентная (равносильная) V постулату и принадлежащая Проклу (за рубежом её часто называют аксиомой Плейфера):

В плоскости через точку, не лежащей на данной прямой, можно провести одну и только одну прямую, параллельную данной.

В этой формулировке слова «одну и только одну» часто заменяют на «только одну» или «не более одной», так как существование хотя бы одной такой параллельной сразу следует из теорем 27 и 28 «Начал» Евклида.

Вообще у V постулата имеется огромное количество эквивалентных формулировок, многие из которых кажутся довольно очевидными. Вот некоторые из них:

§ Существует прямоугольник (хотя бы один ), то есть четырёхугольник, у которого все углы прямые.

§ Существуют подобные, но не равные треугольники (аксиома Валлиса , 1693).

§ Любую фигуру можно пропорционально увеличить.

§ Существует треугольник сколь угодно большой площади.

§ Прямая, проходящая через точку внутри угла, пересекает по крайней мере одну его сторону (аксиома Лоренца , 1791).

§ Через каждую точку внутри острого угла всегда можно провести прямую, пересекающую обе его стороны.

§ Если две прямые в одну сторону расходятся, то в другую - сближаются.

§ Сближающиеся прямые рано или поздно пересекутся.

§ Вариант: перпендикуляр и наклонная к одной и той же прямой непременно пересекаются (аксиома Лежандра).

§ Точки, равноудалённые от данной прямой (по одну её сторону), образуют прямую,

§ Если две прямые начали сближаться, то невозможно, чтобы они затем начали (в ту же сторону, без пересечения) расходиться (аксиома Роберта Симсона , 1756).

§ Сумма углов одинакова у всех треугольников.

§ Существует треугольник, сумма углов которого равна двум прямым.

§ Две прямые, параллельные третьей, параллельны и друг другу (аксиома Остроградского , 1855).

§ Прямая, пересекающая одну из параллельных прямых, непременно пересечёт и другую.

§ Через любые три точки можно провести либо прямую, либо окружность.

§ Вариант: для всякого невырожденного треугольника существует описанная окружность (аксиома Фаркаша Бойяи ).

§ Справедлива теорема Пифагора.

Эквивалентность их означает, что все они могут быть доказаны, если принять V постулат, и наоборот, заменив V постулат на любое из этих утверждений, мы сможем доказать исходный V постулат как теорему.

Если вместо V постулата допустить, что для пары точка-прямая V постулат неверен, то полученная система аксиом будет описывать геометрию Лобачевского. Понятно, что в геометрии Лобачевского все вышеперечисленные эквивалентные утверждения неверны.

Система аксиом сферической геометрии требует изменения также и других аксиом Евклида..

Пятый постулат резко выделяется среди других, вполне очевидных, он больше похож на сложную, неочевидную теорему. Евклид, вероятно, сознавал это, и поэтому первые 28 предложений в «Началах» доказываются без его помощи.

«Евклиду безусловно должны были быть известны различные формы постулата о параллельных». Почему же он выбрал приведенную, сложную и громоздкую? Историки высказывали различные предположения о причинах такого выбора. В.П. Смилга полагал, что Евклид такой формулировкой указывал на то, что данная часть теории является незавершённой. М. Клайн обращает внимание на то, что пятый постулат Евклида имеет локальный характер, то есть описывает событие на ограниченном участке плоскости, в то время как, например, аксиома Прокла утверждает факт параллельности, который требует рассмотрения всей бесконечной прямой. Надо пояснить, что античные математики избегали использовать актуальную бесконечность; например, второй постулат Евклида утверждает не бесконечность прямой, а всего лишь то, что «прямую можно непрерывно продолжать». С точки зрения античных математиков, вышеприведенные эквиваленты постулата о параллельных могли казаться неприемлемыми: они либо ссылаются на актуальную бесконечность или (ещё не введенное) понятие измерения, либо тоже не слишком очевидны.












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • дать представление о неизвестных учащимся аксиомах геометрии, повторить уже известные им аксиомы;
  • ввести аксиому параллельных прямых;
  • ввести понятие следствия из аксиом, теорем;
  • показать как используются аксиома параллельных прямых и следствия из неё при решении задач;
  • воспитание патриотизма, гордости за свою родину на примере великого русского математика Н.И.Лобачевского.

Оборудование: компьютер, проектор.

ХОД УРОКА

1. Проверка предыдущего домашнего задания

2. Повторение уже известных учащимся аксиом планиметрии

Учитель: В знаменитом сочинении Евклида «Начала» (III в. до н.э.) были систематизированы основные известные в то время геометрические сведения. Главное же − в «Началах» был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения, не требующие доказательства (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). Некоторые из аксиом, предложенных Евклидом, и сейчас используются в курсах геометрии.
Само слово «аксиома» происходит от греческого «аксиос», что означает «ценный, достойный». Полный список аксиом планиметрии, принятых в нашем курсе геометрии, приведён в приложениях в конце учебника на страницах 344-348. Эти аксиомы вы рассмотрите дома самостоятельно.
Некоторые из этих аксиом мы уже рассматривали. Вспомните и сформулируйте эти аксиомы.

Учащиеся:

1) Имеются, по крайней мере, три точки, не лежащие на одной прямой.
2) Через любые две точки проходит прямая, и притом только одна.
3) Из трёх точек прямой одна и только одна лежит между двумя другими.
4) Каждая точка О прямой разделяет её на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О.
5) Каждая прямая а разделяет плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой а, а любые две точки разных полуплоскостей лежат по разные стороны от прямой а.
6) Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
7) На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
8) От любого луча в заданную полуплоскость можно отложить угол, равный данному неразвёрнутому углу, и притом только один.

Учитель: Какие прямые называются параллельными на плоскости?

Учащиеся: Две прямые на плоскости называются параллельными, если они не пересекаются.

Учитель: Сформулируйте признаки параллельности прямых.

Учащиеся:

1) Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
2) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3) Если при пересечении двух прямых секущей сумма односторонних углов равна 180˚ то прямые параллельны.

3. Новая тема. Аксиома параллельных прямых

Учитель: Решим задачу: «Через точку М, не лежащую на прямой а, проведите прямую, параллельную прямой а».

План решения задачи обсуждается всем классом. Один из учащихся записывает решение на доске (без записи в тетрадях).

Учитель: Возникает вопрос: можно ли через точку М провести ещё одну прямую, параллельную прямой а?
Этот вопрос имеет большую историю. В «Началах» Евклида содержится пятый постулат: «И если прямая, падающая на две прямые, образуют внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых». Прокл в V в.н.э. переформулировал постулат Евклида проще и понятнее: «Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». Это и есть аксиома параллельных прямых. Отсюда видно, что рассмотренная выше задача имеет единственное решение.
Многие математики предпринимали попытки доказать пятый постулат, так как его формулировка слишком напоминала теорему. Все эти попытки каждый раз оказывались неудачными. И лишь в XIX в. было окончательно выяснено, что пятый постулат Евклида нельзя доказать, он сам является аксиомой.
Огромную роль в решении этого вопроса сыграл великий русский математик Николай Иванович Лобачевский (1792-1856).

4. Смотрим презентацию о Н.И.Лобачевском

5. Закрепление изученного. Решение задач

Дан ∆АВС. Сколько прямых, параллельных стороне АВ, можно провести через вершину С?

Решение.

Согласно аксиоме параллельных прямых, можно провести единственную прямую.

Через точку, не лежащую на прямой р, проведены четыре прямые. Сколько из этих прямых пересекают прямую р? Рассмотрите все возможные случаи.

Решение.

3 прямые 4 прямые

Ответ: 3 или 4 прямые.

Следствия из аксиомы параллельных прямых.

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим следствия из аксиомы параллельных прямых.

Следствие 1˚. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Следствие 2˚. Если две прямые параллельны третьей прямой, то они параллельны. (Предлагается доказать учащимся самостоятельно).

Чертёж тот же.

Дано: а || b, с || b
Доказать: а || с
Доказательств о (метод «от противного»):

Пусть прямые а и с не параллельны. Тогда они пересекаются в некоторой точке М. Через точку М проходят две различные прямые (а и с), параллельные прямой b. Это противоречит аксиоме параллельных. Значит наше предположение не верно. А верно то, что а || с. Ч.т.д.
Второе следствие из аксиомы параллельных прямых является по сути дела ещё одним признаком параллельности прямых на плоскости.

Решение задач: №№ 217 (устно), 218 (устно), 198, 200, 213.

№ 217 (устно)

Прямые а и b параллельны прямой с. Докажите, что любая прямая, пересекающая прямую а, пересекает также и прямую b.

Решение.

Если а || b и b || с, то а || с (следствие 2˚).
Если произвольная прямая d ∩ а, то d ∩ b (следствие 1˚).

№ 218 (устно)

Прямые а и b пересекаются. Можно ли провести такую прямую, которая пересекает прямую а и параллельна прямой b? Ответ обоснуйте.

Решение .

Возьмём на прямой а точку А b. Через точку А можно провести единственную прямую, параллельную прямой b (аксиома параллельных). Построенная прямая будет пересекать прямую а, так как имеет с ней общую точку А.

Прямые а и bперпендикулярны к прямой р, прямая с пересекает прямую а. Пересекает ли прямая с прямую b?

Дано: ар, bр, с ∩ а
Найти: пересекает ли с прямую b?
Решение: если ар и bр, то а || b (теорема).
Если с ∩ а и а || b, то с ∩ b (следствие 1˚).
Ответ: с ∩ b.

На рисунке учебника АD || р и PQ || BC. Докажите, что прямая р пересекает прямые АВ, АЕ, АС, ВС, РQ.

На рисунке учебника СЕ = ED, ВЕ = EF и КЕ = AD. Докажите, что КЕ || ВС.

6. Подведение итогов

1) В чём заключается главная заслуга Евклида?
2) Что называется аксиомой?
3) Какие аксиомы мы знаем?
4) Кто из русских учёных построил стройную теорию неевклидовой геометрии?
5) Что называется следствием в математическом смысле слова?
6) Какие следствия мы сегодня узнали?

7. Задание на дом:

§2, п.27, 28, приложение об аксиомах геометрии стр. 344-348, вопросы 7-11 стр. 68, №199, 214.
№199: Прямая р параллельна стороне АВ треугольника АВС. Докажите, что прямые ВС и АС пересекают прямую р.
№214: Прямая, проходящая через середину биссектрисы AD треугольника АВС и перпендикулярная к AD, пересекает сторону АС в точке М. Докажите, что MD¦AB.

Литература:

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия, 7-9: Учебник для общеобразовательных учреждений. − М.: Просвещение, 2003.
  2. Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., Некрасов В.Б., Юдина И.И. Изучение геометрии в 7, 8, 9 классах: Методические рекомендации к учебнику. Книга для учителя. − М.: Просвещение, 2003.
  3. Дорофеева А.В. Страницы истории на уроках математики: Книга для учителя. − М.: Просвещение, 2007.
  4. Википедия.

Выполнил ученик 7 класса «Г» МБОУ «ОК «Лицей №3» Гаврилов Дмитрий

Аксиома
Происходит от греческого «аксиос», что означает «ценный, достойный».Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. (Советский энциклопедический словарь)

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Аксиома параллельных прямых Выполнил ученик 7 класса «Г» МБОУ «ОК «Лицей № 3» Гаврилов Дмитрий 2015-2016 уч.г (учитель Конарева Т.Н.)

Известные определения и факты. Закончи предложение. 1. Прямая х называется секущей по отношению к прямым а и b , если… 2. При пересечении двух прямых секущей образуется … неразвернутых углов. 3. Если прямые АВ и С D пересечены прямой В D , то прямая В D называется… 4. Если точки В и D лежат в разных полуплоскостях относительно секущей АС, то углы ВАС и DCA называются… 5. Если точки В и D лежат в одной полуплоскости относительно секущей АС, то углы ВАС и DCA называются… 6. Если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары… D C А С В D A B

Проверка задания. 1 . …если она пересекает их в двух точках 2. 8 3. … секущей 4. … накрест лежащими 5. … односторонними 6. … равны

Найдите соответствие a) a b m 1) a | | b , так как внутренние накрест лежащие углы равны б) 2) a | | b , так как соответственные углы равны в) a b 3) a | | b , так как сумма внутренних односторонних углов равна 180° 50 º 130 º 45 º 45 º m a b m a 150 º 150º

Об аксиомах геометрии

Аксиома Происходит от греческого «аксиос», что означает «ценный, достойный». Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. Советский энциклопедический словарь

Через любые две точки проходит прямая, и притом только одна Сколько прямых можно провести через любые две точки, лежащие на плоскости?

На любом луче от его начала можно отложить отрезок, равный данному, и притом только один Сколько отрезков данной длины можно отложить от начала луча?

От любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один Сколько углов равных данному можно отложить от данного луча в заданную полуплоскость?

аксиомы теоремы логические рассуждения знаменитое сочинение «Начала» Евклидова геометрия Логическое построение геометрии

Аксиома параллельных прямых

М а Докажем, что через точку М можно провести прямую, параллельную прямой а с в а ┴ с в ┴ с а ІІ в

Можно ли через точку М провести еще одну прямую, параллельную прямой а? а М в в 1 А можно ли это доказать?

Многие математики, начиная с древних времен, пытались доказать данное утверждение, а в «Началах» Евклида это утверждение называется пятым постулатом. Попытки доказать пятый постулат Евклида не увенчались успехом, и лишь в XIX веке было окончательно выяснено, что утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский.

Пятый постулат Евклида 1792-1856 Николай Иванович

«Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной». Какое из данных утверждений является аксиомой? Чем отличаются вышеуказанные утверждения?

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Утверждения, которые выводятся из аксиом или теорем, называют следствиями Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую. a II b , c b ⇒ c a Аксиома параллельности и следствия из неё. а А Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны. a II с, b II с a II b а b с c b

Закрепление знаний. Тест Отметить знаком «+» правильные утверждения и знаком «-» - ошибочные. Вариант 1 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, требующее доказательства. 2. Через любые две точки проходит прямая. 3. На любом луче от начала можно отложить отрезки, равные данному, причем сколько угодно много. 4.Через точку не лежащую на данной прямой, проходит только одна прямая, параллельная данной. 5. Если две прямые параллельны третьей, то они параллельны между собой. Вариант 2 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, принимаемое без доказательства. 2. Через любые две точки проходит прямая, и притом только одна. 3. Через точку, не лежащую на данной прямой, проходят только две прямые, параллельные данной. 4. Если прямая пересекает одну из двух параллельных прямых, то она перпендикулярна другой прямой. 5. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Ответы теста Вариант 1 1. «-» 2. «-» 3. «-» 4. «+» 5. «+» Вариант 2 «+» «+» «-» «-» «+»

«Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение». (В. Произволов)

§ 1 Аксиома параллельных прямых

Выясним, какие утверждения называются аксиомами, приведем примеры аксиом, сформулируем аксиому параллельных прямых и рассмотрим некоторые её следствия.

При изучении геометрических фигур и их свойств возникает необходимость в доказательстве различных утверждений - теорем. При их доказательстве часто опираются на ранее доказанные теоремы. Возникает вопрос: а на чем основаны доказательства самых первых теорем? В геометрии приняты некоторые исходные положения, на их основе и доказываются далее теоремы. Такие исходные положения называются аксиомами. Аксиома принимается без доказательств. Слово аксиома происходит от греческого слова «аксиос», что означает «ценный, достойный».

С некоторыми аксиомами мы уже знакомы. Например, аксиомой является утверждение: через любые две точки проходит прямая, и притом только одна.

При сравнении двух отрезков и двух углов мы накладывали один отрезок на другой, а угол накладывали на другой угол. Возможность такого наложения вытекает из следующих аксиом:

·на любом луче от его начала можно отложить отрезок, равный данному, и притом только один;

·от любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.

Геометрия - древняя наука. Почти два тысячелетия геометрия изучалась по знаменитому сочинению «Начала» древнегреческого ученого Евклида. Евклид сначала формулировал исходные положения - постулаты, а затем на их основе путем логических рассуждений доказывал другие утверждения. Геометрия, изложенная в «Началах», называется евклидовой геометрией. В рукописях ученого есть утверждение, называемое пятым постулатом, вокруг которого очень долгое время разгорались споры. Многие математики предпринимали попытки доказать пятый постулат Евклида, т.е. вывести его из других аксиом, но каждый раз доказательства были неполными или заходили в тупик. Лишь в XIX веке было окончательно выяснено, что пятый постулат не может быть доказан на основе остальных аксиом Евклида, и сам является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский (1792-1856). Итак, пятый постулат - аксиома параллельных прямых.

Аксиома: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

§ 2 Cледствия из аксиомы параллельных прямых

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Дано: прямые а и b параллельны, прямая с пересекает прямую а в точке А.

Доказать: прямая с пересекает прямую b.

Доказательство: если бы прямая с не пересекала прямую b, то через точку А проходили бы две прямые а и с, параллельные прямой b. Но это противоречит аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Значит, прямая с пересекает прямую b.

Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: прямые а и b параллельны прямой с. (а||с, b||с)

Доказать: прямая а параллельна прямой b.

Доказательство: допустим, что прямые а и b не параллельны, т.е. пересекаются в некоторой точке А. Тогда через точку А проходят две прямые а и b, параллельные прямой с. Но по аксиоме параллельных прямых через точку, не лежащую на данной прямой, проходит только одна прямая, параллельна данной. Значит, наше предположение неверно, следовательно, прямые а и b параллельны.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.

Использованные изображения:



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...